首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A small effect expected from a recently proposed gravitational impact model (Wilhelm et al., 2013) is used to explain the remaining secular perihelion advance rates of the planets Mercury, Venus, Earth, Mars, and the asteroid (1566) Icarus—after taking into account the disturbances related to Newton’s Theory of Gravity. Such a rate was discovered by Le Verrier (1859) for Mercury and calculated by Einstein (1915, 1916) in the framework of his General Theory of Relativity (GTR). Accurate observations are now available for the inner Solar System objects with different orbital parameters. This is important, because it allowed us to demonstrate that the quantitative amount of the deviation from an 1/r potential is—under certain conditions—only dependent on the specific mass distribution of the Sun and not on the characteristics of the orbiting objects and their orbits. A displacement of the effective gravitational from the geometric centre of the Sun by about 4400 m towards each object is consistent with the observations and explains the secular perihelion advance rates.  相似文献   

2.
Phobos Laser Ranging (PLR) is a concept for a space mission designed to advance tests of relativistic gravity in the solar system. PLR’s primary objective is to measure the curvature of space around the Sun, represented by the Eddington parameter γ, with an accuracy of two parts in 107, thereby improving today’s best result by two orders of magnitude. Other mission goals include measurements of the time-rate-of-change of the gravitational constant, G and of the gravitational inverse square law at 1.5-AU distances—with up to two orders-of-magnitude improvement for each. The science parameters will be estimated using laser ranging measurements of the distance between an Earth station and an active laser transponder on Phobos capable of reaching mm-level range resolution. A transponder on Phobos sending 0.25-mJ, 10-ps pulses at 1 kHz, and receiving asynchronous 1-kHz pulses from earth via a 12-cm aperture will permit links that even at maximum range will exceed a photon per second. A total measurement precision of 50 ps demands a few hundred photons to average to 1-mm (3.3 ps) range precision. Existing satellite laser ranging (SLR) facilities—with appropriate augmentation—may be able to participate in PLR. Since Phobos’ orbital period is about 8 h, each observatory is guaranteed visibility of the Phobos instrument every Earth day. Given the current technology readiness level, PLR could be started in 2011 for launch in 2016 for 3 yr of science operations. We discuss the PLR’s science objectives, instrument, and mission design. We also present the details of science simulations performed to support the mission’s primary objectives.  相似文献   

3.
During the first and second Mercury flyby the MESSENGER spacecraft detected a dawn side double-current sheet inside the Hermean magnetosphere that was labeled the “double magnetopause” (Slavin, J.A. et al. [2008]. Science 321, 85). This double current sheet confines a region of decreased magnetic field that is referred to as Mercury’s “dayside boundary layer” (Anderson, M., Slavin, J., Horth, H. [2011]. Planet. Space Sci.). Up to the present day the double current sheet, the boundary layer and the key processes leading to their formation are not well understood. In order to advance the understanding of this region we have carried out self-consistent plasma simulations of the Hermean magnetosphere by means of the hybrid simulation code A.I.K.E.F. (Müller, J., Simon, S., Motschmann, U., Schüle, J., Glassmeier, K., Pringle, G.J. [2011]. Comput. Phys. Commun. 182, 946–966). Magnetic field and plasma results are in excellent agreement with the MESSENGER observations. In contrast to former speculations our results prove this double current sheet may exist in a pure solar wind hydrogen plasma, i.e. in the absence of any exospheric ions like sodium. Both currents are similar in orientation but the outer is stronger in intensity. While the outer current sheet can be considered the “classical” magnetopause, the inner current sheet between the magnetopause and Mercury’s surface reveals to be sustained by a diamagnetic current that originates from proton pressure gradients at Mercury’s inner magnetosphere. The pressure gradients in turn exist due to protons that are trapped on closed magnetic field lines and mirrored between north and south pole. Both, the dayside and nightside diamagnetic decreases that have been observed during the MESSENGER mission show to be direct consequences of this diamagnetic current that we label Mercury’s “boundary-layer-current“.  相似文献   

4.
The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth’s upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105?nm with unprecedented spectral resolution (0.1?nm), temporal cadence (ten seconds), and accuracy (20%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazing-incidence spectrograph that measures the solar EUV irradiance in the 5 to 37?nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105?nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39?nm, and a MEGS-Photometer measures the Sun’s bright hydrogen emission at 121.6?nm. The EVE data products include a near real-time space-weather product (Level?0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15?minutes. The EVE higher-level products are Level?2 with the solar EUV irradiance at higher time cadence (0.25?seconds for photometers and ten seconds for spectrographs) and Level?3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth’s ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team.  相似文献   

5.
The results of observations of solar hard radiation recorded by two spacecraft—2001 Mars Odyssey and CORONAS-F—which were located in the vicinity of Mars and Earth, respectively, are discussed. The HEND instrument, developed at the Space Research Institute of the Russian Academy of Sciences, recorded photons with energies ranging from 80 keV to 2 MeV, and the SPR and SONG instruments, developed at the Skobeltsyn Research Institute of Nuclear Physics of the Moscow State University, detected radiation in the energy interval from 15 keV to 100 MeV. The rising of the sunspot group 10486 in late October 2003, which had been observed from Martian orbit before it was seen from the Earth’s surface, is analyzed in detail. In this case, observations made from directions that differ by 24° showed a close-to-24 h advance for the detection of hard radiation of flares. Stereoscopic observations of M-class flares near the limb show that the overwhelming part of radiation with energies above 80 keV arises at heights that do not exceed 7–10 thousand km. Also reported are the results of observations of the powerful flare on August 25, 2001, by the two devices, which complement each other substantially. The processes resulting in the formation of high-energy radiation of solar flares are discussed.  相似文献   

6.
We suggest a new method for predicting the phenomena observed in Jovian system of Galilean satellites that takes into account the planet’s phase effect. The method allows one to determine the geocentric times of the contacts of the satellite and its shadow with the illuminated part of the planet’s visible disk that occur near its inferior geocentric and inferior heliocentric conjunctions, respectively. The calculation is performed in the orthographic approximation for the geometric center of the satellite and its shadow by taking into account the curvature of the satellite’s orbit and the visible flattening of Jovian disk. The correction for the phase to the satellite’s contact time is determined from the phase shift of the center of the planet’s disk.  相似文献   

7.
Differences of magnetic field flows of “+” and “?” polarities, i.e. the imbalance of magnetic fields for 26 years—from January 1, 1977, to September 30, 2003—are investigated,. The synoptic maps of the longitudinal vector of Sun’s magnetic field strength obtained at the Kitt Peak National Observatory (United States) and kindly given to us by Dr. J. Harvey have served as the initial material. The imbalance of magnetic fields’ cyclicity features and the deviations from the dipole structure of Sun’s magnetic field are determined. The contribution of latitude zones and fields of various strength into the general magnetic flux from the Sun is found. The latter characteristic was compared with the Sun’s mean magnetic field (MMF) obtained from the observations of the Sun as a star (Kotov et al., 2002; Kotov, 2008). The obtained results testify that the imbalance is one of physical characteristics of the Sun. The confirmations of this conclusion are the strict regularities of the Sun’s dipole structure changing; the complicated character of the imbalance cyclicity, i.e., the multiplicity of cycles; the solar nature of MMF changing; and the distinction between two classes of magnetic fields in the imbalance characteristics.  相似文献   

8.
The possibility of the clouds of Venus providing habitats for extremophilic microorganisms has been discussed for several decades. We show here that the action of the solar wind leads to erosion of parts of the atmosphere laden with aerosols and putative microorganisms, forming a comet-like tail in the antisolar direction. During inferior conjunctions that coincide with transits of the planet Venus this comet-like tail intersects the Earth’s magnetopause and injects aerosol particles. Data from ESA’s Venus Express spacecraft and from SOHO are used to discuss the ingress of bacteria from Venus into the Earth’s atmosphere, which we estimate as ~1011–1013 cells for each transit event.  相似文献   

9.
The effect of high-speed recurrent solar wind streams from coronal holes on the galactic cosmic rays intensity is investigated. The distribution of galactic cosmic rays for different solar cycles is considered based on the data of the world network of neutron monitors. Within the inhomogeneous model, which includes a homogeneous background and regions of high-speed streams (HSS’s), the transport equation has been solved and the effect of HSS’s on the spatial distribution of galactic cosmic rays is estimated. It is shown that theoretical calculations are agreed with the experimental results obtained for 2000–2014 under different assumptions about the mean free path of cosmic rays in the corresponding period of HSS’s.  相似文献   

10.
Consider the problem of estimating the Quasar Luminosity Function (QLF). In a 2007 Ph.D. dissertation, Hugeback considers the QLF as a nonhomogeneous poisson process and estimates the intensity function under SDSS DR3 data (The University of Chicago, AAT 3273021). The present study follows Hugeback’s approach but introduces a mixture component which improves Hugeback’s model in several respects. Namely, the database is partitioned into two groups according to redshift: z < 2.75 and z ? 2.75. Next, a mixture model for the QLF was derived using the concept of pseudolikelihood, the addition of a K function to allow for inter-point interaction, and evaluation of residuals diagnostic plots. This mixture model (i) improves the deviance of Hugeback’s model, and (ii) satisfies residual assumptions that are violated under Hugeback’s model. Moreover, this study confirms Hugeback’s finding of inhomogeneity in the QLF, and provides stronger evidence for the existence of an interaction between redshift and absolute magnitude.  相似文献   

11.
We present the analysis and computational results for the inclination relative effect of moonlets of triple asteroidal systems. Perturbations on moonlets due to the primary’s non-sphericity gravity, the solar gravity, and moonlets’ relative gravity are discussed. The inclination vector for each moonlet follows a periodic elliptical motion; the motion period depends on the moonlet’s semi-major axis and the primary’s J2 perturbations. Perturbation on moonlets from the Solar gravity and moonlet’s relative gravity makes the motion of the x component of the inclination vector of moonlet 1 and the y component of the inclination vector of moonlet 2 to be periodic. The mean motion of x component and the y component of the inclination vector of each moonlet forms an ellipse. However, the instantaneous motion of x component and the y component of the inclination vector may be an elliptical disc due to the coupling effect of perturbation forces. Furthermore, the x component of the inclination vector of moonlet 1 and the y component of the inclination vector of moonlet 2 form a quasi-periodic motion. Numerical calculation of dynamical configurations of two triple asteroidal systems (216) Kleopatra and (153591) 2001 SN263 validates the conclusion.  相似文献   

12.
Photoelectric (UBVR) observations of the eclipsing variable EQ Ori are presented. The ephemerides of primary minima are refined, and the range of the star’s light variations is determined. All light curves are solved by Lavrov’s direct method, and highly accurate photometric orbital elements are obtained for the system. The magnitudes and colors of each component are calculated and analyzed in two-color (U-B)-(B-V) and (U-B)-(V-R) diagrams. The system’s primary component is classified as a metallic-line Am star. The absolute parameters of the components are estimated, and the binary is classified as a detached system with a subgiant: A0 V and K2 IV. EQ Ori has a faint physical companion, which causes the epochs of primary minimum to be systematically displaced with a period of about 30 years. The expected parameters of the distant companion are estimated. The system’s components are at a pre-ZAMS evolutionary stage, with their age being 2×106 years. EQ Ori is thought to be a member of the Ori I association.  相似文献   

13.
From modeling the evolution of disks of planetesimals under the influence of planets, it has been shown that the mass of water delivered to the Earth from beyond Jupiter’s orbit could be comparable to the mass of terrestrial oceans. A considerable portion of the water could have been delivered to the Earth’s embryo, when its mass was smaller than the current mass of the Earth. While the Earth’s embryo mass was growing to half the current mass of the Earth, the mass of water delivered to the embryo could be near 30% of the total amount of water delivered to the Earth from the feeding zone of Jupiter and Saturn. Water of the terrestrial oceans could be a result of mixing the water from several sources with higher and lower D/H ratios. The mass of water delivered to Venus from beyond Jupiter’s orbit was almost the same as that for the Earth, if normalized to unit mass of the planet. The analogous per-unit mass of water delivered to Mars was two?three times as much as that for the Earth. The mass of water delivered to the Moon from beyond Jupiter’s orbit could be less than that for the Earth by a factor not more than 20.  相似文献   

14.
A novel approach for the exact Delaunay normalization of the perturbed Keplerian Hamiltonian with tesseral and sectorial spherical harmonics is presented in this work. It is shown that the exact solution for the Delaunay normalization can be reduced to quadratures by the application of Deprit’s Lie-transform-based perturbation method. Two different series representations of the quadratures, one in powers of the eccentricity and the other in powers of the ratio of the Earth’s angular velocity to the satellite’s mean motion, are derived. The latter series representation produces expressions for the short-period variations that are similar to those obtained from the conventional method of relegation. Alternatively, the quadratures can be evaluated numerically, resulting in more compact expressions for the short-period variations that are valid for an elliptic orbit with an arbitrary value of the eccentricity. Using the proposed methodology for the Delaunay normalization, generalized expressions for the short-period variations of the equinoctial orbital elements, valid for an arbitrary tesseral or sectorial harmonic, are derived. The result is a compact unified artificial satellite theory for the sub-synchronous and super-synchronous orbit regimes, which is nonsingular for the resonant orbits, and is closed-form in the eccentricity as well. The accuracy of the proposed theory is validated by comparison with numerical orbit propagations.  相似文献   

15.
In this study, the hierarchical stability of the seven known large size ratio triple asteroids is investigated. The effect of the solar gravity and primary’s J 2 are considered. The force function is expanded in terms of mass ratios based on the Hill’s approximation and the large size ratio property. The empirical stability parameters are used to examine the hierarchical stability of the triple asteroids. It is found that the all the known large size ratio triple asteroid systems are hierarchically stable. This study provides useful information for future evolutions of the triple asteroids.  相似文献   

16.
Two new methods are described for finding the orbit of a small celestial body from three or more pairs of angular measurements and the corresponding time points. The methods are based on, first, the approach that has been developed previously by the author to the determination, from a minimum number of observations, of intermediate orbit considering most of the perturbations in the bodies’ motion and, second, Herget’s algorithmic procedure enabling the introduction of additional observations. The errors of orbital parameters calculated by the proposed methods are two orders of magnitude smaller than the corresponding errors of the traditional approach based on the construction of an unperturbed Keplerian orbit. The thus-calculated orbits of the minor planets 1566 Icarus, 2002 EC1, and 2010 TO48 are used to compare the results of Herget’s multiposition procedure and the new methods. The comparison shows that the new methods are highly effective in the study of perturbed motion. They are particularly beneficial if high-precision observational data covering short orbital arcs are available.  相似文献   

17.
18.
太阳总辐照是指在地球大气层顶接收到的太阳总辐射照度,也叫"太阳常数",但它实际上并非常数。太阳总辐照随波长的分布即为太阳分光辐照。太阳辐照变化的研究,对理解太阳表面及内部活动的物理过程、机制,研究地球大气、日地关系,解决人类面临的全球气候变暖的挑战等,都具有重要意义。首先简单介绍了太阳辐照,回顾了太阳辐照的空间观测;接着介绍了观测数据的并合,以及对合成数据的一些研究;然后讨论了太阳辐照变化的原因,简述了太阳总辐照的重构及其在气候研究上的一些应用,并进行必要的评论;最后对未来的研究方向提出了一些看法。  相似文献   

19.
High‐energy gamma rays (HEGRs) from Ceres’s surface were measured using Dawn's Gamma Ray and Neutron Detector (GRaND). Models of cosmic‐ray‐initiated gamma ray production predict that the HEGR flux will inversely vary with single‐layer hydrogen concentrations for Ceres‐like compositions. The measured data confirm this prediction. The hydrogen‐induced variations in HEGR rates were decoupled from the measurements by detrending the HEGR data with Ceres single‐layer hydrogen concentrations determined by GRaND neutron measurements. Models indicate that hydrogen‐detrended HEGR counting rates correlate with water‐free average atomic mass, which is denoted as <A>*. HEGR variations across Ceres’s surface are consistent with <A>* variations of ±0.5 atomic mass units. Chemical variations in the CM and CI chondrites, our closest analogs to Ceres’s surface, suggest that <A>* variations on Ceres are primarily driven by variations in the concentration of Fe, although other elements such as Mg and S could contribute. Dawn observations have shown that Ceres’s interior structure and surface composition have been modified by some combination of physical (i.e., ice‐rock fractionation) and/or chemical (i.e., alteration) processes that has led to variations in bulk surface chemistry. Locations of the highest inferred <A>* values, and thus possibly the highest Fe and least altered materials, tend to be younger, less cratered surfaces that are broadly associated with the impact ejecta of Ceres’s largest craters.  相似文献   

20.
Lantos  P.  Richard  O. 《Solar physics》1998,182(1):231-246
Precursor methods for the prediction of maximum amplitude of the solar cycle have previously been found to provide the most reliable indication for the size of the following cycle, years in advance. In this paper, we evaluate several of the previously used geomagnetic precursor methods and some new ones, both as single-variate and multivariate regressions. The newer precursor methods are based on the size of the geomagnetic index maximum, which, since cycle 12, has always occurred during the declining portion of the solar cycle, usually several years before subsequent cycle minimum. These various precursor techniques are then applied to cycle 23, yielding the prediction that its maximum amplitude should be about 168 ± 15 (r.m.s.), peaking sometime in 1999–2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号