首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In this paper an attempt has been made to determine the effect of Coriolis force on the shapes of Roche equipotential surfaces of rotating stars and stars in binary systems. Equations of Roche equipotential surfaces have been obtained for rotating and binary stars which take into account the effects of Coriolis force besides the centrifugal and gravitational forces. Shapes of Roche equipotentials and values of Roche limits are obtained for different values of angular velocity of rotation for rotating stars and for different values of mass ratios for the binary stars. The obtained results have been compared with the corresponding results in which the effect of Coriolis force has not been considered.  相似文献   

2.
The concept of Roche equipotentials has been frequently used in literature to study the problems of rotating stars and stars in binary systems. However in spite of using this simplifying concept, it is still not possible to express the position of a point in the potential field of such a system in a closed analytic form. In order to carry out further analytic studies, Kopal (Adv. Astron. Astrophys. 9:1–65, 1972), therefore, developed a series expansion for it. The series expansion of Kopal has often been used in the analysis of the problem of equilibrium structure and the periods of oscillations of rotating stars and stars in binary systems, but its validity and convergence has not been analytically established. It is important that this aspect of the problem is checked so that one is sure of the correctness of subsequent analysis and results based on this series expansion. In the present brief note, we have addressed ourselves to this problem and validated the correctness of the numerical results obtained through the use of this series expansion.  相似文献   

3.
In this paper we present a method for computint the equilibrium structures of rotationally distorted stars as well as rotationally and tidally distorted primary components of the stars in binary systems. The method is based on the averaging technique of Kippenhahn and Thomas (1970) and utilizes the concepts of Roche equipotentials (Kopal, 1972). The method takes into account terms up to second-order of smallness in the rotational and tidal distortion parameters. The use of the method in obtaining the equilibrium structures of certain rotationally and (or) tidally distorted models of Main-Sequence stars is also illustrated.  相似文献   

4.
In literature, there is no exact analytical solution available for determining the radius of Roche equipotential surfaces of distorted close binary systems in synchronous rotation. However, Kopal (Roche Model and Its Application to Close Binary Systems, Advances in Astronomy and Astrophysics, Academic Press, New York 1972) and Morris (Publ. Astron. Soc. Pac. 106:154, 1994) have provided the approximate analytical solutions in the form of infinite mathematical series. These series expressions have been commonly used by various authors to determine the radius of the Roche equipotential surfaces, and hence the equilibrium structures of rotating stars and stars in the binary systems. However, numerical results obtained from these approximating series expressions are not very accurate. In the present paper, we have expanded these series expressions to higher orders so as to improve their accuracy. The objective of this paper is to check, whether, there is any effect on the accuracy of these series expressions when the terms of higher orders are considered. Our results show that in most of the cases these expanded series give better results than the earlier series. We have further used these expanded series to find numerically the volume radius of the Roche equipotential surfaces. The obtained results are in good agreement with the results available in literature. We have also presented simple and accurate approximating formulas to calculate the radius of the primary component in a close binary system. These formulas give very accurate results in a specified range of mass ratio.  相似文献   

5.
In the present paper we have studied the eigenfrequencies of small adiabatic barotropic pseudo-radial and nonradial modes of oscillations of the white dwarf models of rotating stars in binary systems. In this work the methodology of Mohan and Saxena (in Astrophys. Space Sci. 113:155, 1985) has been used that utilizes the averaging technique of Kippenhahn and Thomas (in Proc. IAU Colloq., vol. 4, p. 20, 1970) and certain results on Roche equipotential as that given by Kopal (in Advances in Astronomy and Astrophysics, Academic Press, 1972). The objective of this study is to investigate the effects of rotation and/or tidal distortion on the periods of oscillations of rotationally and/or tidally distorted white dwarf models of stars assuming it to be the primary component of the binary system and rotating uniformly. The results of present study show that the eigenfrequencies (both radial and nonradial modes) of the rotationally distorted and rotationally and tidally distorted white dwarf model of stars in binary systems tend to decrease under the influence of rotational distortions and rotational and tidal distortions, respectively. However, results are contrary for tidally distorted white dwarf model of stars.  相似文献   

6.
The system of Roche coordinates developed by Kopal to study the problems of stars in close binary systems has been used to study the problems of small oscillations of rotationally distorted stars.  相似文献   

7.
Kopal (Adv. Astron. Astrophys., 9, 1, 1972) introduced the concept of Roche equipotentials to analyse the effects of rotational and tidal distortions in case of stars in binary systems. In this approach a mathematical expression for the potential of a star in a binary system is obtained by approximating its inner structure with Roche model. This expression for the potential has been used in subsequent analysis by various authors to analyse the problems of structures and oscillations of synchronous and nonsynchronus binary stars as well as single rotating stars. Occasionally, doubts have been expressed regarding the validity of the use of this approach for analysing nonsynchronous binaries and rotationally and tidally distorted single stars. In this paper we have tried to clarify these doubts.  相似文献   

8.
The system of Roche coordinates developed by Kopal to study the problems of stars in close binary systems has been used to study the problems of small oscillations of tidally distorted stars.  相似文献   

9.
In this paper we propose a method for computing the equilibrium structure of differentially rotating polytropic models of the stars. A general law of differential rotation of the type 2=b 0+b 1 s 2+b 2 s 4, which can account for a reasonably large variety of possible differential rotations in the stars has been used. The distortional effects have been incorporated in the structure equations up to second order of smallness in distortion parametersb 0,b 1, andb 2 using Kippenhahn and Thomas' averaging approach in conjunction with Kopal's results on Roche equipotentials in manner similar to the one earlier used by Mohan and Saxena for computing the equilibrium structure of polytropes having solid body rotation. Numerical results have been obtained for various types of differentially rotating polytropic models of stars of polytropic indices 1.5, 3, and 4. Certain differentially rotating models of the Sun which are possible with such a type of law of differential rotation, have also been computed.  相似文献   

10.
The averaging technique of Kippenhahn and Thomas has been used in conjunction with Kopal's method of evaluating various parameters on the Roche equipotentials, to determine the effects of rotation and tidal distortions on the shapes and structures of the polytropic models of the stars.  相似文献   

11.
Based on the method of the energy principle, the effect of the Coriolis force in the stability of rotating magnetic stars is examined and the conditions for instability is derived. It is shown that, in these stars, the effect of this force is to inhibit the onset of convective motion. Discussion is given on the possibility of hydromagnetic dynamo processes in respect to the convective motion inside these stars.  相似文献   

12.
The aim of the present paper will be to introduce a new system of curvilinear coordinateshereafter referred to as Roche coordinates-in which spheres of constant radius are replaced by equipotential surfaces of a rotating gravitational dipole (which consists of two discrete points of finite mass, revolving around their common center of gravity); while the remaining coordinates are orthogonal to the equipotentials. It will be shown that the use of such coordinates offers a new method of approach to the solution of certain problems of particle dynamics (such as, for instance, the construction of certain types of trajectories in the restricted problem of three bodies); as well as of the hydrodynamics of gas streams in close binary systems, in which the equipotential surfaces of their components distorted by axial rotation and mutual tidal interaction constitute essential boundary conditions.Following a general outline of the problem in Section 1, the Roche coordinates associated with the equipotentials of a rotating gravitational dipole will be constructed in the plane case (Section 2), and their geometrical properties discussed. In Section 3, we shall transform the fundamental equations of hydrodynamics to their forms appropriate in the curvilinear Roche coordinates. The metric coefficients of this transformation will be formulated in a closed form in Section 4 in terms of the respective partial derivatives of the potential; while in Section 5 analytic expressions for the Roche coordinates will be given in the orbital plane of the dipole, which are exact as far as the distortion of the equipotential curves from circular form can be described by the second, third and, fourth harmonics.The concluding Section 6 will be devoted to a formulation of the equations of a mass-point in the restricted problem of three bodies in the Roche coordinates. Three special cases will be considered: (a) motion in the neighborhood of the equipotential curves; (b) motion in the direction normal to such curves; and (c) motion in the neighbourhood of the Lagrangian points. It will be shown that motion in one coordinate is possible only in limiting cases which will be enumerated; but twodimensional motions in which one velocity component is very much smaller than the other invite further study.A generalization of the plane Roche coordinates to three dimensions, with application to additional classes of problems, is being postponed for a subsequent paper.  相似文献   

13.
In this paper a method is proposed for computing the eigenfrequencies of small adiabatic barotropic modes of oscillations of rotationally and tidally-distorted stars. The method utilizes Kippenhahn and Thomas approach and concepts of Roche equipotentials to incorporate up to second-order the effects of rotation and tidal distortion terms on the eigenfrequencies. The proposed method has also been used to compute the eigenfrequencies of certain barotropic modes of oscillation of some rotationally and tidally distorted models of 10M , and 2.5M Main-Sequence stars.  相似文献   

14.
The averaging technique of Kippenhahn and Thomas (1970) has been used in conjunction with Kopal's method of evaluating various parameters on the Roche equipotentials to determine the effects of rotation and tidal distortions on the periods of small adiabatic radial and nonradial modes of oscillations of polytropic models of the stars.  相似文献   

15.
The aim of the present paper will be to establish the explicit form of the equations which govern the internal structure of stars rotating with constant angular velocity formulated in terms of Clairaut coordinates (cf. Kopal, 1980) in which the radial coordinate is replaced by the total potential, which for equilibrium configurations remains constant over distorted level surfaces. The introductory Section 1 contains an account of previous work on rotating stars, commencing with Milne (1923), von Zeipel (1924) and Chandrasekhar (1933), who all employed orthogonal coordinates for their analysis. In Section 2 we shall apply to this end the curvilinear Clairaut coordinates introduced already in our previous work (cf. Kopal, 1980, 1981); and although these are not orthogonal, this disadvantage is more than offset by the fact that, in their terms, the fundamental equation of our problem will assume the form of ordinary differential equations, subject to very simple boundary conditions. The explicit form of these equations — exact to terms of fourth order in surficial distortion caused by centrifugal force—will be obtained in Section 3; while in the concluding Section 4 these will be particularized (for the sake of comparison with work of previous investigators) to stars of initially polytropic structure. These will prove to be much simpler in Clairaut coordinates than they were in any previously used frame of reference. Lastly, in Appendix A we shall present the explicit forms, in Clairaut coordinates, of the differential operators which were needed to establish the results given in Sections 3–4; while Appendix B will summarize other auxiliary algebraic relations of which use was made to formulate our fourth-order theory developed in Section 3.  相似文献   

16.
A method is presented whereby the structure of rotating stars may be determined from an initial guess at the geometry of equipotential surfaces. The method may be considered an extension of the work of Kippenhahn and Thomas in that a uniformly continuous geometry is defined in terms of the appropriate spherical model with Roche characteristics at the surface of the configuration and sphericity at the centre. A simple Cowling model in uniform rotation is employed to illustrate the technique and for comparison purposes with previous work.  相似文献   

17.
Mohan and Saxena's approach of using the averaging technique of Kippenhahn and Thomas in conjunction with Kopal's method of evaluating various parameters on the Roche equipotentials has been used to compute the effects of rotation and tidal distortions on the periods of small adiabatic radial and nonradial modes of oscillations of a series of composite models of stars. In these stars the density decreases slowly in the core from the centre to the interface and then falls of rapidly in the envelope from the interface to the outer surface.  相似文献   

18.
In the present paper we have considered the problem of determining the equilibrium structure of differentially rotating stars in which the angular velocity of rotation varies both along the axis of rotation and in directions perpendicular to it. For this purpose, a generalized law of differential rotation of the type 2 =b 0+b 1 s 2+b 2 s 4+b 3 z 2+b 4 z 4+b 5 z 2 s 2 (here is a nondimensional measure of the angular velocity of a fluid element distants from the axis of rotation andz from the plane through the centre of the star perpendicular to the axis of rotation, andb's are suitably chosen parameters) has been used. Whereas Kippenhahn and Thomas averaging approach has been used to incorporate the rotational effects in the stellar structure equations, Kopal's results on Roche equipotentials have been used to obtain the explicit form of the stellar structure equations, which incorporate the rotational effects up to second order of smallness in the distortion parameters. The method has been used to compute the equilibrium structure of certain differentially rotating polytropes. Certain differentially rotating polytropes. Certain differentially rotating models of the Sun have also been computed by using this approach.  相似文献   

19.
The gravity due to a multiple-mass system has a remarkable gravitational effect: the extreme magnification of background light sources along extended so-called caustic lines. This property has been the channel for some remarkable astrophysical discoveries over the past decade, including the detection and characterization of extrasolar planets, the routine analysis of limb darkening, and, in one case, limits set on the apparent shape of a star several kiloparsec distant. In this paper, we investigate the properties of the microlensing of close binary star systems. We show that in some cases it is possible to detect flux from the Roche lobes of close binary stars. Such observations could constrain models of close binary stellar systems.  相似文献   

20.
The aim of the first part of this investigation will be to establish the explicit form of the linearized systems of differential equations governing arbitrary oscillations (of amplitudes small enough for their squares and higher powers to be negligible) of the rotating Roche model in Clairaut's coordinates (in which their radial component is identified with the total potential). By solving these equations in a closed form we shall prove that this model is incapable of performing such oscillations (for any type of symmetry) about equipotential surfaces representing the figures of equilibrium, as soon as the centrifugal force will cause their equilibrium form to depart from a sphere.In the second part of this paper we shall set up the closed forms of the Laplace equation in Clairaut (non-orthogonal) as well as Roche (orthogonal) coordinates associated with the rotating Roche model; and by a construction of their solution establish successively the explicit forms of the respective harmonic functions associated with such figures (as a generalization of Legendre functions which are similarly associated with a sphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号