首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have succeeded in establishing a cosmological model with a non-minimally coupled scalar field φ that can account not only for the spatial periodicity or the picket-fence structure exhibited by the galaxy N-z relation of the 2dF survey but also for the spatial power spectrum of the cosmic microwave background radiation (CMB) temperature anisotropy observed by the WMAP satellite. The Hubble diagram of our model also compares well with the observation of Type Ia supernovae. The scalar field of our model universe starts from an extremely small value at around the nucleosynthesis epoch, remains in that state for sufficiently long periods, allowing sufficient time for the CMB temperature anisotropy to form, and then starts to grow in magnitude at the redshift z of ~1, followed by a damping oscillation which is required to reproduce the observed picket-fence structure of the N-z relation. To realize such behavior of the scalar field, we have found it necessary to introduce a new form of potential V(φ) φ 2exp?(?q φ 2), with q being a constant. Through this parameter q, we can control the epoch at which the scalar field starts growing.  相似文献   

2.
The effect of the Σ-meson well depth on the gravitational redshift is examined within the framework of relativistic mean field theory for the baryon octet system. It is found that, for a stable neutron star, the gravitational redshift increases with the central energy density increase or with the mass increase but decreases as the radius increases. Considering a change of US(N)U_{\Sigma}^{(N)} from −30 MeV to 30 MeV, for a stable neutron star the gravitational redshift near to the maximum mass increases. In addition, it is also found that the growth of the US(N)U_{\Sigma}^{(N)} makes the gravitational redshift as a function of M max /R increase, the higher the US(N)U_{\Sigma}^{(N)} the less the change in the gravitational redshift.  相似文献   

3.
In order to arrive at more general results solving Einstein-Maxwell's equations our investigation is centered around an electromagnetic spin tensor, which must be chosen in such a way that conservation laws still hold. This notion of the combined tensor is of course closely linked with the unified field equations. We shall avoid in this way the problem of the form of the matter tensor and neglect non-linear gravitational terms in the Ricci tensor. Then, the field equations have as solutionsh ij=h ij (P) +h ij (h) , whereh ij (P) are particular solutions, which are obtained by direct calculations andh ij (h) are solutions of h ij (h) =0. The quantitiesh ij (P) are purely electromagnetic in nature, whileh ij (h) may represent purely gravitational terms. The results obtained complete the ones which have been published already in the preceeding paper (Dionysiou, 1980a; which will hereafter be referred to as Paper I).  相似文献   

4.
We study the effects of possible deviations of fundamental physical constants on the yields of light nuclides, 2D, 3He, 4He, 7Li, and others during primordial nucleosynthesis. The deviations of fundamental constants from their current values are considered in the low-energy approximation of string theories; the latter predict the existence of a scalar field, which, apart from the tensor gravitational field, determines the space geometry. A two-parameter (η, δ) model is constructed for primordial nucleosynthesis: η = n B /n γ is the baryon-to-photon density ratio, and Ω is the relative deviation of fundamental physical constants at the epoch of primordial nucleosynthesis from their current values. A dependence of η on the deviation of coupling constants Ω has been derived on condition that the primordial helium abundance is Y p = f(η, δ) = const, where const corresponds to experimental values. We thus showed that the relative baryonic density (and hence ΩB could vary over a much wider range than allowed by the standard nucleosynthesis model. Considering this result, we discuss the recently found mismatch between ΩB obtained from an analysis of CMBR anisotropy and from the standard primordial nucleosynthesis model.  相似文献   

5.
Gravitational stability of gaseous protostellar disks is relevant to theories of planetary formation. Stable gas disks favor formation of planetesimals by the accumulation of solid material; unstable disks allow the possibility of direct condensation of gaseous protoplanets. We present the results of numerical experiments designed to test the stability of thin disks against large-scale, self-gravitational disruption. The disks are represented by a distribution of about 6 × 104 point masses on a two-dimensional (r, φ) grid. The motions of the particles in the self-consistent gravity field are calculated, and the evolving density distributions are examined for instabilities. Two parameters that have major influences on stability are varied: the initial temperature of the disk (represented by an imposed velocity dispersion), and the mass of the protostar relative to that of the disk. It is found that a disk as massive as 1M, surrounding a 1M protostar, can be stable against long-wavelength gravitational disruption if its temperature is about 300°K or greater. Stability of a cooler disk requires that it be less massive, but even at 100°K a stable disk can have an appreciable fraction (13) of a solar mass.  相似文献   

6.
The recently released Planck data have constrained 4-dimensional inflationary parameters even more accurately than ever. We consider an extension of the braneworld model with induced gravity and a non-minimally coupled scalar field on the brane. We constraint the inflation parameters in this setup, by adopting six types of potential, in confrontation with the joint Planck + WMAP9 + BAO data. We show that a potential of the type V(φ)=V 0exp(?βφ) has the best fit with newly released observational data.  相似文献   

7.
The influence of the potential well depth US(N)U_{\Sigma}^{(N)} of Σ in nuclear matter on the surface gravitational red-shift of a proto neutron star is examined within the framework of the relativistic mean field theory for the baryon octet system. It is found that as US(N)U_{\Sigma}^{(N)} increases from −35 MeV to +35 MeV, the surface gravitational red-shift increases and the influence of the negative US(N)U_{\Sigma}^{(N)} on the surface gravitational red-shift is larger than that of the positive ones. Furthermore, the M max/R and the surface gravitational red-shift corresponding to the maximum mass all increase as the US(N)U_{\Sigma}^{(N)} increases, M max and R being the maximum mass of the proto neutron star and the corresponding radius respectively.  相似文献   

8.
In this paper, we search the existence of Bianchi type I cosmological model in f(R,T) gravity, where the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar R and of the trace of the stress-energy tensor T. We obtain the gravitational field equations in the metric formalism, and reconstruct the corresponding f(R,T) functions. Attention is attached to the special case, f(R,T)=f 1(R)+f 2(T) and two examples are assumed for this model. In the first example, we consider the unification of matter dominated and accelerated phases with f(R) gravity in anisotropic universe, and in the second instance, model of f(R,T) gravity with transition of matter dominated phase to the acceleration phase is obtained. In both cases, f(R,T) is proportional to a power of R with exponents depending on the input parameters.  相似文献   

9.
We consider cosmology with the gravitational and cosmological constants generalized as coupling scalars in Einstein’s theory. A general method of solving the field equations is given. We study here the exact solutions for negative pressure models satisfying G=G 0(R/R 0) n .  相似文献   

10.
A new class of plane-symmetric inhomogeneous cosmological models of perfect fluid distribution with electro-magnetic field based on Lyra’s geometry is obtained by considering a time dependent displacement field. The source of the magnetic field is due to an electric current produced along the z-axis. Only F 12 is a non-vanishing component of electromagnetic field tensor. To get the deterministic solutions, the free gravitational field is assumed to be of Petrov type-II non-degenerate. It has been found that the displacement vector β(t) behaves like cosmological term Λ which is consistent with the recent observations of type Ia supernovae. It is also observed that β(t) affects entropy. Some geometric and physical behaviour of the models are also discussed in presence of magnetic field.   相似文献   

11.
The focussing of gravitational radiation by the interior and exterior gravitational field of a Newtonian gravitational lens is considered. A graphical method for determining the caustic structure of a Newtonian gravitational lens is presented and the caustic structure of a solar type gravitational lens is discussed. Estimates of the amplitude magnification in the caustic region indicate that waves with frequencies less than a critical cutoff frequency ω c are not amplified significantly. For a lens of massM this cutoff frequency is ω c ≈(10-1πM)-1; for the Sun ω c ≈104s-1. Work supported in part by National Science Foundation Grant PHY78-05368.  相似文献   

12.
Instead of the difficult concept of a three-dimensional curved space one can use two partial models of two-dimensional curved subspaces. If a two-dimensional subspace is curved the arbitrary angle of view must have a distorted shape which has in consequence an optical illusion. The distorted shape of ? must be corrected to the real angle1φ, valid in uncurved space according to the relation φ=1φf(ρ) where ρ is the central angle in theoretical sphere. If a two-dimensional subspace is just a spheric surface, the correction factor isf s (ρ)?ρ/sin ρ, appropriate to the angle distance ρ from observer to the observed object. In this way it is possible to explain why, in remote parts of the Universe, it was observed that their assumed components were receding at velocities larger than that of light, because the correction factorf(ρ) can change up to infinity for ρ=π. On the other hand there are many clustering of galaxies, because the correction factor for a hyperbolic spool space or internal part of annuloid is between zero and one: 0<f A (ρ))<1. Conception considered explains the cause of polarizing effect and interference phenomenon of light without assuming of components, too, but it is in contradiction with the recent interpretation of the spectrum. If we consider the Universe closed into itself due to curvature the existence of superluminal velocities is a undirect evidence for it. If we consider local hyperbolic spool spaces or that of annuloid, the existence of galaxies clustering is a needful but not sufficient condition for it.  相似文献   

13.
In this paper, we study the gravitational field of domain wall in fivedimensional space-time. Exact solutions of Einstein's equations for a scalarfield with a potential V(Ø) are presented, describing thegravitational field of plane symmetric domain walls. The solution showsthat the energy density as well as pressure in the perpendicular directionon both sides of the walls to be reflection symmetric with respect to thewalls.PACS numbers: 98.80 cq, 0450  相似文献   

14.
Assuming that the formation of the ring current belt is a direct consequence of an enhanced convection of plasma sheet protons, the expression for the energy injection rate UR is formulated as a function of the cross-tail potential drop φCT for a simple electric field-magnetic field model. It is shown that an approximate expression for UR thus formulated consists of two parts: (i) the first part UR1, which is linearly proportional to φCT, is supplied by the corotation electric field and (ii) the second part UR>2, which is proportional to φ2CT, is supplied by the solar wind energy input to the magnetosphere. The second part UR2 dominates the ring current energy input when the cross-tail potential drop φCT is greater than ~ 95 keV, namely during disturbed periods. An important finding is that the second part UR2 of the ring current energy input is shown to be proportional to the solar wind-magnetosphere energy coupling function ?, recovering the observationally established relationship. Therefore, the present study verifies that an enhanced convection is the cause of the ring current formation.  相似文献   

15.
S.J. Peale 《Icarus》2005,178(1):4-18
An analysis based on the direct torque equations including tidal dissipation and a viscous core-mantle coupling is used to determine the damping time scales of O(105) years for free precession of the spin about the Cassini state and free libration in longitude for Mercury. The core-mantle coupling dominates the damping over the tides by one to two orders of magnitude for the plausible parameters chosen. The short damping times compared with the age of the Solar System means we must find recent or on-going excitation mechanisms if such free motions are found by the current radar experiments or the future measurement by the MESSENGER and BepiColombo spacecraft that will orbit Mercury. We also show that the average precession rate is increased by about 30% over that obtained from the traditional precession constant because of a spin-orbit resonance induced contribution by the C22 term in the expansion of the gravitational field. The C22 contribution also causes the path of the spin during the precession to be slightly elliptical with a variation in the precession rate that is a maximum when the obliquity is a minimum. An observable free precession will compromise the determination of obliquity of the Cassini state and hence of C/MMR2 for Mercury, but a detected free libration will not compromise the determination of the forced libration amplitude and thus the verification of a liquid core.  相似文献   

16.
Motivated by the possibility that the fundamental “constants” of nature could vary with time, this paper considers the long term evolution of white dwarf stars under the combined action of proton decay and variations in the gravitational constant. White dwarfs are thus used as a theoretical laboratory to study the effects of possible time variations, especially their implications for the future history of the universe. More specifically, we consider the gravitational constant G to vary according to the parametric relation G=G 0(1+t/t ? )?p , where the time scale t ? is the same order as the proton lifetime t P . We then study the long term fate and evolution of white dwarf stars. This treatment begins when proton decay dominates the stellar luminosity, and ends when the star becomes optically thin to its internal radiation.  相似文献   

17.
A general tetrad fields, with an arbitrary function of radial coordinate, preserving spherical symmetry, is provided. Such tetrad is split into two matrices: The first matrix represents a Local Lorentz Transformation (LLT), which contains an arbitrary function. The second matrix represents a proper tetrad fields which satisfy the field equations of f(T) gravitational theory. This general tetrad is applied to the field equations of f(T). We derive a solution with one constant of integration to the resulting field equations of f(T). This solution gives a vanishing value of the scalar torsion. We calculate the energy associated with this solution to investigate what is the nature of the constant of integration.  相似文献   

18.
In this paper we consider the implications that the effect gravitational memory would have on primordial black holes, within the theoretical context of F(R) related scalar-tensor theories. As we will demonstrate, under the assumption that the initial mass of the primordial black hole is such so that it evaporates today, this can potentially constrain the F(R) related theories of gravity. We study two scalar-tensor models and discuss the evolution of primordial black holes created at some initial time t f in the early universe. The results between the two models vary significantly which shows us that, if the effect of gravitational memory is considered valid, some of the scalar-tensor models and their corresponding F(R) theories must be further constrained.  相似文献   

19.
It is shown by numerical simulations that enhanced current density can generate double layers, even when the electron drift speed is significantly below the electron thermal speed. The double layer potential is spontaneously produced by the space charge self-consistently developed inside the simulation domain. The particle influxes from the low-potential boundary of our simulation domain are independent of the outfluxes. The potential difference φ0 is shown increase with increasing number density of the injection current. Strong double layers with potential energy 0 ? kT0 (the electron thermal energy) are stably formed when the injection electron current much exceeds the thermal current of ambient electrons. The backscattered and mirrored electrons are found to have stabilizing effects on the current-driven double layers.  相似文献   

20.
The exact nonstationary solution for the variation of the magnetic field in the Schwarzschild metric with a given spherically symmetric flow is obtained. Initially a homogeneous magnetic field increases with time, changing into a quasi-radial field. On the assumption of equipartition between the magnetic and kinetic energies of a falling gas, in the relativistic case, estimates of the stationary field and the intensity of synchrotron radiation are presented. A considerable part of the radiation is formed in the relativistic regionr?(2.5 to 7.7)r g (r g is the gravitational radius of a black hole). Estimates are made for radiation from the relativistic region in the case of disc type accretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号