首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change could have significant impacts on hydrology. This paper uses UK Climate Projections 09 (UKCP09) products to assess the impacts on flood frequency in Britain. The main UKCP09 product comprises conditional probabilistic information on changes in a number of climate variables on a 25?×?25?km grid across the UK (the Sampled Data change factors). A second product is a Weather Generator which produces time-series of current weather variables and future weather variables based on the Sampled Data and consistent with the change factors. A third product comprises time-series from a Regional Climate Model (RCM) ensemble which were used to downscale Global Climate Models (GCMs) on which the projections are based and whose outputs were used in the production of the Sampled Data. This paper compares the use of Sampled Data change factors, Weather Generator time-series, RCM-derived change factors and RCM time-series. Each is used to provide hydrological model inputs for nine catchments, to assess impacts for the 2080s (A1B emissions). The results show relatively good agreement between methods for most catchments, with the four median values for a catchment generally being within 10% of each other. There are also some clear differences, with the use of time-series generally leading to a greater uncertainty range than the use of change factors because the latter do not allow for the effects of, or changes in, natural variability. Also, the use of Weather Generator time-series leads to much greater impacts than the other methods for one catchment. The results suggest that climate impact studies should not necessarily rely on the application of just one UKCP09 product, as each has different strengths and weaknesses.  相似文献   

2.
The majority of climate change impacts assessments account for climate change uncertainty by adopting the scenario-based approach. This typically involves assessing the impacts for a small number of emissions scenarios but neglecting the role of climate model physics uncertainty. Perturbed physics ensemble (PPE) climate simulations offer a unique opportunity to explore this uncertainty. Furthermore, PPEs mean it is now possible to make risk-based impacts estimates because they allow for a range of estimates to be presented to decision-makers, which spans the range of climate model physics uncertainty inherent from a given climate model and emissions scenario, due to uncertainty associated with the understanding of physical processes in the climate model. This is generally not possible with the scenario-based approach. Here, we present the first application of a PPE to estimate the impact of climate change on heat-related mortality. By using the estimated impacts of climate change on heat-related mortality in six cities, we demonstrate the benefits of quantifying climate model physics uncertainty in climate change impacts assessment over the more common scenario-based approach. We also show that the impacts are more sensitive to climate model physics uncertainty than they are to emissions scenario uncertainty, and least sensitive to whether the climate change projections are from a global climate model or a regional climate model. The results demonstrate the importance of presenting model uncertainties in climate change impacts assessments if the impacts are to be placed within a climate risk management framework.  相似文献   

3.
The impacts of climate change on river flood risk at the global scale   总被引:6,自引:0,他引:6  
This paper presents an assessment of the implications of climate change for global river flood risk. It is based on the estimation of flood frequency relationships at a grid resolution of 0.5?×?0.5°, using a global hydrological model with climate scenarios derived from 21 climate models, together with projections of future population. Four indicators of the flood hazard are calculated; change in the magnitude and return period of flood peaks, flood-prone population and cropland exposed to substantial change in flood frequency, and a generalised measure of regional flood risk based on combining frequency curves with generic flood damage functions. Under one climate model, emissions and socioeconomic scenario (HadCM3 and SRES A1b), in 2050 the current 100-year flood would occur at least twice as frequently across 40 % of the globe, approximately 450 million flood-prone people and 430 thousand km2 of flood-prone cropland would be exposed to a doubling of flood frequency, and global flood risk would increase by approximately 187 % over the risk in 2050 in the absence of climate change. There is strong regional variability (most adverse impacts would be in Asia), and considerable variability between climate models. In 2050, the range in increased exposure across 21 climate models under SRES A1b is 31–450 million people and 59 to 430 thousand km2 of cropland, and the change in risk varies between ?9 and +376 %. The paper presents impacts by region, and also presents relationships between change in global mean surface temperature and impacts on the global flood hazard. There are a number of caveats with the analysis; it is based on one global hydrological model only, the climate scenarios are constructed using pattern-scaling, and the precise impacts are sensitive to some of the assumptions in the definition and application.  相似文献   

4.
As the incorporation of probabilistic climate change information into UK water resource management gathers apace, understanding the relative scales of the uncertainty sources in projections of future water shortage metrics is necessary for the resultant information to be understood and used effectively. Utilising modified UKCP09 weather generator data and a multi-model approach, this paper represents a first attempt at extending an uncertainty assessment of future stream flows under forced climates to consider metrics of water shortage based on the triggering of reservoir control curves. It is found that the perturbed physics ensemble uncertainty, which describes climate model parameter error uncertainty, is the cause of a far greater proportion of both the overall flow and water shortage per year probability uncertainty than that caused by SRES emissions scenario choice in the 2080s. The methodology for producing metrics of future water shortage risk from UKCP09 weather generator information described here acts as the basis of a robustness analysis of the North Staffordshire WRZ to climate change, which provides an alternative approach for making decisions despite large uncertainties, which will follow.  相似文献   

5.
6.
7.
8.
Dealing consistently with risk and uncertainty across the IPCC reports is a difficult challenge. Huge practical difficulties arise from the Panel’s scale and interdisciplinary context, the complexity of the climate change issue and its political context. The key question of this paper is if the observed differences in the handling of uncertainties by the three IPCC Working Groups can be clarified. To address this question, the paper reviews a few key issues on the foundations of uncertainty analysis, and summarizes the history of the treatment of uncertainty by the IPCC. One of the key findings is that there is reason to agree to disagree: the fundamental differences between the issues covered by the IPCC’s three interdisciplinary Working Groups, between the type of information available, and between the dominant paradigms of the practitioners, legitimately lead to different approaches. We argue that properly using the IPCC’s Guidance Notes for Lead Authors for addressing uncertainty, adding a pedigree analysis for key findings, and particularly communicating the diverse nature of uncertainty to the users of the assessment would increase the quality of the assessment. This approach would provide information about the nature of the uncertainties in addition to their magnitude and the confidence assessors have in their findings.  相似文献   

9.
Future climate projections and impact analyses are pivotal to evaluate the potential change in crop yield under climate change. Impact assessment of climate change is also essential to prepare and implement adaptation measures for farmers and policymakers. However, there are uncertainties associated with climate change impact assessment when combining crop models and climate models under different emission scenarios. This study quantifies the various sources of uncertainty associated with future climate change effects on wheat productivity at six representative sites covering dry and wet environments in Australia based on 12 soil types and 12 nitrogen application rates using one crop model driven by 28 global climate models (GCMs) under two representative concentration pathways (RCPs) at near future period 2021–2060 and far future period 2061–2100. We used the analysis of variance (ANOVA) to quantify the sources of uncertainty in wheat yield change. Our results indicated that GCM uncertainty largely dominated over RCPs, nitrogen rates, and soils for the projections of wheat yield at drier locations. However, at wetter sites, the largest share of uncertainty was nitrogen, followed by GCMs, soils, and RCPs. In addition, the soil types at two northern sites in the study area had greater effects on yield change uncertainty probably due to the interaction effect of seasonal rainfall and soil water storage capacity. We concluded that the relative contributions of different uncertainty sources are dependent on climatic location. Understanding the share of uncertainty in climate impact assessment is important for model choice and will provide a basis for producing more reliable impact assessment.  相似文献   

10.
11.
12.
Towards quantifying uncertainty in transient climate change   总被引:2,自引:3,他引:2  
Ensembles of coupled atmosphere–ocean global circulation model simulations are required to make probabilistic predictions of future climate change. “Perturbed physics” ensembles provide a new approach in which modelling uncertainties are sampled systematically by perturbing uncertain parameters. The aim is to provide a basis for probabilistic predictions in which the impact of prior assumptions and observational constraints can be clearly distinguished. Here we report on the first perturbed physics coupled atmosphere–ocean model ensemble in which poorly constrained atmosphere, land and sea-ice component parameters are varied in the third version of the Hadley Centre model (the variation of ocean parameters will be the subject of future study). Flux adjustments are employed, both to reduce regional sea surface temperature (SST) and salinity biases and also to admit the use of combinations of model parameter values which give non-zero values for the global radiation balance. This improves the extent to which the ensemble provides a credible basis for the quantification of uncertainties in climate change, especially at a regional level. However, this particular implementation of flux-adjustments leads to a weakening of the Atlantic overturning circulation, resulting in the development of biases in SST and sea ice in the North Atlantic and Arctic Oceans. Nevertheless, model versions are produced which are of similar quality to the unperturbed and un-flux-adjusted version. The ensemble is used to simulate pre-industrial conditions and a simple scenario of a 1% per year compounded increase in CO2. The range of transient climate response (the 20 year averaged global warming at the time of CO2 doubling) is 1.5–2.6°C, similar to that found in multi-model studies. Measures of global and large scale climate change from the coupled models show simple relationships with associated measures computed from atmosphere-mixed-layer-ocean climate change experiments, suggesting that recent advances in computing the probability density function of climate change under equilibrium conditions using the perturbed physics approach may be extended to the transient case.  相似文献   

13.
This paper uses two models to examine the direct and indirect costs of sea-level rise for Europe for a range of sea-level rise scenarios for the 2020s and 2080s: (1) the DIVA model to estimate the physical impacts of sea-level rise and the direct economic cost, including adaptation, and (2) the GTAP-EF model to assess the indirect economic implications. Without adaptation, impacts are quite significant with a large land loss and increase in the incidence of coastal flooding. By the end of the century Malta has the largest relative land loss at 12% of its total surface area, followed by Greece at 3.5% land loss. Economic losses are however larger in Poland and Germany (483 and483 and 391 million, respectively). Coastal protection is very effective in reducing these impacts and optimally undertaken leads to protection levels that are higher than 85% in the majority of European states. While the direct economic impact of sea-level rise is always negative, the final impact on countries’ economic performances estimated with the GTAP-EF model may be positive or negative. This is because factor substitution, international trade, and changes in investment patterns interact with possible positive implications. The policy insights are (1) while sea-level rise has negative and huge direct economic effects, overall effects on GDP are quite small (max −0.046% in Poland); (2) the impact of sea-level rise is not confined to the coastal zone and sea-level rise indirectly affects landlocked countries as well (Austria for instance loses −0.003% of its GDP); and (3) adaptation is crucial to keep the negative impacts of sea-level rise at an acceptable level.  相似文献   

14.
15.
Climate change impacts, adaptation and vulnerability studies tend to confine their attention to impacts and responses within the same geographical region. However, this approach ignores cross-border climate change impacts that occur remotely from the location of their initial impact and that may severely disrupt societies and livelihoods. We propose a conceptual framework and accompanying nomenclature for describing and analysing such cross-border impacts. The conceptual framework distinguishes an initial impact that is caused by a climate trigger within a specific region. Downstream consequences of that impact propagate through an impact transmission system while adaptation responses to deal with the impact propagate through a response transmission system. A key to understanding cross-border impacts and responses is a recognition of different types of climate triggers, categories of cross-border impacts, the scales and dynamics of impact transmission, the targets and dynamics of responses and the socio-economic and environmental context that also encompasses factors and processes unrelated to climate change. These insights can then provide a basis for identifying relevant causal relationships. We apply the framework to the floods that affected industrial production in Thailand in 2011, and to projected Arctic sea ice decline, and demonstrate that the framework can usefully capture the complex system dynamics of cross-border climate impacts. It also provides a useful mechanism to identify and understand adaptation strategies and their potential consequences in the wider context of resilience planning. The cross-border dimensions of climate impacts could become increasingly important as climate changes intensify. We conclude that our framework will allow for these to be properly accounted for, help to identify new areas of empirical and model-based research and thereby support climate risk management.  相似文献   

16.
气候变化影响下水利工程的可靠设计和安全运行是广大决策者、研究者和公众共同关注的热点问题。以清江流域为研究对象,首先采用模糊集合分析法对不同温室气体排放情景(A2、A1B和B1)下的逐日降水资料进行汛期分期,再通过广义极值分布(GEV)函数对各分期的极值降水序列进行频率分析。结果表明,降水季节性迁移直接影响汛期分期;3种排放情景下未来各时段(2011—2030年、2046—2065年和2080—2099年)的主汛期较基准期均推迟且有缩短趋势。对于极值降水量级,未来情景下明显小于基准期,且这种差距随着重现期的增大而增大;主汛期明显大于前汛期和后汛期,且在时段之间的差异明显大于排放情景之间的差异。  相似文献   

17.
18.
Global climate change and its regional manifestation will result in significant impacts in the European North. However, in order to determine the consequences of such impacts, a holistic, integrated assessment is needed. This paper sets the stage for the remainder of this volume by describing an attempt to derive such an assessment for the Barents Sea Region through the EU-funded BALANCE project. The paper explains some of the major methodologies employed in the study. It also provides insight into major results obtained and attempts to answer a number of overarching questions. It will be shown that climate change does present a significant threat to environmental and societal integrity in the study region. However, it will also be shown that stakeholders regard other drivers of future changes (economical, political developments) at least as equally important for their personal lives.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号