首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pioneer is an open‐air, stratified, multicomponent archaeological site located in the upper Snake River Plain of southeastern Idaho, USA. Block excavations provided an opportunity to contribute to the Late Quaternary geomorphic history of the Big Lost River drainage and provide geochronological context of archaeological components at the site. The stratigraphic sequence is interpreted as reflecting multiple depositional episodes and five soil‐formation periods beginning pre‐7200 cal. yr B.P. and lasting to the historic period. The stratigraphic sequence contains an archaeological component dated to ∼3800 cal. yr B.P. and several other components post‐800 cal. yr B.P. Major site formation processes include fluvial deposition and erosion, pedogenesis (accumulation of secondary carbonates), and bioturbation. Periods of increased deposition at Pioneer and elsewhere along the Big Lost River are inferred to have occurred between ∼8400–6500 cal. yr B.P. and ∼2700–400 cal. yr B.P., potentially related to cooler/wetter episodes of the mid‐to‐late Holocene, including increased precipitation during the Medieval Climatic Anomaly (post‐750 cal. yr B.P.). There is also evidence of a high‐energy erosional event at ∼3800 cal. yr B.P. indicating a large middle Holocene flood. Pioneer provides an example of the archaeological and paleoclimatic value of studying alluvial buried soil stratigraphic sequences in arid environments.  相似文献   

2.
Oxygen isotope analysis was performed on enamel phosphate of mammalian teeth from archaeological sites Kalli Pachchhim and Dadupur in the central Ganga plain and Charda in the northern Ganga plain. The bulk oxygen isotopic compositions of enamel phosphate from third molars (M3) of Bos indicus individuals belonging to different cultural periods were used to understand the climatic changes during the past 3600 cal yr B.P. Oxygen isotope ratios indicate humid conditions around 3600 cal yr B.P., followed by a trend toward drier conditions until around 2800 cal yr B.P. Then from 2500 to 1500 cal yr B.P. there is a trend toward higher humidity, followed by the onset of a dry period around 1300 cal yr B.P. The study of intratooth δ18O variations in teeth from different periods demonstrates that the monsoon seasonality was prominent. Spatial changes in the amount of annual rainfall are also reflected in the δ18O values. Teeth derived from areas with intense rainfall have lighter isotope ratios compared to teeth from regions receiving less rain, but they show similar seasonal patterns. The long-term paleoclimatic variations reflected by fluctuations in bulk δ18Op values from M3 teeth match well with the regional paleoenvironmental records and show a good correlation to the cultural changes that took place during this time span in Ganga plain.  相似文献   

3.
The record of Almoloya Lake in the Upper Lerma basin starts with the deposition of the late Pleistocene Upper Toluca Pumice layer. The data from this interval indicate a period of climatic instability that lasted until 8500 cal yr B.P., when temperature conditions stabilized, although moisture fluctuations continued until 8000 cal yr B.P. Between 8500 and 5000 cal yr B.P. a temperate climate is indicated by dominance of Pinus. From 5000 to 3000 cal yr B.P. Quercus forest expanded, suggesting a warm temperate climate: a first indication of drier environmental conditions is an increase in grassland between 4200 and 3500 cal yr B.P. During the Late Holocene (3300 to 500 cal yr B.P.) the increase of Pinus and grassland indicates temperate dry conditions, with a considerable increase of Pinus between 1100 and 950 cal yr B.P. At the end of this period, humidity increased. The main tendency during the Holocene was a change from humid to dry conditions. During the Early Holocene, Almoloya Lake was larger and deeper; the changing humidity regime resulted in a fragmented marshland, with the presence of aquatic and subaquatic vegetation types.  相似文献   

4.
Great earthquakes of variable magnitude at the Cascadia subduction zone   总被引:1,自引:0,他引:1  
Comparison of histories of great earthquakes and accompanying tsunamis at eight coastal sites suggests plate-boundary ruptures of varying length, implying great earthquakes of variable magnitude at the Cascadia subduction zone. Inference of rupture length relies on degree of overlap on radiocarbon age ranges for earthquakes and tsunamis, and relative amounts of coseismic subsidence and heights of tsunamis. Written records of a tsunami in Japan provide the most conclusive evidence for rupture of much of the plate boundary during the earthquake of 26 January 1700. Cascadia stratigraphic evidence dating from about 1600 cal yr B.P., similar to that for the 1700 earthquake, implies a similarly long rupture with substantial subsidence and a high tsunami. Correlations are consistent with other long ruptures about 1350 cal yr B.P., 2500 cal yr B.P., 3400 cal yr B.P., 3800 cal yr B.P., 4400 cal yr B.P., and 4900 cal yr B.P. A rupture about 700-1100 cal yr B.P. was limited to the northern and central parts of the subduction zone, and a northern rupture about 2900 cal yr B.P. may have been similarly limited. Times of probable short ruptures in southern Cascadia include about 1100 cal yr B.P., 1700 cal yr B.P., 3200 cal yr B.P., 4200 cal yr B.P., 4600 cal yr B.P., and 4700 cal yr B.P. Rupture patterns suggest that the plate boundary in northern Cascadia usually breaks in long ruptures during the greatest earthquakes. Ruptures in southernmost Cascadia vary in length and recurrence intervals more than ruptures in northern Cascadia.  相似文献   

5.
A sediment core from Chuna Lake (Kola Peninsula, northwest Russia) was studied for pollen, diatoms and sediment chemistry in order to infer post‐glacial environmental changes and to investigate responses of the lake ecosystem to these changes. The past pH and dissolved organic carbon (DOC) of the lake were inferred using diatom‐based transfer functions. Between 9000 and 4200 cal. yr BP, slow natural acidification and major changes in the diatom flora occurred in Chuna Lake. These correlated with changes in regional pollen, the arrival of trees in the catchment, changes in erosion, sediment organic content and DOC. During the past 4200 yr diatom‐based proxies showed no clear response to changes in vegetation and erosion, as autochthonous ecological processes became more important than external climate influences during the late Holocene. The pollen stratigraphy reflects the major climate patterns of the central Kola Peninsula during the Holocene, i.e. a climate optimum between 9000 and 5400/5000 cal. yr BP when climate was warm and dry, and gradual climate cooling and an increase in moisture during the past 5400/5000 yr. This agrees with the occurrence of the north–south humidity gradient in Fennoscandia during the Holocene. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
The floodplain along a 75-km segment of the Brazos River, traversing the Gulf Coastal Plain of Texas, has a complex late Quaternary history. From 18,000 to 8500 yr B.P., the Brazos River was a competent meandering stream that migrated from one side of the floodplain to the other, creating a thick layer of coarse-grained lateral accretion deposits. After 8500 yr B.P., the hydrologic regime of the Brazos River changed. The river became an underfit meandering stream that repeatedly became confined within narrow and unstable meander belts that would occasionally avulse. Avulsion occurred four times; first at 8100 yr B.P., then at 2500 yr B.P., again around 500 yr B.P., and finally around 300 yr B.P. The depositional regime on the floodplain also changed after 8500 yr B.P., with floodplain construction dominated by vertical accretion. Most vertical accretion occurred from 8100 to 4200 yr B.P. and from 2500 to 1250 yr B.P. Two major and three minor periods of soil formation are documented in the floodplain sequence. The two most developed soils formed from 4200 to 2500 yr B.P. and from around 1250 to 500 yr B.P. These changes on the floodplain appear to be the result not of a single factor, but of the complex interplay among changes in climate, sediment yield, and intrinsic floodplain variables over time.  相似文献   

7.
Continuous pollen and sediment records from two ∼8.5-m-long cores document late Pleistocene and Holocene sedimentation and vegetation change in the Ballston Lake basin, eastern New York State. Pebbles at the base of both cores and the geomorphology of the watershed reflect the presence of the Mohawk River in the basin prior to ∼12,900 ± 70 cal yr B.P. Ballston Lake formed at the onset of the Younger Dryas (YD) by an avulsion of the Mohawk River. The transition from clay to gyttja with low magnetic susceptibility (MS), low bulk density, and high organic carbon indicates rapid warming and increased lake productivity beginning 11,020 cal yr B.P. MS measurements reveal that the influx of magnetic particles, associated with pre-Holocene clastic sedimentation, ceased after ∼10,780 cal yr B.P. The pollen record is subdivided into six zones: BL1 (12,920 to 11,020 cal yr B.P.) is dominated by boreal forest pollen; BL2 (11,020 to 10,780 cal yr B.P.) by pine (Pinus) forest pollen; BL3 (10,780 to 5290 cal yr B.P.) by hemlock (Tsuga) and mixed hardwood pollen; BL4 (5290 to 2680 cal yr B.P.) by mixed hardwood pollen; BL5a (2680 cal yr B.P. to 1030 cal yr B.P.) by conifer and mixed hardwood pollen; and BL5b (1030 cal B.P. to present) by increasing ragweed (Ambrosia) pollen. A 62% decrease in spruce (Picea) pollen in <320 cal years during BL1 reflects rapid warming at the end of the YD. Holocene pollen zones record more subtle climatic shifts than occurred at the end of the YD. One of the largest changes in the Holocene pollen spectra began ∼5300 cal yr B.P., and is characterized by a marked decline in hemlock pollen. This has been noted in other pollen records from the region and may record preferential selection of hemlock by a pathogen or parasites.  相似文献   

8.
Postglacial climatic conditions were inferred from cores taken from Big Lake in southern British Columbia. Low concentrations of nonarboreal pollen and pigments near the base of the core suggest that initial conditions were cool. Increases in both aquatic and terrestrial production suggest warmer and moister conditions until 8500 cal yr B.P. Hyposaline diatom assemblages, increases in nonarboreal pollen, and increased concentrations of pigments suggest the onset of arid conditions from 8500 to 7500 cal yr B.P. Slightly less arid conditions are inferred from 7500 until 6660 cal yr B.P. based on the diatoms, small increases and greater variability in biogenic silica and pigments, and higher percentages of arboreal pollen. At 6600 cal yr B.P., changes in diatoms, pigments, biogenic silica, and organic matter suggest that Big Lake became fresh, deep, and eutrophic until 3600 cal yr B.P., when water levels and nutrients decreased slightly. Our paleoclimatic inferences are similar to pollen-based studies until 6600 cal yr B.P. However, unlike these studies, our multiple lines of evidence from Big Lake imply large changes in effective moisture since 6000 cal yr B.P.  相似文献   

9.
Data from a transect of four cores collected in the Makepeace Cedar Swamp, near Carver, Massachusetts, record past changes in deposition, vegetation, and water level. Time series of palynological data provide a 14,000-yr record of regional and local vegetation development, a means for biostratigraphic correlation and dating, and information about changes in water level. Differences in records among cores in the basin show that water level decreased at least 1.5 m between 10,800 and 9700 cal yr B.P., after which sediment accumulation was slow and intermittent across the basin for about 1700 yr. Between 8000 and 5600 cal yr B.P., water level rose 2.0 m, after which slow peat accumulation indicates a low stand about the time of the hemlock decline at 5300 ± 200 cal yr B.P. Dry conditions may have continued after this time, but by 3200 cal yr B.P., the onset of peat accumulation in shallow cores indicates that water level had risen to close to its highest postglacial level, where it is today. Peat has accumulated across the whole basin since 3200 cal yr B.P. Data from Makepeace and the Pequot Cedar Swamp, near Ledyard, Connecticut, indicate an early Holocene dry interval in southern New England that began 11,500 yr ago near the end of the Younger Dryas interval. The dry conditions prevailed between 10,800 and 8000 cal yr B.P. and coincide with the arrival and later rise to dominance of white pine trees (Pinus strobus) both regionally and near the basins. Our results indicate a climatic cause for the “pine period” in New England.  相似文献   

10.
Peter Wilhelm Lund's (1845a) heavily debated suggestion of a contemporaneity between Paleo‐Indians and extinct Pleistocene fauna at Sumidouro Cave was re‐examined through detailed sedimentological and geochronological analyses of sediment and both human and faunal remains. Sources of the cave's sediment include both entrances as well as ceiling fissures. Non‐human fossils, on the other hand, were probably carried by floodwater through the once more‐spacious swallet entrance. Seasonal flooding reworked and mixed these two highly asynchronous assemblages. U‐series and radiocarbon ages indicate that there are at least two distinct episodes of sediment input in the cave, at ˜240,000 yr B.P. and ˜8000 yr B.P. Human remains represent a later emplacement event, probably at ˜8400 cal yr B.P. Although the human remains are of considerable age, the cave's complex stratigraphy, flooding dynamics, and extensive removal of the cave's filling during earlier excavations do not allow the determination of an unequivocal co‐existence between Paleo‐Indians and extinct megafauna at the site. © 2005 Wiley Periodicals, Inc.  相似文献   

11.
A 467-cm-long core from the inner shelf of the eastern Laptev Sea provides a depositional history since 9400 cal yr. B.P. The history involves temporal changes in the fluvial runoff as well as postglacial sea-level rise and southward retreat of the coastline. Although the core contains marine fossils back to 8900 cal yr B.P., abundant plant debris in a sandy facies low in the core shows that a river influenced the study site until 8100 cal yr B.P. As sea level rose and the distance to the coast increased, this riverine influence diminished gradually and the sediment type changed, by 7400 cal yr B.P., from sandy silt to clayey silt. Although total sediment input decreased in a step-like fashion from 7600 to 4000 cal yr B.P., this interval had the highest average sedimentation rates and the greatest fluxes in most sedimentary components. While this maximum probably resulted from middle Holocene climate warming, the low input of sand to the site after 7400 cal yr B.P. probably resulted from further southward retreat of the coastline and river mouth. Since about 4000 cal yr B.P., total sediment flux has remained rather constant in this part of the Laptev Sea shelf due to a gradual stabilization of the depositional regime after completion of the Holocene sea-level rise.  相似文献   

12.
The transition from arid glacial to moist early Holocene conditions represented a profound change in northern lowland Neotropical climate. Here we report a detailed record of changes in moisture availability during the latter part of this transition (~11 250 to 7500 cal. yr BP) inferred from sediment cores retrieved in Lake Petén Itzá, northern Guatemala. Pollen assemblages demonstrate that a mesic forest had been largely established by ~11 250 cal. yr BP, but sediment properties indicate that lake level was more than 35 m below modern stage. From 11 250 to 10 350 cal. yr BP, during the Preboreal period, lithologic changes in sediments from deep‐water cores (>50 m below modern water level) indicate several wet–dry cycles that suggest distinct changes in effective moisture. Four dry events (designated PBE1‐4) occurred centred at 11 200, 10 900, 10 700 and 10 400 cal. yr BP and correlate with similar variability observed in the Cariaco Basin titanium record and glacial meltwater pulses into the Gulf of Mexico. After 10 350 cal. yr BP, multiple sediment proxies suggest a shift to a more persistently moist early Holocene climate. Comparison of results from Lake Petén Itzá with other records from the circum‐Caribbean demonstrates a coherent climate response during the entire span of our record. Furthermore, lowland Neotropical climate during the late deglacial and early Holocene period appears to be tightly linked to climate change in the high‐latitude North Atlantic. We speculate that the observed changes in lowland Neotropical precipitation were related to the intensity of the annual cycle and associated displacements in the mean latitudinal position of the Intertropical Convergence Zone and Azores–Bermuda high‐pressure system. This mechanism operated on millennial‐to‐submillennial timescales and may have responded to changes in solar radiation, glacial meltwater, North Atlantic sea ice, and the Atlantic meridional overturning circulation (MOC). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Sediment cores collected along a transect in Crooked Pond, southeastern Massachusetts, provide evidence of water-level changes between 15,000 cal yr B.P. and present. The extent of fine-grained, detrital, organic accumulation in the basin, inferred from sediment and pollen stratigraphies, varied over time and indicates low water levels between 11,200 and 8000 cal yr B.P. and from ca. 5300 to 3200 cal yr B.P. This history is consistent with the paleohydrology records from nearby Makepeace Cedar Swamp and other sites from New England and eastern Canada and with temporal patterns of regional changes in effective soil moisture inferred from pollen data. The similarities among these records indicate that (1) regional conditions were drier than today when white pine (Pinus strobus) grew abundantly in southern New England (11,200 to 9500 cal yr B.P.); (2) higher moisture levels existed between 8000 and 5500 cal yr B.P., possibly caused by increased meridonal circulation as the influence of the Laurentide ice sheet waned; and (3) drier conditions possibly contributed to the regional decline in hemlock (Tsuga) abundances at 5300 cal yr B.P. Although sea-level rise may have been an influence, moist climatic conditions during the late Holocene were the primary reason for a dramatic rise in water-table elevations.  相似文献   

14.
The region of north Iceland is highly sensitive climatically owing to its location with respect to atmospheric and oceanographic fronts. In this study we present total carbonate and δ18O records of benthic and planktic Foraminifera from nine sediment cores from the North Iceland Shelf. The results of this work indicate that the deglaciation of the Vestfirdir Peninsula was completed by 10 200 cal. yr BP. The 8200 cal. yr BP cold event is present only as a minor isotopic event, and seems not to have had much of a cooling effect on the bottom waters of the northwest Iceland shelf. The Holocene maximum warmth, attributed to a stronger North Icelandic Irminger Current, occurred between ca. 7800 and 6200 cal. yr BP. Over the past 4500 cal. yr BP a general cooling trend has occurred on the North Iceland Shelf, and superimposed on this overall cooling trend are a number of oscillations between periods when relatively warmer and cooler waters occupied the shelf. Relatively cooler waters were present at 4200–4000 cal. yr BP, 3200–2900 cal. yr BP, 2500–2350 cal. yr BP and 600–200 cal. yr BP, whereas relatively warmer waters were present on the shelf at 3750–3450 cal. yr BP, 2800–2600 cal. yr BP and 1700–1000 cal. yr BP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
A 4.96-m-long sediment core from the Hanon paleo-maar in Jeju Island, Korea was studied to investigate the paleoclimatic change and East Asian monsoon variations during the latest Pleistocene to early Holocene (23,000-9000 cal yr BP). High-resolution TOC content, magnetic susceptibility, and major element composition data indicate that Jeju Island experienced the coldest climate around 18,000 cal yr BP, which corresponds to the last glacial maximum (LGM). Further, these multi-proxy data show an abrupt shift in climatic regime from cold and arid to warm and humid conditions at around 14,000 cal yr BP, which represents the commencement of the last major deglaciation. After the last major deglaciation, the TOC content decreased from 13,300 to 12,000 cal yr BP and from 11,500 to 9800 cal yr BP, thereby reflecting the weakening of the summer monsoon. The LGM in Jeju Island occurred later in comparison with the Chinese Loess Plateau. Such a disparity in climatic change events between central China and Jeju Island appears to be caused by the asynchrony between the coldest temperature event and the minimum precipitation event in central China and by the buffering effect of the Pacific Ocean.  相似文献   

16.
17.
Analyses of sediment cores from two lakes in the central Brooks Range provide temperature and moisture balance information for the past 8500 cal yr at century-scale resolution. Two methods of oxygen isotope analysis are used to reconstruct past changes in the effective moisture (precipitation minus evaporation) and temperature. Effective moisture is inferred from oxygen isotope ratios in sediment cellulose from Meli Lake (area 0.13 km2, depth 19.4 m). The lake has a low watershed-to-lake-area ratio (7) and significant evaporation relative to input. Summer temperature shifts are based on oxygen isotope analyses of endogenic calcite from Tangled Up Lake (area 0.25 km2, depth 3.5 m). This basin has a larger watershed-to-lake-area ratio (91) and less evaporation relative to input. Sediment oxygen isotope analyses from the two sites indicate generally more arid conditions than present prior to 6000 cal yr B.P. Subsequently, the region became increasingly wet. Temperature variability is recorded minimally at centennial scale resolution with values that are generally cool for the past 6700 cal yr. The timing and direction of climate variability indicated by the oxygen isotope time series from Meli and Tangled Up lakes are consistent with previously established late Holocene glacier advances at 5000 cal yr B.P. in the central Brooks Range, and high lake-levels at Birch Lake since 5500 cal yr B.P. This unique use of oxygen isotopes reveals both moisture balance and temperature histories at previously undetected high-resolution temporal scales for northern Alaska during the middle to late Holocene.  相似文献   

18.
Lithology, pollen, macrofossils, and stable carbon isotopes from an intermontane basin bog site in southern New Zealand provide a detailed late-glacial and early Holocene vegetation and climate record. Glacial retreat occurred before 17,000 cal yr B.P., and tundra-like grassland–shrubland occupied the basin shortly after. Between 16,500 and 14,600 cal yr B.P., a minor regional expansion of forest patches occurred in response to warming, but the basin remained in shrubland. Forest retreated between 14,600 and 13,600 cal yr B.P., at about the time of the Antarctic Cold Reversal. At 13,600 cal yr B.P., a steady progression from shrubland to tall podocarp forest began as the climate ameliorated. Tall, temperate podocarp trees replaced stress-tolerant shrubs and trees between 12,800 and 11,300 cal yr B.P., indicating sustained warming during the Younger Dryas Chronozone (YDC). Stable isotopes suggest increasing atmospheric humidity from 11,800 to 9300 cal yr B.P. Mild (annual temperatures at least 1°C higher than present), and moist conditions prevailed from 11,000 to 10,350 cal yr B.P. Cooler, more variable conditions followed, and podocarp forest was completely replaced by montane Nothofagus forest at around 7500 cal yr B.P. with the onset of the modern climate regime. The Cass Basin late-glacial climate record closely matches the Antarctic ice core records and is in approximate antiphase with the North Atlantic.  相似文献   

19.
Sedimentological, geochemical and palynological data from Wulungu Lake in northern Xinjiang, China, are used to reconstruct environmental and climate changes since 9550 cal yr BP. High abundance of Sparganium and Poaceae, low Md (median diameter) and δ13Corganic values indicate aridity between 9550 and 6730 cal yr BP. High Md and δ13Corganic values, and the prevalence of desert-steppe and steppe vegetation between 4200 and 560 cal yr BP, indicate that effective moisture increased after 6730 cal yr BP, peaking at 4200 and 560 cal yr BP. Low Md values, a negative excursion of δ13Corg, and the transition from steppe to desert vegetation since 560 cal yr BP reflect a decrease in effective moisture during the latest Holocene. Late Holocene human activities were indicated by sharp increase in the abundance of Pediastrum then. Variations in carbonate contents indicate that temperature was generally high between 9550 and 7740 cal yr BP, low between 7740 and 6730 cal yr BP, intermediate between 6730 and 560 cal yr BP, and low during the last 560 yr. Regional comparison indicates that the Asian monsoon did not extend to Wulungu Lake and westerlies were the main factor in determining the moisture availability during the Holocene.  相似文献   

20.
Long sediment cores (12.5 and 13.5 m) from two lakes in Yunnan Province were used to infer the paleoclimate of southwest China over the past 50,000 yr. During the Holocene and marine isotope stage (MIS 3), bio-induced carbonate precipitation and organic matter (OM) production was high, suggesting warm temperatures and high primary productivity. In contrast, sediment inorganic carbon (IC) and organic carbon (OC) concentrations were low in last glacial deposits from 38,000 to 12,000 cal yr B.P., indicating cool temperatures and low productivity. The 50,000-yr record has alternating peaks of carbonate and coarse-grain (>38 μm) quartz that reflect warm, moist interglacial or interstadial conditions alternating with cold, dry glacial or stadial conditions, respectively. Spectral analysis of the carbonate and quartz signals reveals power concentrated at periods of 7200 and 8900 cal yr, respectively, that may reflect a nonlinear climate response to precessional forcing at a time of reduced eccentricity modulation (McIntyre and Molfino, 1996). Oxygen isotope values of calcite from Yunnan lake cores indicate the summer monsoon was weak during the last glaciation from 50,000 to 12,000 cal yr B.P. The summer monsoon intensified between 12,000 and 8000 cal yr B.P., but weakened gradually in response to insolation forcing during the mid-to-late Holocene. Our results support the Overpeck et al. (1996) model that posits a weak summer monsoon during the last glaciation that responded nonlinearly to insolation forcing when its intensity was affected by Eurasian snow cover and ice-sheet extent. The summer monsoon intensified and responded linearly to seasonal insolation forcing in the Holocene when ice volume diminished.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号