首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
INTRODUCTIONDredgedmatterisamixtureofmuddysandandmarinewater,andinitiallyvariesnormallyindensityfrom 1 .2to 1 .5g cm3accordingtothedredgeequipmentemployedandtheseabedproper ty.Afterdredgedmatteronaboathasbeendischargedatafixedpoint,itssettlingpropertiescanbe…  相似文献   

2.
Analysis and comparison of Jiaozhou Bay data collected from May 1991 to February 1994 revealed the spatiotemporal variations of the ambient Si(OH)4:NO3 (Si:N) concentration rations and the seasonal variations of (Si:N) ratios in Jiaozhou Bay and showed that the Si:N ratios were <1 throughout Jiaozhou Bay in spring, autumn, and winter. These results provide further evidence that silicate limits the growth of phytoplankton (i.e. diatoms) in spring, autumn and winter. Moreover, comparison of the spatiotemporal variations of the Si:N ratio and primary production in Jiaozhou Bay suggested their close relationship. The spatiotemporal pattern of dissolved silicate matched well that of primary production in Jiaozhou Bay. Along with the environmental change of Jiaozhou Bay in the last thirty years, the N and P concentrations tended to rise, whereas Si concentration showed cyclic seasonal variations. With the variation of nutrient Si limiting the primary production in mind, the authors found that the range of values of primary production is divided into three parts: the basic value of Si limited primary production, the extent of Si limited primary production and the critical value of Si limited primary production, which can be calculated for Jiaozhou Bay by Equations (1), (2) and (3), showing that the time of the critical value of Si limitation of phytoplankton growth in Jiaozhou Bay is around November 3 to November 13 in autumn; and that the time of the critical value of Si satisfaction of phytoplankton growth in Jiaozhou Bay is around May 22 to June 7 in spring. Moreover, the calculated critical value of Si satisfactory for phytoplankton growth is 2.15–0.76 μmol/L and the critical value of Si limitation of phytoplankton growth is 1.42–0.36 μmol/L; so that the time period of Si limitation of phytoplankton growth is around November 13 to May 22 in the next year; the time period of Si satisfactory for phytoplankton growth is around June 7 to November 3. This result also explains why critical values of nutrient silicon affect phytoplankton growth in spring and autumn are different in different waters of Jiaozhou Bay and also indicates how the silicate concentration affects the phytoplankton assemblage structure. The dilution of silicate concentration by seawater exchange affects the growth of phytoplankton so that the primary production of phytoplankton declines outside Jiaozhou Bay earlier than inside Jiaozhou Bay by one and half months. This study showed that Jiaozhou Bay phytoplankton badly need silicon and respond very sensitively and rapidly to the variation of silicon. This study was funded by NSFC (No. 40036010) and subsidized by Special Funds from National Key Basic Research Program of P. R. China (G19990437), the Postdoctoral Foundation of Ocean University of Qingdao, the Director's Foundation of the Beihai Monitoring Center of the State Oceanic Administration and the Foundation of Shanghai Fisheries University.  相似文献   

3.
SOME NEW SPECIES OF NANNOPLANKTON IN JIAOZHOU BAY, SHANDONG, CHINA   总被引:1,自引:0,他引:1  
Three new spades and a new variety of nannoplankton, Chrysochromulina papillata, Gaysochromulina chiton var. minuta, Paraphysomonas simplexocorbita and Paraphysomonas bisorbulina are reported in this paper. All were isolated from the preliminary culture samples of seawater collected from Jiaozhou Bay, Shandong, China. The three species occurred at Station 1(120° 14.56′ E, 36°4′N) in November 1984, the new variety at Station 2 (120° 16.35° E,36°4.5′N) in January, 1985. The morphological features, especially the structures of the scales of these new nannoplankton,. are described. The differences between the new species and the related ones are discussed; their movement and nutrition, and the temperature and salinity of their biotopes are also mentioned.  相似文献   

4.
5.
The authors analyzed the data collected in the Ecological Station Jiaozhou Bay from May 1991 to November 1994, including 12 seasonal investigations, to determine the characteristics, dynamic cycles and variation trends of the silicate in the bay. The results indicated that the rivers around Jiaozhou Bay provided abundant supply of silicate to the bay. The silicate concentration there depended on river flow variation. The horizontal variation of silicate concentration on the transect showed that the silicate concentration decreased with distance from shorelines. The vertical variation of it showed that silicate sank and deposited on the sea bottom by phytoplankton uptake and death, and zooplankton excretion. In this way, silicon would endlessly be transferred from terrestrial sources to the sea bottom. The silicon took up by phytoplankton and by other biogeochemical processes led to insufficient silicon supply for phytoplankton growth. In this paper, a 2D dynamic model of river flow versus silicate concentration was established by which silicate concentrations of 0.028–0.062 μmol/L in seawater was yielded by inputting certain seasonal unit river flows (m3/s), or in other words, the silicate supply rate; and when the unit river flow was set to zero, meaning no river input, the silicate concentrations were between 0.05–0.69 μmol/L in the bay. In terms of the silicate supply rate, Jiaozhou Bay was divided into three parts. The division shows a given river flow could generate several different silicon levels in corresponding regions, so as to the silicon-limitation levels to the phytoplankton in these regions. Another dynamic model of river flow versus primary production was set up by which the phytoplankton primary production of 5.21–15.55 (mgC/m2·d)/(m3/s) were obtained in our case at unit river flow values via silicate concentration or primary production conversion rate. Similarly, the values of primary production of 121.98–195.33 (mgC/m2·d) were achieved at zero unit river flow condition. A primary production conversion rate reflects the sensitivity to silicon depletion so as to different phytoplankton primary production and silicon requirements by different phytoplankton assemblages in different marine areas. In addition, the authors differentiated two equations (Eqs. 1 and 2) in the models to obtain the river flow variation that determines the silicate concentration variation, and in turn, the variation of primary production. These results proved further that nutrient silicon is a limiting factor for phytoplankton growth. This study was funded by NSFC (No. 40036010), and the Director's Fund of the Beihai Sea Monitoring Center, the State Oceanic Administration.  相似文献   

6.
The abundance and biomass of benthic heterotrophic bacteria were investigated for the 4 typical sampling stations in the northern muddy part of Jiaozhou Bay, estuary of the Dagu River, raft culturing and nearby areas of Huangdao in March, June, August and December, 2002. The abundance and biomass range from 0.98×107 to 16.87×107cells g-1 sediment and 0.45 to 7.08μgCg-1 sediment, respectively. Correlation analysis showed that heterotrophic bacterial abundance and biomass are significantly correlated to water temperature (R =0.79 and 0.83, respectively, P<0.01).  相似文献   

7.
1INTRODUCTIONMicrozooplanktonsizecategoryiscomposedofdi versetaxonomicassemblages,includingplanktonicpro tozoa,larvalandnaupliarstagesofmetazoa(Gifford,1 988) .Microzooplanktonconstituteasignificantpro portionoftotalzooplanktonbiomassinavarietyofneri ticandoceanicenvironmentsandplayimportantrolesinplanktonicfoodwebs(FronemanandPerissinotto,1 996;Gallegos,1 989) .Severalmethodsforresearchonmi crozooplanktongrazingpressureonphytoplanktonwerereviewedbyMcManusandFuhrman (1 988)andGifford(1…  相似文献   

8.
A one-year field study was conducted to determine the conversion ratio of phytoplankton biomass carbon (Phyto-C) to chlorophyll-a (Chl-a) in Jiaozhou Bay, China. We measured suspended particulate organic carbon (POC) and phytoplankton Chl-a samples collected in surface water monthly from March 2005 to February 2006. The temporal and spatial variations of Chl-a and POC concentrations were observed in the bay. Based on the field measurements, a linear regression model II was used to generate the conversion ratio of Phyto-C to Chl-a. In most cases, a good linear correlation was found between the observed POC and Chl-a concentrations, and the calculated conversion ratios ranged from 26 to 250 with a mean value of 56 μg μg−1. The conversion ratio in the fall was higher than that in the winter and spring months, and had the lowest values in the summer. The ratios also exhibited spatial variations, generally with low values in the near shore regions and relatively high values in offshore waters. Our study suggests that temperature was likely to be the main factor influencing the observed seasonal variations of conversion ratios while nutrient supply and light penetration played important roles in controlling the spatial variations.  相似文献   

9.
The species composition and abundance of microzooplankton at 10 marine and five coastal stations(Hongdao,Daguhe,Haibohe,Huangdao and Hangxiao) in the Jiaozhou Bay(Qingdao,China) were studied in 2001.The microzooplankton community was found to be dominated by Tintinnopsis beroidea,Tintinnopsis urnula,Tintinnopsis brevicollis and Codonellopsis sp.The average abundance of microzooplankton was highly variable among stations.Specifically,the abundance of microzooplankton was higher at inshore stations and lower ...  相似文献   

10.
Jiaozhou Bay data collected from May 1991 to February 1994, in 12 seasonal investigations, and provided the authors by the Ecological Station of Jiaozhou Bay, were analyzed to determine the spatiotemporal variations in temperature, light, nutrients (NO3^--N, NO2^--N, NH4^ -N, SIO3^2--Si, PO4^3--P), phytoplankton, and primary production in Jiaozhou Bay. The results indicated that only silicate correlated well in time and space with, and had important effects on, the characteristics, dynamic cycles and trends of, primary production in Jiaozhou Bay. The authors developed a corresponding dynamic model of primary production and silicate and water temperature. Eq. ( 1 ) of the model shows that the primary production variation is controlled by the nutrient Si and affected by water temperature; that the main factor controlling the primary production is Si; that water temperature affects the composition of the structure of phytoplankton assemblage; that the different populations of the phytoplankton assemblage occupy different ecological niches for C, the apparent ratio of conversion of silicate in seawater into phytoplankton biomas and D, the coefficient of water temperature‘s effect on phytoplankton biomass. The authors researched the silicon source of Jiaozhou Bay, the biogeochemical sediment process of the silicon, the phytoplankton predominant species and the phytoplankton structure. The authors considered silicate a limiting factor of primary production in Jiaozhou Bay, whose decreasing concentration of silicate from terrestrial source is supposedly due to dilution by current and uptake by phytoplankton; quantified the silicate assimilated by phytoplankton, the intrinsic ratio of conversion of silicon into phytoplankton biomass, the proportion of silicate uptaken by phytoplankton and diluted by current; and found that the primary production of the phytoplankton is determined by the quantity of the silicate assimilated by them. The phenomenon of apparently high plant-nutrient concentTations but low phytoplankton biomass in some waters is reasonably explained in this paper.  相似文献   

11.
Biologically utilizable dissolved organic compounds, including dissolved organic carbon (DOC), dissolved carbohydrates (DCHO) and dissolved free amino acids (DFAA) were analyzed in filtered surface seawater samples collected at 19 stations in Jiaozhou Bay, China, on June 3, 2007. In these samples, concentrations of DOC, dissolved free carbohydrates (DFCHO), dissolved combined carbohydrates (DCCHO), total dissolved carbohydrates (TDCHO) and total dissolved free amino acids (TDFAA) ranged from 141.7 to 191.1 μmol C/L, 1.98 to 18.18 μmol C/L, 5.04 to 24.90 μmol C/L, 14.52 to 30.36 μmol C/L, and 1.83 to 11.89 μmol C/L, respectively. As a major component of the dissolved carbohydrates, the concentrations of DCCHO were about three times higher than those of DFCHO. Three major constituents of the DFAA were threonine (23.0±5.7 mol%), glutamic acid (16.6±3.2 mol%) and arginine (9.1±3.3 mol%). Based on the composition of DFAA, a molar C:N ratio of 3.60±0.75 in DFAA was derived, indicating longer carbon chains in the amino acids. DCCHO (8.1%) was the most abundant fraction of DOM in most samples, followed by DFCHO (4.8%) and TDFAA (2.7%). These DOM concentrations displayed a decreasing trend from the coast to the central region. Significant correlations were found between the DCCHO and DFCHO concentrations (r=-0.724, n=19, P<0.001) and the DCCHO and TDCHO concentrations (r=0.506, n=19, P=0.027).  相似文献   

12.
The phytoplankton reproduction capacity (PRC), as a new concept regarding chlorophyll-a and primary production (PP) is described. PRC is different from PP, carbon assimilation number (CAN) or photosynthetic rate ( P^B ) . PRC quantifies phytoplankton growth with a special consideration of the effect of seawater temperature. Observation data in Jiaozhou Bay, Qingdao, China, collected from May 1991 to February 1994 were used to analyze the horizontal distribution and seasonal variation of the PRC in Jiaozhou Bay in order to determine the characteristics, dynamic cycles and trends of phytoplankton growth in Jiaozhou Bay; and to develop a corresponding dynamic model of seawater temperature vs. PRC. Simulation curves showed that seawater temperature has a dual function of limiting and enhancing PRC. PRC‘s periodicity and fluctuation are similar to those of the seawater temperature. Nutrient silicon in Jiaozhou Bay satisfies phytoplankton growth from June 7 to November 3. When nutrients N, P and Si satisfy the phytoplankton growth and solar irradiation is sufficient, the PRC would reflect the influence of seawater temperature on phytoplankton growth. Moreover, the result quantitatively explains the scenario of one-peak or two-peak phytoplankton reproduction in Jiaozhou Bay, and also quantitatively elucidates the internal mechanism of the one- or two-peak phytoplankton reproduction in the global marine areas.  相似文献   

13.
In order to investigate the relationship between the trace elements and the characteristics of the oysters, we analyzed the trace elements present in the germplasm of oysters from different producing areas in the Jiaozhou Bay. The element fingerprints were established to reflect the elemental characteristics of the oysters. Concentration patterns of the elements were deciphered by principle component analysis (PCA) and hierarchical cluster analysis (HCA). The six regions were discriminated with accuracy using HCA and PCA based on the concentration of 16 trace elements. The elements were viewed as characteristic elements of the oysters and the fingerprints of these elements could be used to distinguish the quality of the oysters.  相似文献   

14.
1 INTRODUCTIONSystematicstudyisusefulforhumanvisualizationandcomprehensionofanetworkofcomplicatedcompo nentsandprocessesinvolvingfrequentenergyflow ,consideringenergyasthebasisofbothstructureandprocess (Automa ,1 993) .Energylanguageisaconceptfordepictingasysteminwhichallphenomenaareac companiedbyenergytransformation .Thefunctionoftheecosystemovertheworlddependsontheenergyfixationbymarineplantphotosynthesis ,mostofthemarefixedbymicrophytoplanktonnearseasurfaceexposedtosunlight (Niebaken …  相似文献   

15.
We used long term monitoring data to evaluate changes in abundance and species dominance of small-jellyfish (collected with zooplankton net whose bell diameter was less than 5 cm) between 1991 and 2009 in the Jiaozhou Bay, China. Zooplankton samples were vertically towed with conical plankton net from near-bottom to surface, identified microscopically, and mapped in time-space using Grapher 7.0 and Surfer 8.0. Results show that the abundance of small-jellyfish throughout the bay had been increasing during 2001-2009 on average of 15.2 ind./m 3 , almost 5 times higher than that between 1991 and 2000. The occurrence of peak abundance shifted from spring to summer after 2000, and two peaks appeared in spring and summer, respectively, after 2005. Both the abundance and the frequency of blooms of small-jellyfish increased after 2000 in the bay. In addition, the biodiversity of jellyfish has increased significantly in recent years with a change in dominant species. Several new dominant species appeared after 2000, including Rathkae octopunctata in winter, Phialidium hemisphaericum in spring, summer, and autumn, Phialucium carolinae in spring, and Pleurobrachia globosa in summer and autumn, while some previous dominant species throughout the 1990s (Eirene ceylonensis, Zanclea costata, Lovenella assimilis, and Muggiaea atlantica) were no longer dominant after 2000. The abundance of small-jellyfish was positively correlated with the density of dinoflagellates, and the abundance of zooplankton. We believe that the changes in smalljellyfish abundance and species composition were the result of eutrophication, aquaculture and coastal construction activities around the bay. Concurrently, seawater warming and salinity decrease in recent decades promoted the growth and reproduction of small-jellyfish in the bay.  相似文献   

16.
Analysis and comparison of Jiaozhou Bay data collected from May 1991 to February 1994 (12 seasonal investigations) provided by the Ecological Station of Jiaozhou Bay revealed the characteristic spatiotemporal variation of the ambient concentration Si∶DIN and Si∶16P ratios and the seasonal variation of Jiaozhou Bay Si∶DIN and Si∶16P ratios showing that the Si∶DIN ratios were <1 throughout the year in Jiaozhou Bay; and that the Si∶16P ratios were <1 throughout Jiaozhou Bay in spring, autumn and winter. The results proved that silicate limited phytoplankton growth in spring, autumn and winter in Jiaozhou Bay. Analysis of the Si∶DIN and Si∶P ratios showed that the nutrient Si has been limiting the growth of phytoplankton throughout the year in some Jiaozhou Bay waters; and that the silicate deficiency changed the phytoplankton assemblage structure. Analysis of discontinuous 1962 to 1998 nutrient data showed that there was no N or P limitation of phytoplankton growth in that period. The authors consider that the annual cyclic change of silicate limits phytoplankton growth in spring, autumn and winter every year in Jiaozhou Bay; and that in many Jiaozhou Bay waters where the phytoplankton as the predominant species need a great amount of silicate, analysis of the nutrients N or P limitation of phytoplankton growth relying only on the N and P nutrients and DIN∶P ratio could yield inaccurate conclusions. The results obtained by applying the rules of absolute and relative limitation fully support this view. The authors consider that the main function of nutrient silicon is to regulate and control the mechanism of the phytoplankton growth process in the ecological system in estuaries, bays and the sea. The authors consider that according to the evolution theory of Darwin, continuous environmental pressure gradually changes the phytoplankton assemblage's structure and the physiology of diatoms. Diatoms requiring a great deal of silicon either constantly decrease or reduce their requirement for silicon. This will cause a series of huge changes in the ecosystem so that the whole ecosystem requires continuous renewal, change and balancing. Human beings have to reduce marine pollution and enhance the capacity of continental sources to transport silicon to sustain the continuity and stability in the marine ecosystem. This study was funded by the NSFC (No. 40036010) and subsidized by Special Funds from the National Key Basic Research Program of P. R. China (G199990437), the Postdoctoral Foundation of Ocean University of Qingdao, the Director's Foundation of the Beihai Monitoring Center of the State Oceanic Administration and the Foundation of Shanghai Fisheries University.  相似文献   

17.
Preliminary studies on microzooplankton grazing were conducted with dilution method in Jiaozhou Bay from summer 1998 to spring 1999. Four experiments were carried out at St. 5 located at the center of Jiaozhou Bay. Chlorophyll a concentrations were consistently dominated by netphytoplankton (net-, >20μm), except during the autumn 1998 cruise, when they were dominated by nanophytoplankton(nano-, 2–20μm). The contribution of picophytoplankton (pico-, <2μm) to total chlorophyll a concentrations (<200μm) varied considerably between cruises. Instantaneous growth coefficients(u) of phytoplankton varied from 0.098 to 1.947d−1, with mean value of 0.902d−1. Instantaneous coefficients(g) of microzooplankton grazing on phytoplankton ranged from 0.066 to 0.567d−1, mean value of 0.265d−1, which was equivalent to daily lose of 21.9% of the initial standing stock and 58.1% of the daily potential production. Project No KZCX3-SW-214 supported by Chinese Academy of Sciences.  相似文献   

18.
The 3-D ECOMSED ocean model was applied to establish a time-dependent boundary model for Jiaozhou Bay (JZB), in which the operator-splitting technique was used and the ‘dry and wet’ method was introduced. The influence caused by JZB reclamation on the surface level, residual currents, tidal system and tidal energy of M2 tidal system were predicted and analyzed. The results show that JZB reclamation has slight impact on the M2 tidal system, in which the variation of amplitude and phase is less than 1%.The changes of the currents and residual currents in Qian Bay and near the reclamation areas are greater, but in other areas the changes are smaller, in which the currents have a change of around 1%, while the residual currents change ranges from 1.82%–9.61%. After reclamation, the tidal energy fluxes increase by 2.62%–5.24% inside and outside the JZB mouth, but decrease by 20.21%–87.23% near Qian Bay and the reclamation area.  相似文献   

19.
This study showed how the daytime length in Jiaozhou Bay affected the water temperature, which in turn affected the phytoplankton growth when solar radiation was sufficient for phytoplankton photosynthesis. Jiaozhou Bay observation data collected from May 1991 to February 1994 were used to analyze the daytime length vs water temperature relationship. Our study showed that daytime length and the variation controlled the cycle of water temperature flunctuation. Should the cyclic variation curve of the daytime length be moved back for two months it would be superimposed with temperature change. The values of daytime length and temperature that calculated in the dynamical model of daytime length lag vs water temperature were consistent with observed values. The light radiation and daytime length in this model determined the photochemistry process and the enzymic catalysis process of phytoplankton photosynthesis. In addition, by considering the effect of the daytime length on water temperature and photosynthesis, we could comprehend the joint effect of daytime length, water temperature, and nutrients, on the spatiotemperal variation of primary production in Jiaozhou Bay.  相似文献   

20.
The results from four cruises(Nov.1991—Jul.1992)to examine fluxes of ammonium uptake andregeneration in the surface layer of Jiaozhou Bay are presented.Seasonal variations of the two fluxeswere in the order:summer>spring>autumn>winter.Diel patterns were characterized by higher uptake inthe daytime and higher regeneration at night.Averaged uptake and regeneration fluxes on an annual scalewere 0.073 and 0.053 μmol·L~(-1)·h~(-1)respectively.Regeneration fluxes were always less than uptakefluxes throughout the year.The longest turnover time was 16.34 d(in winter),and the shortest one was0.68 d(in summer).The major uptake flux was contributed by the smallest fraction-picoplankton.Theextents of light-dependence of ammouium uptake by different size fractions were in the order:netplankton>nanoplankton>picoplankton..  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号