首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
三峡坝区水体吸收系数的特征研究   总被引:4,自引:0,他引:4  
利用2007年11月在三峡坝区现场实测的水色要素吸收系数数据,对总颗粒物、浮游植物、CDOM的吸收系数特征进行了分析和研究。结果表明,对于三峡坝区区域的水体:(1)总颗粒物吸收光谱分布与非藻类的吸收光谱相似;(2)非藻类颗粒物的吸收系数随波长的变化分布接近指数衰减规律,且不同波段的吸收系数之间存在一定的关系;(3)多项式关系能较好的表达浮游植物吸收系数与叶绿素a浓度之间的关系;(4)分段函数能很好的表达CDOM的吸收系数特性,对500nm以下光谱的吸收呈现负指数衰减的规律,不同采样点拟合精度R2接近1;501—700nm波段范围的光谱曲线采用多项式能进行很好的拟和,且拟合精度R2达到95%以上。  相似文献   

2.
Chromophoric dissolved organic matter (CDOM) strongly influences the water-leaving radiance from aquatic ecosystems. In most inland waters, the remote determination of CDOM absorption presents a central challenge due to their complex optical conditions. However, identifying the temporal and spatial variability of CDOM is fundamental to the understanding of aquatic biogeochemical dynamics. In the present study, semi-analytical and empirical modeling approaches were used to examine CDOM absorption in four, shallow, inland water bodies using the spectral bands and sensitivities of major satellite observational systems. Of the models examined, an empirical multiband model was found to provide the highest correlation with measured CDOM absorption. The spectral characteristics of the MERIS sensors yielded the best results with respect to the other available satellite sensors. High detrital load was observed to be a major impediment to estimating CDOM absorption, while lakes with elevated phytoplankton biomass did not present similar problems.  相似文献   

3.
Quasi-Analytical Algorithms (QAAs) are based on radiative transfer equations and have been used to derive inherent optical properties (IOPs) from the above surface remote sensing reflectance (Rrs) in aquatic systems in which phytoplankton is the dominant optically active constituents (OACs). However, Colored Dissolved Organic Matter (CDOM) and Non Algal Particles (NAP) can also be dominant OACs in water bodies and till now a QAA has not been parametrized for these aquatic systems. In this study, we compared the performance of three widely used QAAs in two CDOM dominated aquatic systems which were unsuccessful in retrieving the spectral shape of IOPS and produced minimum errors of 350% for the total absorption coefficient (a), 39% for colored dissolved matter absorption coefficient (aCDM) and 7566.33% for phytoplankton absorption coefficient (aphy). We re-parameterized a QAA for CDOM dominated (hereafter QAACDOM) waters which was able to not only achieve the spectral shape of the OACs absorption coefficients but also brought the error magnitude to a reasonable level. The average errors found for the 400–750 nm range were 30.71 and 14.51 for a, 14.89 and 8.95 for aCDM and 25.90 and 29.76 for aphy in Funil and Itumbiara Reservoirs, Brazil respectively. Although QAACDOM showed significant promise for retrieving IOPs in CDOM dominated waters, results indicated further tuning is needed in the estimation of a(λ) and aphy(λ). Successful retrieval of the absorption coefficients by QAACDOM would be very useful in monitoring the spatio-temporal variability of IOPS in CDOM dominated waters.  相似文献   

4.
Chromophoric dissolved organic matter (CDOM), the light absorbing fraction of dissolved organic carbon (DOC), together with phytoplankton and total suspended matter are the main optically active components could be retrieved by remote sensing data. Generally, different composition of DOC and CDOM corresponds to different water surface reflectance. Absorption properties of CDOM and retrieval models for CDOM and DOC were investigated with data from potable reservoirs located in the central of Jilin Province. Water sampling field surveys were conducted on 15, 16 and 19 of September 2012 across the Shitoukoumen, Erlonghu and Xilicheng reservoirs, respectively. Both empirical regression (single band model and band ratio model) and partial least squares coupled with back-propagation artificial neural models (PLSBPNN) were established to estimate CDOM absorption coefficient at 355 nm [aCDOM(355)] and DOC concentration with in situ measured remote sensing reflectance. It was found that the band ratio models and PLSBPNN model performed well for estimating DOC concentration while the band ratio models yielded the best result in retrieval CDOM. Moreover, all the three models performed better on the DOC concentration estimation than the performance on aCDOM(355). Band ratio models outperformed (R 2 ?=?0.55) other models for estimating CDOM absorption coefficient, while PLSBPNN model outperformed other models with respect to DOC estimation (R 2 ?=?0.93). High spectral slope values indicated that CDOM in the potable waters primarily comprised low molecular weight organic substances; while sources of DOC were mainly coming from exogenous input, which was the main reason lead to the difference of model performances on DOC and aCDOM(355) estimation. The algorithms developed in this study is needed to be tested and refined with more in situ spectral data, also future work is still needed to be undertaken for characterizing the dynamic of the potable water quality with remotely sensed imagery.  相似文献   

5.
Three artificial neural network (ANN) processors available as plug-in modules for the Basic ERS & ENVISAT (A)ATSR and MERIS Toolbox (BEAM) were validated in Lake Taihu, China. Mean deviations of reflectance derived from Lakes\Boreal and Lakes\Eutrophic were 10-90%, while reflectance from the FUB-WeW processor showed larger errors. All processors showed underestimates of chlorophyll a (Chl-a), total suspended matter (TSM), and phytoplankton pigment absorption, while particulate scattering values were severely overestimated. None of the readily available MERIS processors is currently able to separate atmospheric and water-leaving radiance over Lake Taihu, while the retrieval of phytoplankton biomass through ANN processors shows promise.  相似文献   

6.
Remote sensing of ocean colour yields information on the constituents of sea water, such as the concentration of phytoplankton pigments, suspended sediments and yellow substances. It is well understood that the study of ocean colour is significantly related with the primary production and zonation of potential fishing sites in coastal and oceanic waters. The major pigment constituent is predominated by chlorophyll-a (ocean colour pigment of phytoplankton). The chlorophyll mapping on regular basis plays a major role in assessing water quality and classifying different water types. IRS P-3 MOS-B satellite data for three consecutive passes of path 94, during the period of January-February 1997 have been used to derive chlorophyll-a concentration. The present study emphasizes on the chlorophyll mapping using IRS-P3 MOS-B data for the coastal and offshore water of Maharashtra coast, India.  相似文献   

7.
The spatial and temporal distribution of absorption of chromophoric dissolved organic matter at 440 nm (aCDOM (440)) in the Mandovi and Zuari estuaries situated along the west coast of India, has been analysed. The study was carried out using remotely sensed data, obtained from the Ocean Colour Monitor (OCM) on board the Indian Remote Sensing satellite — P4, together with in situ data during the period January to December 2005. Satellite retrieval of CDOM absorption was carried out by applying an algorithm developed for the site. A good correlation (R=0.98) was obtained between satellite derived CDOM and in situ data. Time series analysis revealed that spatial distribution of CDOM has a direct link with the seasonal hydrodynamics of the estuaries. The effect of remnant fresh water on CDOM distribution could be analysed by delineating a plume in the offshore region of the Zuari estuary. Though fresh water flux from terrestrial input plays a major role in the distribution of CDOM throughout the Mandovi estuary, its role in the Zuari estuary is significant up to the middle zone. Other processes responsible for feeding CDOM in both the estuaries are coastal advection, in situ production and resuspension of bottom settled sediments. The highest value of aCDOM(440) was observed in the middle zone of the Mandovi estuary during the post-monsoon season. The relation between aCDOM(440) and S (spectral slope coefficient of CDOM) could differentiate CDOM introduced in to estuaries through multiple sources. The algorithm developed for the Mandovi estuary is S=0.003 [aCDOM(440)−0.7091] while for the Zuari estuary, S=0.0031 [aCDOM(440)−0.777], respectively.  相似文献   

8.
When Hurricane Katrina passed over southern Florida, Florida Bay and the West Florida Shelf, and into the Gulf of Mexico, empirically derived chl a increases were observed in the Tortugas Gyre circulation feature, and in adjacent waters. Analysis of the empirically derived chl a increase within the gyre has been primarily attributed to initiation of a phytoplankton bloom promoted by nutrients upwelled by Katrina's winds. Detailed analysis of inherent optical properties derived from remotely sensed radiances, however, indicated the interaction of Katrina with shallow coastal and shelf waters likely entrained waters with higher concentrations of chromophoric dissolved organic matter (CDOM) into the gyre circulation, augmenting the chl a signal. Storm-induced upwelling would also transport optically active CDOM to the surface. Increases in empirically derived chl a in the Florida coastal waters influenced by Katrina's winds were therefore partly due to increased absorption by CDOM. This analysis indicates that elevated empirically derived chl a in hurricane-influenced waters should not be unambiguously attributed to increased phytoplankton productivity, particularly in an optically complex coastal environment.  相似文献   

9.
石油类污染水体吸收特性分析   总被引:5,自引:0,他引:5  
黄妙芬 《遥感学报》2010,14(1):140-156
石油类污染物主要以漂浮油、分散油、乳化油和分解油等形式存在于水体中,影响着水体的表观和固有光学特性。利用2008年5月在辽宁省盘锦市辽河油田境内双台子河和绕阳河所测定的水色三要素吸收系数以及对应的水体组分数据,分析了研究区域内Ⅱ类水体水色三要素的吸收光谱特性;探讨了水体中由于石油类污染物的存在,黄色物质和色素吸收光谱的变化特征;采用差值法确定了水体中石油类污染物的吸收系数。研究结果表明:(1)研究区域内,无论是石油类污染水体还是非石油类污染水体,非色素颗粒物和黄色物质的吸收光谱都遵循e指数衰减规律,色素吸收光谱在440nm和675nm处有以叶绿素为主的典型的色素吸收峰,在490nm处有类胡萝卜素的吸收峰;(2)对于石油类污染水体,在测定黄色物质和色素吸收系数时,由于包含了石油类污染物的作用,会增大黄色物质和色素的吸收系数;(3)石油类物质的吸收光谱曲线和非色素颗粒物、黄色物质一样遵循e指数衰减规律,但三者的指数函数斜率有明显的差别,这为将三者区分开来提供了可行性。  相似文献   

10.
中国东海叶绿素浓度变化分析及其海水温度响应   总被引:1,自引:0,他引:1  
海洋叶绿素浓度时空格局分析及与海水温度的响应研究对于海洋资源的开发和保护及赤潮的预防具有重要意义。本文基于2004—2018年东海叶绿素浓度和海水温度数据运用趋势分析及ArcGIS10.2软件,对东海叶绿素浓度作了时空分析研究,并结合海水温度进行了回归分析,以探究叶绿素对海水温度变化的响应机制。结果表明:①东海叶绿素浓度在2004—2018年间没有明显的年际变化特征。年内则随时间上下波动,冬季为波峰,夏季为波谷。离海岸带越近,叶绿素浓度越高。②东海海域海水温度在年际尺度上呈波动式起伏变化。在季节尺度上夏秋两季温度较高,春季次之,冬季最低。从沿海到外海海域海温逐渐升高。③就空间相关性而言,东海海域叶绿素浓度与海水温度整体呈负相关,在不同海域相关程度不同。长江口和外海区域叶绿素浓度与海水温度具有很强的相关性;在沿海区域,由于受到城市环境、经济发展及人类生产生活的影响,海水温度与叶绿素浓度的相关性不明显。  相似文献   

11.
The uncertainties involved in remote sensing inversion of CDOM (Colored Dissolved Organic Matter) were analyzed in estuarine and coastal regions of three North American rivers: Mississippi, Hudson, and Neponset. Water optical and biogeochemical properties, including CDOM absorption and above-surface spectra, were collected in very high resolution. CDOM’s concentrations (ag(440), absorption coefficient at 440 nm) were inverted from EO-1 Hyperion images, using a quasi-analytical algorithm for CDOM (QAA-CDOM). Uncertainties are classified to five levels, in which the underwater measurement uncertainty (level 1), image preprocessing uncertainty (level 4) and inverse model uncertainty (level 5) were evaluated. Results indicate that at level 1, in situ CDOM measurement is significant with 0.1 in the unit of QSU and 0.01 in the unit of ag(440) (m−1). At level 4, surface wave is a potential uncertainty source for high-resolution images in estuarine and coastal regions. The remote sensing reflectance of wavy water is about 10 times of the truth. At level 5, the overall uncertainty of QAA-CDOM inversion is 0.006 m−1, with accuracy R2 = 0.77, k = 1.1 and RMSElog = 0.33 m−1. The correlations between uncertainties and other water properties indicate that the large uncertainty in some rivers, such as the Neponset and Atchafalaya, might be caused by high-concentration chlorophyll or sediments. The relationships among the three level uncertainties show that the level 1 uncertainty generally does not propagate into level 4 and 5, but the large uncertainty at level 4 usually introduce large uncertainty at level 5.  相似文献   

12.
刘英  包安明  陈曦 《遥感学报》2014,18(4):902-911
利用光学遥感反演盐度,可以充分利用遥感数据的空间代表性,以及目前高分率遥感数据的高时空精度。本文利用MERIS(Medium Resolution Imaging Spectrometer)300 m数据,以干旱区的博斯腾湖(博湖)为例,探讨了光学遥感数据反演低盐湖泊水体盐度的可行性。结果显示:在开都河入流影响的博湖西南角,存在光学遥感反演盐度利用的黄色物质(CDOM)与盐度的反比关系,但相关性不高,而且在博湖区域不同时间、不同区域CDOM与盐度的关系都不同。博湖盐度低于3 g·L-1,而遥感数据计算盐度的精度约为1.1 psu,因而用光学遥感数据计算博湖盐度的误差太大。博湖本身CDOM与盐度关系的时空异质性以及相关性不高,目前光学遥感反演精度有限,因此,在博湖用光学遥感数据反演整个湖区的盐度有困难。用光学数据反演水体盐度要求盐度足够高,盐度和CDOM存在梯度,并满足CDOM扩散守恒,因此用光学遥感反演低盐湖泊水体盐度较为困难。  相似文献   

13.
基于环境因素的沿岸水域叶绿素遥感探测研究   总被引:1,自引:0,他引:1  
丁晓英  陈晓翔 《遥感学报》2005,9(4):446-451
海洋叶绿素的调查一直是海洋生物资源与海洋生态学的研究重点。遥感技术是海洋叶绿素调查的有力工具。利用遥感光谱信号探测海水叶绿素在大洋水体(一类水体)中十分成功,但在沿岸水体(二类水体)的精度却不高,主要是由于悬浮泥沙、黄色物质等的干扰太大。从叶绿素的生存条件入手,提出了利用海水叶绿素环境生存因子作为辅助因素的方法建立叶绿素遥感探测模型。并以珠江口海域作为研究对象展开试验,结果表明:环境因子的引用,使模型的误差从32·48%降为17·96%,精度大大提高,从而证明该方法的可行性和有效性。  相似文献   

14.
Leaf pigment content provides valuable insight into the productivity, physiological and phenological status of vegetation. Measurement of spectral reflectance offers a fast, nondestructive method for pigment estimation. A number of methods were used previously for estimation of leaf pigment content, however, spectral bands employed varied widely among the models and data used. Our objective was to find informative spectral bands in three types of models, vegetation indices (VI), neural network (NN) and partial least squares (PLS) regression, for estimating leaf chlorophyll (Chl) and carotenoids (Car) contents of three unrelated tree species and to assess the accuracy of the models using a minimal number of bands. The bands selected by PLS, NN and VIs were in close agreement and did not depend on the data used. The results of the uninformative variable elimination PLS approach, where the reliability parameter was used as an indicator of the information contained in the spectral bands, confirmed the bands selected by the VIs, NN, and PLS models. All three types of models were able to accurately estimate Chl content with coefficient of variation below 12% for all three species with VI showing the best performance. NN and PLS using reflectance in four spectral bands were able to estimate accurately Car content with coefficient of variation below 14%. The quantitative framework presented here offers a new way of estimating foliar pigment content not requiring model re-parameterization for different species. The approach was tested using the spectral bands of the future Sentinel-2 satellite and the results of these simulations showed that accurate pigment estimation from satellite would be possible.  相似文献   

15.
The present study is aimed to determine the bio-optical characteristics of oceanic waters during South west monsoon in Bay of Bengal using hyperspectral radiometer. The variability of diffuse attenuation coefficient, Kd(λ), with chlorophyll a showed a good relation at shorter wavelengths, indicating the effect of phytoplankton on Kd(λ). The determination coefficient, R2 at 412, 443, 490 and 555 nm were greater than 0.931. A good linear relation between Kd(490) and Kd(λ) was observed at shorter wavelengths. These relationships of Kd(λ) provides a platform to study the underwater light field during Southwest monsoon in Bay of Bengal.  相似文献   

16.
Parameters were retrieved from the hyperspectral radiometer like upwelling and downwelling radiance (Lu and Ed) upwelling and downwelling attenuation (K-Lu and K-Ed) for 9 stations in the northeast Arabian Sea between 16–26 April 2006. Data was analyzed for 5 offshore and 4 coastal stations of the cruise SS-244, on board FORV “Sagar Sampada” between latitude 9-22oN and longitude 68–74°E. The peak for all parameters was observed to be different respectively for depths 1, 5, 10, 20, 30, 40, 50 meters in coastal and offshore stations. Each peak in the respective wavelength is due to a particular composition; phytoplankton pigments have spectral peaks at 443, 490, 555, 670 nm, suspended matter, sediments have peaks at 630 and 670 nm. Detailed analysis with High Performance Liquid Chromatography (HPLC) data and comparison with the water composition of our hyperspectral radiometer results show that the marine cyanophyte, Trichodesmium bloom produces high pigment concentrations of chlorophyll-a, zeaxanthin, β-carotene and pheophytin and their absorptions are interpreted at wavelengths 443, 490, 515 and 536 nanometers, respectively. A dip around 515 nm was seen in the Ed and Lu profiles in our study.  相似文献   

17.
The spectral detection of vegetation pigment concentrations has a high potential value, but it is still underdeveloped, especially for pigments other than chlorophylls. In this study, the seasonal pigment dynamics of two Tecticornia species (samphires; halophytic shrubs) from north-western Australia were correlated with spectral indices that best document the pigment changes over time. Pigment dynamics were assessed by analysing betacyanin, chlorophyll and carotenoid concentrations at plant level and by measuring reflectance at contrasting seasonal dates. Plant reflectance was used to define a new reflectance index that was most sensitive to the seasonal shifts in Tecticornia pigment concentrations. The two Tecticornia species turned from green to red-pinkish for the period March–August 2012 when betacyanins increased almost nine times in both species. Chlorophyll levels showed the opposite pattern to that of betacyanins, whereas carotenoid levels were relatively stable. Normalised difference indices correlated well with betacyanin (r = 0.805, using bands at 600 and 620 nm) and chlorophyll (r = 0.809, using bands at 737 and 726 nm). Using knowledge of chlorophyll concentrations slightly improved the ability of the spectral index to predict betacyanin concentration (r = 0.822 at bands 606 and 620 nm, in the case of chemically determined chlorophyll, r = 0.809 when using remotely sensed chlorophyll). Our results suggest that this new spectral index can reliably detect changes in betacyanin concentrations in vegetation, with potential applications in ecological studies and environmental impact monitoring.  相似文献   

18.
Quantification of chlorophyll content provides useful insight into the physiological performance of plants. Several leaf chlorophyll estimation techniques, using hyperspectral instruments, are available. However, to our knowledge, a non-destructive bark chlorophyll estimation technique is not available. We set out to assess Boswellia papyrifera tree bark chlorophyll content and to provide an appropriate bark chlorophyll estimation technique using hyperspectral remote sensing techniques. In contrast to the leaves, the bark of B. papyrifera has several outer layers masking the inner photosynthetic bark layer. Thus, our interest includes understanding how much light energy is transmitted to the photosynthetic inner bark and to what extent the inner photosynthetic bark chlorophyll activity could be remotely sensed during both the wet and the dry season. In this study, chlorophyll estimation using the chlorophyll absorption continuum index (CACI) yielded a higher R2 (0.87) than others indices and methods, such as the use of single band, simple ratios, normalized differences, and conventional red edge position (REP) based estimation techniques. The chlorophyll absorption continuum index approach considers the increase or widening in area of the chlorophyll absorption region, attributed to high concentrations of chlorophyll causing spectral shifts in both the yellow and the red edge. During the wet season B. papyrifera trees contain more bark layers than during the dry season. Having less bark layers during the dry season (leaf off condition) is an advantage for the plants as then their inner photosynthetic bark is more exposed to light, enabling them to trap light energy. It is concluded that B. papyrifera bark chlorophyll content can be reliably estimated using the chlorophyll absorption continuum index analysis. Further research on the use of bark signatures is recommended, in order to discriminate the deciduous B. papyrifera from other species during the dry season.  相似文献   

19.
Vegetation spectral features can detect chlorophyll concentrations. Two key spectral features evident in the first derivative (FD) of reflectance constitute the two main peaks: one located around 685-705 nm and the other near 710-725 nm. We propose that the area between peaks (ABP) can be used as a sensitive indicator of changes in the photosynthetic pigments at leaf level and demonstrate it using a high-spectral-resolution dataset of maize leaves collected by Gitelson and coworkers (2005). We find significant high positive correlations (r 2 > 0.90) between chlorophyll concentrations and both the ABP and its continuum length feature.  相似文献   

20.
A portable narrowband spectroradiometer was used to detect sclerotinia stem rot infection, caused by the fungus Sclerotinia sclerotiorum in soybeans. Increasing levels of fungal inoculum were used to cause a gradient of disease infection in the field. Canopy reflectance measured in narrowband R/sub 675/-R/sub 685/ and broadband R/sub 635/-R/sub 685/ could estimate 86% of the variation in soybean plants damage measured by a count of early dead plants. Plant damage was also associated with the chlorophyll absorption in reflectance and the normalized pigment chlorophyll vegetation indexes, showing a loss of chlorophyll pigment compared to healthy plants. A new field approach is suggested for the investigation of plant damage with narrowband spectroradiometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号