共查询到20条相似文献,搜索用时 15 毫秒
1.
高寒草甸土壤水分的影响因子及其空间变异研究 总被引:12,自引:2,他引:12
以黄河源区典型高寒草甸草地类型为对象,运用旋转主成分分析法对影响高寒草甸土壤水分的植被盖度、群落高度、土层根系深度、草地类型等9个环境因子进行了分析,将这些环境因子分为4个主成分因子依次为:立地与草地类型因子、植被因子、坡向风速因子和地形因子.同时,采用统计方法对于不同深度土壤水分进行了统计分析,揭示了土壤水分在整个土壤剖面上的空间变异可划分为:速变层(0~30 cm)、活跃层(40 cm)、次活跃层(50 cm)和相对稳定层(60 cm). 相似文献
2.
通过网格(10m×10m)取样,用地统计学方法研究了青藏高原高寒草甸覆盖区域(110m×90m)浅层剖面(0~40cm)土壤水分的空间异质性特征。结果表明:在高寒草甸覆盖区0~30cm深度范围内,土壤水分均存在高度空间异质性,其中87.3%~74.9%的空间异质性是由空间自相关部分引起的,主要体现在201m以下尺度,10m以下随机因素对空间异质性作用较小;30~40cm土壤水分空间异质性由10m以下尺度随机因素导致的占42.3%,而自相关部分的空间异质性(57.7%)体现在10~87.2m尺度。随土层深度的增加,分维数D有逐渐增大的趋势,说明随深度增加高寒草甸区土壤水分自相关空间异质性程度在降低,而随机因素导致的空间异质性程度在增加。从4层的C0/(C+C0)值来看,10~20cm这一层的值最小,表明在这一层的系统变量的空间自相关性程度最高。说明高寒草甸区0~30cm土层的土壤水分含量是受降水、植被发育、根系分布、土壤特性和人为干扰等影响,其空间异质性主要受自相关因素控制,而30cm以下的土壤水分受自相关因素和随机因素共同控制。 相似文献
3.
祁连山退化高寒草甸土壤水分空间变异特征分析 总被引:12,自引:0,他引:12
利用传统统计学方法和地统计学方法,对祁连山地区受到过度放牧影响而退化为以狼毒为优势种的高寒草甸的土壤水分垂直变异特征、水平空间异质性以及分布特征进行了系统分析. 结果表明:在垂直方向上,0~100 cm土壤水分含量随深度的增加而逐渐减少,土壤水分含量的变化速度随深度的增加也趋于减少;土壤水分分布的变异系数在浅层和深层土壤较大,在中层土壤较小. 在水平方向上,0~40 cm土壤水分具有中等空间变异性,其中10~20 cm土壤水分变异性主要受根系的影响,随机部分引起的变异性最大;而在其他土壤层,随着深度的增加土壤水分含量由随机部分引起的空间异质性程度减弱,由空间自相关部分引起的异质性程度增强. 整体上,土壤水分含量与微地形关系密切,与距离溪流的远近程度正相关,与高程分布负相关. 相似文献
4.
5.
高寒草地植被覆盖变化对土壤水分循环影响研究 总被引:40,自引:8,他引:40
土地覆盖变化对流域水平衡的影响是流域水学和生态水学研究的关键问题之一。以黄河源区两个典型小流域为研究对象,通过对流域不同植被类型与植被覆盖土壤的水分含量、入渗过程、蒸散发特征的测定,研究了高寒草地植被覆盖变化对土壤水分循环的影响.结果表明:广泛分布于青藏高原河源区的高寒草甸草地,植被覆盖度与土壤水分之间具有显的相关关系,尤其是20cm深度范围内土壤水分随植被盖度呈二次抛物线性趋势增加;在保持其原有的植物建群和较高覆盖度时,土壤上层具有较高持水能力,降水通过表层向深层土壤的渗透速度缓慢,且具有较均匀的土壤水分空间分布,水源涵养功能明显;高寒草甸草地退化后的高山草甸土壤趋于干燥,持水能力减弱,即使进行人工改良以后,土壤水分含量与持水能力也不会有明显改善.保护河源区原有高寒草甸草地对于河源区水过程意义重大。 相似文献
6.
查明青藏高原高寒草甸区土壤水分运移机制,对正确理解土壤水分迁移过程、提高高寒草甸重建效率具有重要指导意义。通过开展土壤剖面负压、地温观测等原位试验,结合气象资料,对土壤剖面地温、含水率及总水头特征进行分析。结果表明,土壤的冻结期起始于10月,解冻期起始于4月;地温最高值出现在植物生长旺盛期8月,最低值出现在1月;1~3月土壤水分呈固态,6~10月土壤水分呈液态,处于稳定变化阶段,4~5月、11~12月土壤水分呈固液转化态,含水率变化幅度较大,处于过渡阶段。随着气温升高及降水量增加,6~8月水热同季有利于高寒草甸生长,属于高寒草甸主要生长阶段;春季土层由表及深土壤解冻,冻土层滞水性能保障了返青期春旱牧草生长的水分需求;深秋季节的由表及深的土壤冻结,深层土壤水分随水汽发生的表聚作用保障了牧草生长的水分需求,也是高原生态系统能够维持稳定的原因之一。 相似文献
7.
利用2015年夏季玛曲高寒草甸观测资料,从中选取7月10个连续完整的观测日,分析了近地层气象要素、地表辐射和能量传输以及CO2通量日变化特征。结果表明:夏季玛曲地区气温和比湿昼夜差异较大,最大温差为19.2 ℃,平均风速为2.7 m?s-1,风向以东风为主。晴天条件下向下短波辐射可达1 200 W?m-2左右,平均地表反照率为0.22,均大于藏北那曲地区。净辐射峰值可达850 W?m-2左右,陆-气间能量传输以潜热输送为主。10 d能量闭合度平均值为0.61,能量不平衡程度较大。夏季玛曲高寒草甸表现为“碳汇”,CO2通量平均值为-0.20 mg?m-2?s-1,晴天碳吸收最大速率为-14.05 mg?m-2?s-1,显著大于阴天,最大碳吸收时长为13 h,CO2密度平均值为530.7 mg?m-3。 相似文献
8.
青藏高原多年冻土活动层土壤水分对高寒草甸覆盖变化的响应 总被引:3,自引:6,他引:3
对青藏高原高寒草甸30%、60%和93%三种覆盖度下,多年冻土活动层的土壤水分随季节变化的观测研究,结果表明:多年冻土活动层土壤水分分布对植被覆盖变化响应强烈.年内不同时期,植被覆盖度为65%和30%的土壤表层20cm深度内水分含量及分布相似,每次降水后30%覆盖度土壤水分的变率略大于65%覆盖度的;而93%覆盖度土壤水分在年内解冻开始到冻结前均小于前两种覆盖类型;植被覆盖度越小,土壤冻结和融化响应时间越早,响应历时也越短;浅层土壤冻结和融化对植被覆盖度的响应程度较强,接近深层土壤冻结和融化对植被覆盖度的响应程度降低.覆盖度为30%和65%土壤水分在整个冻结过程的减少幅度比93%覆盖度土壤大10%~26%,而融化期水分增加幅度更大为1.5%~80%;土壤冻融的相变水量对植被覆盖度变化响应明显,植被覆盖度降低,土壤冻结和融化相变水量增大.由于受植被蒸腾与地表蒸散发和土壤温度梯度的影响,融化期土壤剖面的水分重新分配,总体上呈现水分向剖面上部和底部迁移,剖面中部60~80cm深度左右的土壤出现"干层". 相似文献
9.
基于SHAW模型的青藏高原唐古拉地区活动层土壤水热特征模拟 总被引:3,自引:9,他引:3
利用唐古拉综合观测场活动层及气象塔2007年的数据资料, 结合SHAW模型在3种不同地表反照率选取方案下进行模拟试验, 对唐古拉地区活动层土壤水热特征进行了单点数值模拟研究.通过观测值与3种模拟值的对比分析, 结果表明: SHAW模型能够较为好地模拟多年冻土区地表能量通量、 活动层土壤温度特征, 而对土壤含水量模拟不太理想, 但对其变化趋势模拟较好; 在模拟试验中, 模型输入参数地表反照率取1-12月各月平均地表反照率后, 模型对地表能量通量、 活动层土壤温度和湿度的模拟效果有了明显的提高; 而用一种地表反照率参数化方案的计算结果对模型输入参数进行修正后, 模型对活动层土壤温度和湿度的模拟效果有了明显的提高, 对地表能量通量的模拟效果提高不明显.总体上, SHAW模型对高原多年冻土区土壤冻融过程的模拟具有优势, 是研究高海拔多年冻土区活动层土壤水热过程较为理想的陆面模型. 相似文献
10.
对青藏高原海北站区的自然土壤和扰动土壤进行高分辨率采样,测定土壤根系、有机碳及其14C含量;用14C示踪技术探讨土地利用变化对高寒草甸土壤有机质更新的影响.研究表明,土地利用变化对高寒草甸土壤碳循环影响显著.耕作活动导致扰动土壤有机碳储量比自然土壤增加29.35%;扰动土壤剖面10~50 cm深土壤有机质的14C含量相对富集;自然土壤大多数有机碳储存在土壤表层,更新时间<50 a,同一深度扰动土壤有机碳储量显著少,更新时间长(171~294 a);自然土壤10 cm以下有机碳主要为更新时间>1 000 a的稳定碳所控制,扰动土壤的相应值出现在40 cm以下;自然土壤有机质更新产生的CO2通量为114 gC·m-2·a-1,扰动土壤为48.7 gC·m-2·a-1. 相似文献
11.
高寒冻土地区草甸草地生态系统的能量-水分平衡分析 总被引:4,自引:5,他引:4
为了揭示青藏高原高寒地区土壤冻融过程对地表植被大气三者之间能量水分循环的影响, 在青藏高原风火山左冒孔流域(长江源)开展了不同植被盖度条件下冻土活动层水热状态的野外观测(在30%、 60%、 90%的草甸盖度下观测分层土壤水分及温度)和相关试验. 选取考虑了积雪、植被覆盖及枯枝落叶层对土壤冻融影响的水热盐分耦合模型SHAW为动力学约束模型, 进行参数率定及其模拟计算. 结果表明: 青藏高原地气间的能量交换主要受冻土、植被生长和地表土壤含水量的影响, 并且呈明显的季节性变化;未退化高寒草甸草地对青藏高原冻土具有明显的隔热保温作用, 可以降低冻土对气候变化的响应. 在土壤活动层冻结过程期间, 土壤水分具有向表层和深层两向分流汇聚的特征, 植被覆盖变化对水分运移通量有明显影响. 相似文献
12.
采用青藏高原腹地北麓河多年冻土区高寒草甸14种代表性植物种群2009年和2010年两个生长季的物候观测资料, 进行植物种群物候学特征的定量分析, 划分物候类型并指出影响不同物候期的环境因子主次. 结果表明: 营养期和结实期的物候指数都较大, 分别为32.70和24.39, 其他物候期则相对较小; 整个生长期持续天数较短, 为155 d左右. 14种植物可划分为3种类型和6大类群. 在营养期和整个生长期, 与物候变化最为密切的环境因子为降水量, 其次为日照时数, 温度居第三; 而影响其他物候期的因子均以日照时数为主, 降水量和温度依次居后. 相似文献
13.
高寒草甸区典型景观单元土壤养分空间变异性研究 总被引:7,自引:2,他引:7
应用GIS技术和地统计学空间内插法,对黄河源区达日县跨热洼尔玛流域高寒草甸小流域典型景观单元土壤有机质、全氮和全磷的空间分布特征进行了研究.结果表明: 高寒草甸土壤养分(全氮、有机质、全磷)最佳拟合模型为球状模型;在小流域尺度范围内,土壤养分空间变异性依次为: 全氮>有机质>全磷;其中高寒草甸土壤全氮含量具有强空间变异,块金系数(C0/(C0 C))为23.5%,有机质和全磷属于中等空间变异,其块金系数(C0/(C0 C))分别为35.9%、41.7%;全氮、有机质和全磷的有效变程分别为2 133 m、1 412 m和1 239 m.区域土壤养分影响因素分析显示: 不同植被覆盖下土壤有机质和养分的积累和平衡状况存在差异,其空间变异主要受海拔、地形、坡度、植被、根系分布状况等因素影响. 相似文献
14.
青藏高原腹地不同退化程度高寒沼泽草甸生长季节CO2排放通量及其主要环境控制因子研究 总被引:1,自引:3,他引:1
采用静态箱~便携式红外色谱法对青藏高原风火山地区3种不同退化程度高寒沼泽草甸CO2排放通量进行了研究. 结果表明: 在整个生长期内3种不同退化程度沼泽草甸均表现为正排放, 排放高峰集中在7-8月份, 平均排放通量分别高达111.48 mg·m-2·d-1(未退化)、 77.28 mg·m-2·d-1(中度退化)和38.12 mg·m-2·d-1(严重退化). 不同退化程度沼泽草甸之间CO2排放通量存在明显差异, 表现为未退化>中度退化>严重退化. 气温、 5 cm土壤温度和湿度与3种不同退化程度高寒沼泽草甸CO2排放通量之间均呈显著正相关关系, 是控制CO2排放的主要环境因子. 相似文献
15.
多年冻土区活动层土壤水分对不同高寒生态系统的响应 总被引:2,自引:0,他引:2
土地覆被变化对土壤水分的影响是生态水文学和流域水文学研究的关键问题,基于长江源典型多年冻土区不同高寒草地土壤水分的观测,结合降水、生物量(包括地上和地下)和土壤理化性质,研究了活动层土壤水分变化对不同高寒生态系统的响应. 结果表明:高寒草甸生物量、土壤养分含量均比高寒草原高,且对降水响应更为强烈,致使高寒草甸土壤水分变异性弱于高寒草原. 在土壤完全融化阶段,高寒草甸土壤活动层存在一个低含水层(50 cm左右)和两个相对高含水层(20 cm和120 cm),但高寒草原土壤水分在活动层剖面上有随深度逐渐增大的一致性趋势;在秋季冻结过程中,高寒草甸土冻结起始日滞后于高寒草原土3~15 d;在春季融化阶段,高寒草原土更高的含冰量需要更多的融化潜热. 此外,表层土壤中(0~20 cm),高寒草甸土比高寒草原土有更大的持水特性,而在活动层中下部则呈现完全相反的结果,不同高寒生态系统的演替改变了土壤的水热迁移过程. 相似文献
16.
温度对青藏高原高寒灌丛CO2通量日变化的影响 总被引:1,自引:0,他引:1
应用涡度相关技术连续监测的CO2通量及温度数据(2003年1月1日至2004年12月31日),分析了青藏高原高寒灌丛净生态系统CO2交换(NEE)日变化与温度之间的关系.结果表明:1)在暖季夜间(21:00至次日06:00时)温度与NEE变化呈显著正相关关联,而白昼(07:00~20:00时)NEE变化与温度无显著关联;2)在冷季不论夜间还是白昼,NEE变化均与温度密切相关,温度是决定冷季高寒灌丛生态系统CO2交换的主要因素.在全球气候变暖背景下,青藏高原气候变化呈现出冬季增温率明显高于春、夏季特征,未来气候变暖导致的增温效应可能会加速青藏高原高寒灌丛生态系统CO2排放,使其作为碳汇的能力而减弱. 相似文献
17.
18.
积雪是高寒地区不可忽视的生态因子,不仅直接影响土壤温度、水分,而且间接影响土壤微生物群落组成和多样性。为研究高寒草甸生态系统中土壤微生物对积雪变化的响应,于2013年11月至2014年7月在青藏高原东缘红原县高寒草甸,通过人工堆积的方法建立4个不同积雪梯度,以自然积雪量为对照(CK),2倍于自然积雪量(S1)、3倍于自然积雪量(S2)、4倍于自然积雪量(S3)。运用Biolog-Eco板法研究不同积雪梯度下土壤微生物功能多样性,并测定积雪变化对土壤温度和土壤养分的影响。结果表明:积雪期内,0~10 cm土层土壤温度随着积雪量的增加而降低,而10~20 cm土层随积雪量增加先降低后升高。增加积雪量处理后0~10 cm土层全磷(TP)、有机碳(SOC)显著增加(P<0.05);而10~20 cm土层仅S3下全氮(TN)、TP、SOC增加。每孔平均变化率值(Average well color development,AWCD)在0~10 cm土层表现为CK > S2 > S1 > S3,而10~20 cm表现为S2 > S1 > CK > S3。在0~10 cm土层,S3处理显著降低了土壤微生物多样性McIntosh指数、Shannon-Wiener指数和Pielou指数(P<0.05); 10~20 cm土层,S1和S2处理下多样性指数显著增加(P<0.05)。主成分分析显示:氨基酸类和酚酸类是微生物利用的主要碳源类型。相关性分析表明:多样性指数与TP、SOC、碳氮比(C/N)显著负相关(P<0.05),氨基酸类碳源与TP、C/N显著负相关(P<0.05)。因此,冬季积雪一定程度上影响着土壤温度和土壤养分,进而影响高寒草甸土壤微生物群落功能多样性。 相似文献
19.
长江源区沼泽草甸多年冻土活动层土壤水分对模拟增温的响应 总被引:2,自引:3,他引:2
气候变化对高寒生态系统地气间水能循环过程产生强烈的影响, 因此, 气候变暖条件下的高寒生态系统水热过程和寒区流域水循环过程具有重要研究意义. 采用开顶式温室(OTC)对长江源沼泽草甸进行模拟增温试验, 分析了模拟增温对多年冻土活动层土壤水分的影响. 结果表明: 短期增温使得沼泽草甸生物量显著增加, 使得多年冻土活动层土壤冻结起始时间推迟、融化起始时间提前, 从而使融化期延长. 室外对比样地在65 cm深度存在明显的干层, 而OTC土壤水分随着深度加深不断降低. 增温使得多年冻土浅层土壤具有更高的含水量, 但并未导致表层土壤干化, 这与沼泽草甸土壤浅层密集的根系层和具有较强的持水和保水能力的有机质层有关. 相似文献
20.
海北高寒草甸的季节冻土及在植被生产力形成过程中的作用 总被引:15,自引:7,他引:15
海北高寒矮嵩草草甸区植被下的草毡寒冻雏形土属季节性冻土,因温度低,冻土在年内的每个月均可发生.一般在11月中旬可形成稳定的季节冻结层,至翌年3~4月冻土层厚度最大可达230cm.从3月下旬到4月中旬开始,土壤开始消融,至6月下旬到7月上旬冻土全部消失.分析发现,季节冻土在高寒草甸植被生产力形成过程中有着积极的影响作用,主要表现在:1)季节冻土的存在和维持将给高寒植物生长提供良好的土壤水分,对植物初期营养生长发育有利,可弥补春夏之交时降水不足所引起的干旱胁迫影响;2)季节冻土的长时间维持,有利于植物残体和土壤有机质留存于土壤,并随土壤冻结和融化过程发生迁移,可提高土壤肥力;3)较高的土壤水分有利于土壤胡敏酸的形成,可保证植物生长所需的其它有机元素的供给;4)冻土层所形成较高的土壤水分使土体热容量加大,从而调节因气候异常波动引起的土壤温度变化;5)季节冻土的变化对植物地上年生产量形成有一定的影响作用,表现出从10月或11月开始,土壤冻结速率快,对提高植物地上年生产量有利.这也证实,在未来气候变暖的趋势下,土壤有机质将加快分解速度,土壤水分因受温度升高、冻结期缩短,其贮存能力降低;受温度升高的影响,地表蒸发能力加大,若降水仍保持目前的水平,土壤水分将明显减少,将导致高寒草甸植被生产力有下降的可能. 相似文献