首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use coseismic GPS data from the 1999 Chi-Chi, Taiwan earthquake to estimate the subsurface shape of the Chelungpu fault that ruptured during the earthquake. Studies prior to the earthquake suggest a ramp–décollement geometry for the Chelungpu fault, yet many finite source inversions using GPS and seismic data assume slip occurred on the down-dip extension of the Chelungpu ramp, rather than on a sub-horizontal décollement. We test whether slip occurred on the décollement or the down-dip extension of the ramp using well-established methods of inverting GPS data for geometry and slip on faults represented as elastic dislocations. We find that a significant portion of the coseismic slip did indeed occur on a sub-horizontal décollement located at 8 km depth. The slip on the décollement contributes 21% of the total modeled moment release. We estimate the fault geometry assuming several different models for the distribution of elastic properties in the earth: homogeneous, layered, and layered with lateral material contrast across the fault. It is shown, however, that heterogeneity has little influence on our estimated fault geometry. We also investigate several competing interpretations of deformation within the E/W trending rupture zone at the northern end of the 1999 ground ruptures. We demonstrate that the GPS data require a 22- to 35-km-long lateral ramp at the northern end, contradicting other investigations that propose deformation is concentrated within 10 km of the Chelungpu fault. Lastly, we propose a simple tectonic model for the development of the lateral ramp.  相似文献   

2.
The Siwalik Group which forms the southern zone of the Himalayan orogen, constitutes the deformed part of the Neogene foreland basin situated above the downflexed Indian lithosphere. It forms the outer part of the thin-skinned thrust belt of the Himalaya, a belt where the faults branch off a major décollement (MD) that is the external part of the basal detachment of Himalayan thrust belt. This décollement is located beneath 13 Ma sediments in far-western Nepal, and beneath 14.6 Ma sediments in mid-western Nepal, i.e., above the base of the Siwalik Group. Unconformities have been observed in the upper Siwalik member of western Nepal both on satellite images and in the field, and suggest that tectonics has affected the frontal part of the outer belt since more than 1.8 Ma. Several north dipping thrusts delineate tectonic boundaries in the Siwalik Group of western Nepal. The Main Dun Thrust (MDT) is formed by a succession of 4 laterally relayed thrusts, and the Main Frontal Thrust (MFT) is formed by three segments that die out laterally in propagating folds or branch and relay faults along lateral transfer zones. One of the major transfer zones is the West Dang Transfer Zone (WDTZ), which has a north-northeast strike and is formed by strike-slip faults, sigmoid folds and sigmoid reverse faults. The width of the outer belt of the Himalaya varies from 25 km west of the WDTZ to 40 km east of the WDTZ. The WDTZ is probably related to an underlying fault that induces: (a) a change of the stratigraphic thickness of the Siwalik members involved in the thin-skinned thrust belt, and particularly of the middle Siwalik member; (b) an increase, from west to east, of the depth of the décollement level; and (c) a lateral ramp that transfers displacement from one thrust to another. Large wedge-top basins (Duns) of western Nepal have developed east of the WDTZ. The superposition of two décollement levels in the lower Siwalik member is clear in a large portion of the Siwalik group of western Nepal where it induces duplexes development. The duplexes are formed either by far-travelled horses that crop out at the hangingwall of the Internal Décollement Thrust (ID) to the south of the Main Boundary Thrust, or by horses that remain hidden below the middle Siwaliks or Lesser Himalayan rocks. Most of the thrusts sheets of the outer belt of western Nepal have moved toward the S–SW and balanced cross-sections show at least 40 km shortening through the outer belt. This value probably under-estimates the shortening because erosion has removed the hangingwall cut-off of the Siwalik series. The mean shortening rate has been 17 mm/yr in the outer belt for the last 2.3 Ma.  相似文献   

3.
The east and west coasts of Pembrokeshire (SW Wales) provide two sections through the Variscan fold and thrust belt. The evolution of these structures is interpreted in terms of a thin-skinned tectonic model. Balanced cross-sections are constructed for the high-level imbricate sequences, and these allow reasonably accurate estimates of shortening to be made. Basement control on structures developed in the Upper Carboniferous cover rocks is minimal, though some thrust ramp positions may be determined by the location of earlier normal faults.The thrust belt may be divided into two parts, according to the depth to the décollement horizon. In the north, imbricate fans developed from a shallow-level detachment (<1 km) which dips gently south. In the southern part, a deeper level of décollement and thicker sedimentary pile gave rise to large-amplitude folds.Shortening is heterogeneous, and both thrust periodicity and fold style are partly determined by rheology. Cumulative tectonic displacement increases to the west across Pembrokeshire, resulting in a net clockwise rotation of about 40°.  相似文献   

4.
This paper focuses on the behavior of a roof sequence in the Appalachian Plateau of West Virginia, U.S.A., and emplacement of the Wills Mountain duplex with 17.5 km of displacement. Unlike the Plateau along strike in Pennsylvania and New York where forethrusting was previously documented, this roof sequence lacks an underlying salt-dominated roof décollement. Kinematic analyses reveal that the roof sequence in the West Virginian Plateau accommodated about two-thirds of the 17.5 km of shortening by the adjacent Wills Mountain duplex, as a forethrusting kinematic response. The remaining shortening imbalance of about 5 km between the duplexes and younger roof sequence rocks is accommodated by additional forethrusting further into the foreland and local compensation. This kinematic response matches that along strike in the central Appalachians despite the loss of the salt décollement. We interpret that an Ordovician shale-dominated formation was sufficiently weak to substitute for the salt horizon. Thus, a weak mechanical unit rather than specifically a salt décollement is a necessary prerequisite for forethrusting. A contributing factor to forethrusting may be the subvertical front of the Wills Mountain duplex, which inhibited other responses by the roof sequence. Mesoscale and smaller processes, including grain-to-grain pressure solution, twinning and cleavage formation account for over 75% of the shortening in the roof sequence, and, if ignored, would result in an erroneous interpretation of backthrusting or local compensation. This result suggests that failure to consider all deformation scales could lead to incorrect kinematic conclusions in other tectonic systems.  相似文献   

5.
The volcano-sedimentary formations from the southern Vosges are subdivided in two main series: a lower Visean series characterized by a volcanism of spilite-keratophyre type, and an upper Visean series which includes a normal volcanic association of shoshonitic tendency. Paleomagnetic study of 50 sites sampled in both series, but mostly in the upper one, yields three types of directions of characteristic magnetizations. The first type corresponds to Tertiary and Quaternary remagnetizations with low apparent blocking temperatures (350°–500°C, titano-maghemites?). The second group is formed by remagnetizations which have taken place during late Carboniferous-early Permian times, and which show high blocking temperatures of magnetite and mostly titano-haematites. The mean direction is D = 16°, I = 7°, α95 = 9° for 13 sites, (λ = 43°N, φ = 165°E). The last group is represented by primary magnetizations of latest Visean age and post-Sudetic remagnetizations, with blocking temperatures of magnetite and haematite. The mean direction D = 323°, I = −17°, α95 = 9° for 18 sites, (λ = 25°N, φ = 228°E), deviates from about 60° from the theoretical direction, calculated with the early Carboniferous, European pole position. This deviation is interpreted as resulting from a counterclockwise rotation of the southern Vosges between late Visean and Westphalian times. One consequence may be the formation of the variscan “V”, due to the anticlockwise rotation of the eastern branch of the chain. The northwesterly directions show a variation of the inclinations which may indicate that the rotation was preceded by a relatively significant drift of the Vosges to the north.

Résumé

Les terrains volcano-sédimentaires des Vosges méridionales se subdivisent en deux séries principales: la série du Viséen inférieur caractérisée par un volcanisme du type spilite-kératophyre et la série du Viséen supérieur qui comporte une association volcanique normale à tendance shoshonitique. L'étude paléomagnétique de 50 sites échantillonnés dans les deux séries, avec une prédominance dans la série supérieure, met en évidence trois types de directions d'aimantations caractéristiques, Le premier type correspond à des réaimantations d'áge Tertiaire à Quaternaire, à températures de blocage apparentes basses (350°–500°C, titano-maghemites?). Le second groupe est f'orme par des réaimantations mises en place au Carbonifère supérieur-Permien inférieur, à température de blocage haute de magnétite et surtout de titanohématites. La direction moyenne est D = 16°, I = 7°, α95 = 9° pour 13 sites. (λ = 43°N, φ = 165°E). Le dernier groupe est représenté par des aimantations primaires, d'âge Viséen supérieur et des réaimantations post phase Sudète II, à température de blocage de magnetite et d'hématite. La direction moyenne D = 323°, I = −17°, α95 = 9° pour 18 sites (λ = 25 °N, φ = 228°E), dévie de prés de 60° de la direction théorique calculée à partir du pôle européen au Carbonifère inférieur. Cette déviation est interprétée comme résultant d'une rotation antihoraire des Vosges méridionales entre le Viséen supérieur et le Westphalien. Une des conséquences en serait la formation du “V” varisque. par suite de la rotation antihoraire de la branche orientale de la chaîne. Les directions nord-ouest présentent une variation en inclinaison qui semble indiquer que la rotation antihoraire était précédée par une dérive relativement importante des Vosges vers le Nord.  相似文献   

6.
The southern Chilean convergent margin, between 50° and 57° S, is shaped by the interaction of the three main plates: Antarctic, South America and Scotia. North of 53° S, the convergence between Antarctic and South America plates is close to orthogonal to the continental margin strike. Here, the deformational style of the accretionary prism is mainly characterized by seaward-verging thrusts and locally by normal faults and fractures, a very limited lateral extension of prism, a very shallow dip ( 6°) décollement, and subduction of a thick and relatively undeformed trench sedimentary sequence. South of 53° S, convergence is oblique to the margin, locally, the trench sediments are proto-deformed by double vergence thrusting and the front of the prism grows through landward-verging thrusting. The décollement is sub-horizontal and deep, involving most of the sediment over the oceanic crust in the accretionary process, building a comparatively wide and thicker prism. A Bottom Simulating Reflector is present across the whole prism to the abyssal plan, suggesting the presence of gas in the sediments.The analysis of P- and S-wave velocity reflectivity sections, derived by amplitude versus offset technique (AVO), detailed velocity information and the velocity-derived sediment porosity have been integrated with the structural analysis of the accretionary prism of two selected pre-stack depth migrated seismic lines, aiming to explain the relation between fluid circulation and tectonics.Accretion along double vergence thrust faults may be associated with the presence of overpressured fluid, which decreases the effective shear stress coefficient along the main décollement and within the sediments, and modify the rheolgical properties of rocks. The presence of an adequate drainage network, represented by interconnected faults and fractures affecting the entire sedimentary sequence, can favour the escape of pore fluid toward the sea bottom, while, less permeable and not faulted sediments can favour fluid accumulations. Gravitational and tectonic dewatering, and stratigraphy could control the consolidation and the pore overpressure of sediments involved in subduction along the trench. The results of our analysis suggest the existence of a feedback between tectonic style and fluid circulation.  相似文献   

7.
A comparison is made between the Gavarnie thrust and the Mérens Fault in the Axial zone of the Pyrenees. The former has a gentle dip and quite a large displacement (at least 12 km) but does not cut through either Hercynian or Alpine isograds. The latter has a smaller displacement (~ 5 km) but dips steeply and cuts through both Hercynian and Alpine isograds at a high angle. On this basis and on the basis of shear zone geometries immediately north of it, it is proposed that the Mérens Fault nucleated as a steeply (65°–80°) dipping structure, while the Gavarnie thrust nucleated with a shallow attitude. The Mérens Fault is not a backward-rotated thrust fault, nor is it the root zone for any major nappe structure. Similar steep ductile structures occur within the Gavarnie nappe and may reflect considerable internal strain in basement lithologies.The relationship between steep and shallow structures is not yet clear; the shear zones may pre-date the thrusting in which case they may be thick-skinned structures affecting the whole lithosphere, or they may be contemporary with thrusting reflecting only local thickening above a décollement.Rheological models can be used to test proposed geometrical and kinematic models for the lithosphere-scale evolution of the Pyrenees. Suggested models are dominated by a cool, rigid, high-level mantle wedge beneath the North Pyrenean zone which probably controlled the location of north-dipping thrust faults. Thick-skinned shortening is possible in thick crust in the Axial zone but is very unlikely in the North Pyrenean zone where steeply rooted structures would have to cut through the strongest part of the lithosphere.  相似文献   

8.
The Kelçyra area is emplaced in a foreland fold-and-thrust belt (FFTB), characterized by a westward thrusting with the Triassic evaporites as the major décollement level. Several secondary features related with this evolution, like backthrusting, folding, duplex structures, evaporite diapirism are present. During the FFTB evolution, the study area has been subjected to several fracturing events with associated stages of fluid migration. During the pre-deformational stage, complex textures such as crack-and-seal features most likely reflect expulsion of overpressured fluids. These fluids were dominantly host-rock buffered. Within the post-deformational stage, a meteoric fluid caused cementation and development of a karst network during a period of emergence after the thrust emplacement. Subsequently, Mg calcite reprecipitated in the more stable carbonate phase calcite and dolomite, which filled part of the karts network. The latter is finally dedolomitized and locally partially dissolved by a second meteoric fluid flow, which greatly increased the secondary porosity.  相似文献   

9.
New paleomagnetic results on Permian volcanics confirm the previously defined rotation for Corsica (30°) and Sardinia (60°). A geometrical fit of the continental slopes can be found with these rotation angles. The data allow us to put back the two islands in their previous position: northern Sardinia then faces Provence. The geological structures of the basement of Provence and Sardinia match together: lithology, metamorphic types and zones, granitology, fold directions are similar and parallel. Analogies can be found between Permian volcanics, and between Late Paleozoic and Mesozoic sediments from the three different areas. They may have had a similar geological evolution up to the Early Tertiary.

Résumé

De nouveaux résultats paléomagnétiques sur des formations volcaniques permiennes confirment les rotations de la Corse (30°) et de la Sardaigne (60° ). L'emboîtement des talus continentaux s'accorde avec de telles rotations. Ces différentes données permettent de replacer les deux îles dans leur position ancienne, la Sardaigne du Nord étant alors située face à la Provence. Les formations géologiques du socle provençal et de la Sardaigne du Nord se raccordent: la lithologíe, les zones et le type de métamorphisme, la ǵranitologie, les directions de plissements sont semblables et paralléles. Des analogies peuvent aussi être établies pour le volcanisme permien et les formations sédimentaires de la fin du Paléozoïque et du Mésozoïque. Ces domaines ont eu probablement une évolution géologique semblable jusqu'au début du Tertiaire.  相似文献   

10.
The historical stratotypes of the Aquitanian and Burdigalian in the Aquitaine Basin are studied here by using the tools of facies sedimentology and the concept of sequence stratigraphy. This analytical method combines recognition and sequential organization of facies, and several types of stratigraphic markers. This method allows identification of at least six depositional sequences within the Miocene of the Saucats area: the four lower ones belong to the Aquitanian, the fifth one to the whole Burdigalian, while the sixth sequence corresponds to the Serravallian. In addition, this method provides evidence of a period of emersion before each transgression, suggesting potential fluvial erosion. Nevertheless, these phases are of lower amplitude than those observed in the Rhodano-Provençal Basin.

Résumé

Les stratotypes historiques de l’Aquitanien et du Burdigalien, en Aquitaine, sont étudiés ici en termes de sédimentologie de faciès et de stratigraphie séquentielle. Cette méthode d’analyse combine la reconnaissance et l’organisation séquentielle des faciès à plusieurs types de repères stratigraphiques. Elle permet d’identifier au moins six séquences de dépôt dans le Miocène de la région de Saucats : les quatre premières dans l’Aquitanien, la cinquième pour le Burdigalien et la dernière pour le Serravallien. Elle a également permis de mettre en évidence des phases d’émersion anté-transgression, suggérant de possibles érosions fluviatiles, mais d’ampleurs inférieures à celles reconnues dans le Bassin miocène rhodano-provençal.  相似文献   

11.
This paper aims to underline how powerful and important the balanced cross-section constructions are for understanding structural mechanisms, especially when several interpretations are possible. In the Vignoble area, between Lons le Saulnier and Arbois — French foothills of Jura, the frontal overlapping is proved by several drillholes. The classical interpretation is a thrusting through listric reverse faults and continuation of the décollement level underlying the Jura at the cover—basement interface. The balanced cross-section construction demonstrates that this assumption is not valid due to the necessary thinning and stretching of the overlapping formations in this region. This paper proposes a new solution where the overlapping, through listric normal faults, is like a huge gravity landslide, without any relation to the shortening and décollement of the internal Jura. The new interpretation is supported by the very consistent balanced crosssection of the displaced cover and by the extension structures observed in the field.  相似文献   

12.
Features associated with gravity-induced slumping in deep-water Eocene sediments of the Ainsa basin are described and four aspects are selected as being especially significant. These are: extensional strain, contractional strain, strain overprinting and clastic dykes. Slump strain is interpreted as a consequence of the initiation, translation and termination phases of slump development and is explained in terms of a dislocation model. The initial phase of development involves the propagation of a failure through undisturbed sediment and this imparts a characteristic strain above the décollement surface. Translation of the failed body involves sequential velocity changes which also deform the moving sediment. During the termination phase a type of dislocation, here named an anti-dislocation, migrates along the basal failure when a slump regains cohesion with the substrate. Clastic dykes are interpreted as dewatering structures initiating at basal faults which have associated high pore fluid pressure. Dewatering of slumped décollement sheets may be a significant phase in the termination of movement of failed sediment bodies.  相似文献   

13.
Critical loads of acidity represent the maximum acceptable atmospheric deposition for an ecosystem type. Two hundred and forty-one ecosystem types have been defined in France using pedologic, geologic and vegetation data. Weathering rate plays the most important part in soil buffering capacity, but for poor weatherable soils, non-marine atmospheric deposition represents up to 80% of base-cation inputs. Base-cation vegetation uptake decreases significantly the buffering capacity in case of high-productivity forests. Ecosystems combining low weathering rate and low non-marine base-cation deposition with high biomass productivity are the most sensitive to acidification. To cite this article: D. Moncoulon et al., C. R. Geoscience 336 (2004).

Résumé

Les charges critiques d'acidité représentent le dépôt atmosphérique maximal admissible pour un écosystème. Deux cent quarante et un types d'écosystèmes ont été définis en France à partir de données pédologiques, géologiques et de végétation. L'altération joue un rôle prépondérant contre l'acidification, mais pour les sols faiblement altérables, les dépôts atmosphériques non marins peuvent représenter jusqu'à 80 % des apports de cations basiques. Le prélèvement de cations par la végétation contribue significativement à diminuer le pouvoir tampon des sols pour les forêts à forte productivité. Les écosystèmes combinant faible altération et faibles dépôts de cations non marins ainsi qu'une forte productivité sont les plus sensibles à l'acidification. Pour citer cet article : D. Moncoulon et al., C. R. Geoscience 336 (2004).  相似文献   

14.
We reconstructed the accretion process related to Paleo-Tethys subduction recorded in northern Thailand, based on mélange and thrust structures, and metamorphic temperatures derived from illite crystallinity data. Mélange formation was characterized by hydrofracturing and cataclastic deformation, with mud injection under semi-lithified conditions followed by shear deformation and pressure solution. Illite crystallinity data suggest metamorphic temperatures below 250 °C during mélange formation. The combined structural and metamorphic data indicate that during mélange formation, the accretionary complex related to Paleo-Tethys subduction developed at shallow levels within an accretionary prism. Asymmetric shear fabrics in mélange indicate top-to-south shear. After correction for rotation associated with collision between the Indian and Eurasian continents, the trend of the Paleo-Tethys subduction zone is estimated to have been N80 °E. We conclude that the Paleo-Tethys was subducted northward beneath the Indochina Block from the Permian to Triassic.  相似文献   

15.
Veins in the Sicilian accretionary wedge were studied petrographically and geochemically with the aim to investigate the relation between fluid flow in a décollement horizon and in overlying Mesozoic basinal sediments. Fluids expelled along the décollement horizon precipitated calcite cements that show a broad spread in stable isotope signatures and that generally have rather high Fe and Mn content. The fluids most likely originated from mixing of hot deep metamorphic fluids and dewatering of the clay unit along which the principal overthrusting occurred.Synkinematic veins in the overlying basinal units are cemented with calcite. The trace element content and δ13C signatures of these veins are host-rock dependent, pointing to a host-rock buffering effect. Petrographic observations indicate that calcite cements have been recrystallized. Thus the cements could have inherited their geochemical signatures from the host-rock during recrystallization. This is also supported by their δ18O signature, which is controlled by temperature fractionation.  相似文献   

16.
Existing balancing methods utilizing excess area in cross sections rely heavily on the presence of a perfectly horizontal décollement surface. This is rarely the case in thrust belts, and the commonly observed hindward dip of floor thrusts imparts uplift and internal strain to the thrust wedge during transport. A modified excess area balancing technique is presented to account for hinterland dipping floor thrusts.  相似文献   

17.
After the discovery of a Zn-Ag massive sulphide deposit at Perkoa in 1982, following regional geochemical exploration in the Birimian belts of Boromo and Hounde, a joint project was carried out by UNDP (United Nations Development Programme) and BUMIGEB (Bureau des Mines et de la Géologie du Burkina) in Central and Northwest Burkina Faso. The same exploration approach was applied which has been successful in previous surveys: it is based on soil sampling at about 30 cm depth at a density ranging from 3.3 to 8 samples per km2. The results obtained and the various problems encountered during exploration are presented in this paper. These problems are typical of the morphoclimatic conditions prevailing in semi-arid savanna regions of western Africa. Where the deep weathering profile, probably formed during former climatic episodes, is well preserved, residual laterites may alter the geochemical signature of mineralizations. North of the 14th parallel, windblown sand may cover large areas where geochemical sampling needs to be adapted: samples have to be collected at depth, in the saprolite, beneath the sand.Storage, processing and display of the numerous analytical data gathered for the last ten years, fully justified the development of a computer assisted processing unit which is now operational.

Résumé

Suite à la découverte en 1982 de l'amas sulfuré Zn-Ag de Perkoa par prospection géochimique régionale dans les sillons birrimiens de Boromo et de Houndé, un nouveau projet associant le PNUD (Programme des Nations Unies pour le Développement) et le BUMIGEB (Bureau des Mines et de la Géologie du Burkina) a été lancé dans le centre et le nord-ouest du pays en appliquant une démarche qui avait déjà fait ses preuves. Celle-ci s'appuie sur l'échantillonnage de sols, prélevés à environ 30 cm de profondeur, à une densité variant de 3,3 à 8 prélèvements au km2.Sont présentés les résultats de cette campagne ainsi que les divers problèmes rencontrés. Ceuxci sont communs à toute prospection dans la zone tropicale sèche d'Afrique occidentale et résultent des situations pédologiques propres à cette zone climatique caractérisée localement soit par des cuirasses latéritiques, dont le caractère autochtone prédominant autorise les prélèvements géochimiques de surface, soit par des recouvrements éoliens. Ceux-ci sont principalement développés au nord du 14ème parallèle; ils nécessitent en général l'adaptation de l'échantillonnage, qui doit être réalisé, à une profondeur parfois importante, dans la saprolite.Le stockage des nombreuses données analytiques collectées depuis dix ans, leur traitement et leur visualisation ont justifié la mise en place d'une unité de traitement informatique maintenant opérationnelle.  相似文献   

18.
Le genre Spalacotherium Owen fût initialement créé à partir de spécimens provenant du Groupe de Purbeck en 1854. Cet article décrit une nouvelle espèce, S. evansae, provenant d'un site purbeckien découvert en 1986; celle-ci est représentée non seulement par des molaires inférieures et supérieures mais peut-être aussi par des molaires de lait. Le genre Tinodon n'était, jusqu'à maintenant, connu que dans la Formation Morrison du Wyoming, USA, un peu plus ancienne que celle de Purbeck; quelques molaires inférieures et surtout une molaire supérieure du même gisement sont attribuées à une nouvelle espèce, T. micron, ce qui ajoute un genre à la liste des taxons communs aux deux formations. La molaire supérieure de T. micron est particulièrement intéressante en ce qu'elle fournit des indications sur un taxon occupant une position clé dans la phylogénie des symmétrodontes, tout en soulevant le problème d'homologie des tubercules.  相似文献   

19.
Balanced and restored cross-sections through the central and eastern Pyrenees, constructed using both surface and borehole data, demonstrate the presence of c.18km of shortening above a flat lying N-directed Alpine décollement surface. Hangingwall diagrams show how the North Pyrenean satellite massifs are culminations within this thrust system. Pre-thrusting structures such as subhorizontal stretching lineations in the North Pyrenean Fault zone became rotated above these culminations as the North Pyrenean Fault was cut by Alpine thrusts. Stratigraphic evidence demonstrates that N-directed thrust movements occurred between mid Eocene and Oligocene time, and this is similar to the age of major S-directed thrust movements on the south side of the Axial Zone. The N-directed thrust system probably originated as a series of backthrusts to the dominant S-directed structures.  相似文献   

20.
The BT3 multichannel seismic profile was acquired by the C.G.G. (Compagnie General de Géophysique) in 1977 for hydrocarbon exploration in the eastern Betic Cordillera. REXIMseis Ltd scanned and vectorized a paper copy and then performed post-stack processing, including coherence filtering and deconvolution. The receiver functions of a broad-band seismic station located near the village of Vélez Rubio, at the SE end of the profile, were analysed by Julia et al. [Julia, J., Mancilla, F., Morales, J., 2005. Seismic signature of intracrustal magmatic intrusions in the Eastern Betics (Internal Zone), SE Iberia, Geophysical Research Letters 32, L16304, doi:10.1029/2005GL023274.] to determine the structure of the underlying crust. We have used these Vp data to convert the profile to depth. The profile has a mean SE–NW trend, with a SE-Section 44 km in length followed by a NW-Section 20 km in length. The record includes the first 4 s (twtt), which corresponds to 11 km.Two main areas can be seen in the profile. At the SE-end, a band of high-amplitude discontinuous reflectors dips towards the north. The band is 100 to 200 ms thick, increasing even more northwards. This band reaches the surface at the top of the Maláguide Complex (the upper complex of the Internal Zones). Above these reflectors, an area with chaotic seismic facies and no reflectors corresponds to the outcrops of the olistostromes and turbidites of the Solana Formation, and it is in turn overlain by discontinuous reflectors of the Subbetic rocks.At the NW-end of the profile, a set of high-amplitude continuous reflectors with SE dips point to the location of the Prebetic. Below this section, oblique reflectors of intermediate amplitude indicate the Variscan basement. Over the Prebetic, we have marked the basal thrusts of the Intermediate Units and the Subbetic. Using this seismic data, as well as field observations, we propose a geological cross-section of the upper crust of the eastern Betic Cordillera and a model of the most recent evolution of the orogen. In this model, the Internal Zones and the Subbetic have been welded together from the Middle Burdigalian to the present day and acted as an orogenic wedge that deformed the Intermediate Units and the Prebetic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号