共查询到18条相似文献,搜索用时 15 毫秒
1.
针对露天矿道路非结构化、边缘不清晰,难以用传统图像分割方法对其进行快速、有效识别的问题,该文提出一种基于双边分割优化网络(DAM-BiSeNetV2)的矿区道路快速检测方法。该方法以双边网络架构为基础,通过在细节分支后添加基于通道注意力机制的压缩激励模块,增强通道间特征的显性关系,以达到感知重点区域、突出局部特征的作用;并利用轻量化的特征金字塔注意力机制优化语义分支,提升了上下文之间的特征整合,更加高效地提取高层次的道路语义信息并最大程度保留空间位置信息;最后将局部语义特征与高层语义特征进行融合,以提升矿区非结构化道路检测效果。实验结果表明,该方法对露天矿区非结构化道路检测精度达到97.4%,实时检测速度达到64 fps,能够实现对复杂背景下露天矿区非结构化道路进行有效识别,检测出道路安全行驶区域。 相似文献
2.
针对道路转弯处曲率过大导致弯道识别的精度下降的问题,本文提出了一种基于循环特征融合Resa-CC的弯道增强车道线检测算法。该算法利用车道线的形状先验性,捕获图像像素中行与列的空间关系,融合信息生成特征图;以残差网络为主体框架,加入编码器、解码器和注意力机制模块,在损失函数中引入弯道结构约束来提高车道线弯道的识别精度。加入循环特征融合模块和自注意力机制模块后准确率分别提升3.41%和1.1%,证明了两模块的有效性;Resa-CC算法准确率可达96.83%,FPS为35.68,误检率FP和漏检率FN分别为0.031 5和0.028 2,表明本文算法具有较高的检测性能,在车辆行驶弯道路段中能更准确地推断出车道线的位置。 相似文献
3.
亚洲国家,特别是中国的城市发展,立交桥、摩天大楼等日益复杂。传统基于道路中心线的道路网络模型在几何、时空语义属性、拓扑关系表达等方面都难以满足立体化交通需求。本文引入物理车道、虚拟车道和车道带概念,提出面向实际车道的多层次3维道路网络模型,重点分析该模型的数据库实现方法和实际车道拓扑构建、离散化、面向实际车道的寻径导航等关键问题。试验总结了该模型的若干明显特点如路网的多层次表达、灵活准确的车道拓扑控制等。 相似文献
4.
5.
针对道路目标特点,设计实现了用于遥感影像道路提取的Encoder-Decoder深度语义分割网络。首先,针对道路目标局部特征丰富、语义特征较为简单的特点,设计了较浅深度、分辨率较高的Encoder-Decoder网络结构,提高了分割网络的细节表示能力。其次,针对遥感影像中道路目标所占像素比例较小的特点,改进了二分类交叉熵损失函数,解决了网络训练中正负样本严重失衡的问题。在大型道路提取数据集上的试验表明,所提方法召回率、精度和F1-score指标分别达到了83.9%、82.5%及82.9%,能够完整准确地提取遥感影像中的道路目标。所设计的Encoder-Decoder网络性能优良,且不需人工设计提取特征,因而具有良好的应用前景。 相似文献
6.
针对现有方法在道路场景中实施目标检测时存在对小目标检测精度低、泛化性能不佳等问题,提出一种基于YOLOv7的改进方法。在特征融合结构中,引入通道注意力机制来抑制更多负样本参与特征学习,同时在融合层末端输出四个尺寸的特征图,以强化对小尺寸目标的检测精度;使用改进K均值聚类(K-means++)算法生成与真实目标宽高更贴合的锚点框,让模型在训练前期快速收敛;最后在检测输出端使用软性非极大值抑制算法,精准检测重叠度较高的目标。以开源中国交通标志数据集(CCTSDB)与腾讯-清华100K(TT100K)数据集混合构建训练与测试数据集,实验结果表明,与原始YOLOv7相比,改进后模型在mAP@0.5、mAP@0.5:0.95指标上分别提升7.9%与5.6%,同时检测速度仅有少量下降,但仍能完成实时检测,同时在不同场景下保持性能稳定,充分证明了本文所提方法能够在复杂道路场景下开展多类目标的快速精准检测。 相似文献
7.
研究了空间网络数据库中的K近邻查询,提出了一种新的基于道路网络距离的KNN查询算法。这种方法以已有的道路网络模型框架为基础,通过预计算NN表,减少了昂贵的最短路径计算,利用两个链表记录已访问弧段的信息,避免了不必要的磁盘I/Os,从而有效地提高了算法效率。实验结果表明,在目标点分布比较密集的情况下,本算法明显优于其他算法。 相似文献
8.
道路可行驶区域检测是汽车辅助驾驶系统中场景感知的关键基础。基于卷积神经网络的方法因难以获取全局上下文信息而易产生道路空洞和中断等完整性问题,而基于Transformer的方法缺乏局部理解,容易造成边界的错位和越界问题。为了克服上述两类方法的缺陷,提出了一种可学习深度位置编码引导的金字塔Transformer网络架构,融合卷积神经网络与Transformer进行道路可行驶区域检测。该框架建立金字塔Transformer主干网从全局感受野提取道路特征,并结合局部窗口注意力弥补细节损失,以收缩自注意力提升特征计算效率。针对Transformer中传统位置编码忽略像素与实际场景空间关联性的问题,提出用深度图像卷积特征构建可学习位置编码的方法,解决现实关联性脱节引起的注意力偏移和语义不对齐问题。在KITTI道路、Cityscapes与自建厦门市道路数据集上对该方法进行了测试和评估,结果表明,该方法在保证较高效率的同时,具有较高的稳定性和精确性,其最大F值在KITTI和Cityscapes数据集上分别达到97.53%和98.54%,优于目前KITTI道路基准测试的所有方法。此方法可为汽车驾驶辅助系... 相似文献
9.
提出了一种采用FLD特征抽取分类和形状特征相结合的道路检测方法。首先,对标记的样本进行颜色信息的抽取;其次,利用Fisher线性判别对抽取的信息进行遥感影像特征分类,将影像分为道路和非道路两类;然后根据分类结果进行阈值分割检测初步道路网;最后利用道路的形状特征和形态学处理去除误提的信息优化检测结果。实验证明,该方法可以实现具有颜色信息的遥感影像主干道路的检测。 相似文献
10.
针对高分辨率遥感影像中的道路网检测的效果不甚理想的现状,提出一种基于贝叶斯网络的道路网检测方法。首先在已有GIS数据的引导下对遥感影像中的道路进行提取,得到大部分未变化的道路边缘信息及疑似道路边缘信息。接着利用贝叶斯网络对道路边缘信息进行判断与推理,从而提取出遥感影像中的道路网,同时得到道路网的变化信息。 相似文献
11.
基于车辆轨迹数据的道路信息提取是地理信息领域的热点也是难点之一,传统方法面临着轨迹数据源要求高、道路提取算法复杂、不同道路提取模型参数适应性不强等问题.针对以上问题,提出基于条件生成式对抗网络的轨迹地图向道路地图转换的轨迹-道路转换方法.该方法以轨迹数据与道路数据的对应关系为先验知识,通过"生成-博弈"的不断循环逐渐逼... 相似文献
12.
本文针对现有方法对遥感图像目标检测准确率低的问题,在更快速区域卷积神经网络Faster R-CNN(Faster Region Convolutional Neural Networks)算法的基础上对其进行改进,提出一种新的遥感图像目标检测算法。该算法把Faster R-CNN算法中的VGG (Visual Geometry Group)特征提取网络替换为残差网络ResNet(Residual Networks),在此基础上加入特征金字塔网络以充分表达语义信息和位置信息,并使用焦点损失函数替代Faster R-CNN算法中的交叉熵损失函数以解决难易样本对总损失贡献的权重问题,最后对NWPU VHR-10数据集和RSOD数据集采用数据增广方法以解决数据集中图像样本数量少的问题。为验证本文算法的效果,进行了两组对比实验。第一组实验为本文提出的改进模块在NWPU VHR-10数据集和RSOD数据集上的消融实验;第二组实验为本文算法与其他算法在NWPU VHR-10数据集上的对比实验。实验结果表明,本文算法在NWPU VHR-10数据集和RSOD数据集上的多类平均准确率分别达到93.4%和9... 相似文献
13.
针对目前利用高分遥感数据提取农村道路的研究与应用少,提取结果精准度不够的问题,提出了结合空洞卷积和ASPP(Atrous Spatial Pyramid Pooling)结构的改进全卷积农村道路提取网络模型DC-Net(Dilated Convolution Network)。该模型基于全卷积的编解码结构来提取道路深度特征信息,同时针对农村道路细长的特点,在解编码层之间加入了以空洞卷积为基础的ASPP(Atrous Spatial Pyramid Pooling)结构来提取道路的多尺度特征信息,在不牺牲特征空间分辨率的同时扩大了特征感受野FOV(Field-of-View),从而提高细窄农村道路的识别率。以长株潭城市群郊区部分区域为试验对象,以高分二号国产卫星遥感影像为实验数据,将本文提出的方法与经典的几种全卷积网络方法进行实验结果对比分析。实验结果表明:(1)本文所提出的道路提取模型DC-Net在农村道路的提取上具有可行性,整体提取平均精度达到98.72%,具有较高的提取精度;(2)对比几种经典的全卷积网络模型在农村道路提取上的效果,DC-Net在农村道路提取的精度和连结性、以及树木和阴影的遮挡方面,均表现出了较好的提取结果;(3)本文提出的改进全卷积网络道路提取模型能够有效地提取高分辨率遥感影像中农村道路的特征信息,总体提取效果较好,为提高基于国产高分影像的农村道路提取精度提供了一种新的思路和方法。 相似文献
14.
15.
ArcIMS的性能优化及高可用性配置研究 总被引:1,自引:0,他引:1
基于ArcIMS可以在Web上建立稳定的、高性能的GIS服务,着重阐述了如何最大程度地利用ArcIMS的技术优势,通过Web传送地图及其数据,如何配置ArcIMS系统以减少因为故障停机的概率,以及如何调整空间数据和地图服务来提高地图服务的性能.最后进行了网络评估和多任务机制分析,为不同的应用提供了不同的解决方案. 相似文献
16.
利用传统方法对遥感影像的目标检测,过程复杂并且耗时.随着深度学习的发展,用深度学习的方法进行目标检测,为遥感影像的检测开辟了新的思路.当前目标检测的方法主要包括以Faster R-CNN为代表的两阶段检测算法和以SSD为代表的单阶段算法,两阶段算法精度高速度慢,单阶段算法速度快精度低.针对两种算法的优势,该文将Faster R-CNN中的RPN与SSD算法相结合,融合单阶段和两阶段算法的优势,在提高精度的情况下保证速度,并加入特征金字塔结构,利用多个卷积层融合低层特征和高层特征的信息,提高预测效果.在NWPUVHR-10高分辨率数据集上进行训练和测试,对结果进行算法评估.同时选用测试集将该文算法与Faster R-CNN和SSD算法进行对比,实验表明该文算法提高了对小目标物体的检测精度,获得了更优的性能. 相似文献
17.
电力塔是电力基础设施的重要组成部分,对其进行检测是必不可少的工作。针对当前遥感影像电力塔检测算法精度低,效果差的问题,本文基于可变形网络和迁移学习对Faster R-CNN进行改进,提出一种基于遥感影像的电力塔检测框架。该框架主要分为两个部分:①特征提取子网络,即利用可变形网络模型改进卷积层,来提高模型对于电力塔几何形变的特征提取能力;②目标检测子网络,即通过模型迁移,将由特征提取子网络训练获得的模型参数迁移至此子网络,由RPN网络和可变形区域池化结合非极大值抑制(NMS)精确获取电力塔位置,利用Fine-tuning技术快速训练此子网络,最终实现高精度的遥感影像电力塔检测。本文算法在测试集中对电力塔检测结果为AP0.5 0.886 1,AP0.6 0.839 6,ACC 0.894 8,与SSD、YOLOv3、Faster R-CNN等相比,各检测指标至少高0.2。由对比试验可以看出,该框架对电力塔遥感影像可以实现较高精度检测,表明该方法在电力塔检测上拥有较大应用潜力。 相似文献
18.
基于链码优化的SAR影像城市道路网络提取 总被引:1,自引:0,他引:1
针对传统的基于局部比率的道路提取算子存在道路展宽与定位精确性差的缺点,通过加入一个修剪窗口进行改进,有助于去除河流、树木等的影响,且得到了细化和定位更加准确的道路图谱.首次将链码用于道路连接表示,定义了链码能量网络,并将道路的先验知识引入,然后在对模拟道路图像线段连接概率分析的基础上得到了链码优化算法.由于该方法采用了分线运算,每次迭代不需要搜索整个道路片段,提高了运算效率.最后将该算法应用于真实SAR影像巾道路网络的提取,证明了它的有效性. 相似文献