首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The Christmas Mountains caldera complex developed approximately 42 Ma ago over an elliptical (8×5 km) laccolithic dome that formed during emplacement of the caldera magma body. Rocks of the caldera complex consist of tuffs, lavas, and volcaniclastic deposits, divided into five sequences. Three of the sequences contain major ash-flow tuffs whose eruption led to collapse of four calderas, all 1–1.5 km in diameter, over the dome. The oldest caldera-related rocks are sparsely porphyritic, rhyolitic, air-fall and ash-flow tuffs that record formation and collapse of a Plinian-type eruption column. Eruption of these tuffs induced collapse of a wedge along the western margin of the dome. A second, more abundantly porphyritic tuff led to collapse of a second caldera that partly overlapped the first. The last major eruptions were abundantly porphyritic, peralkaline quartz-trachyte ash-flow tuffs that ponded within two calderas over the crest of the dome. The tuffs are interbedded with coarse breccias that resulted from failure of the caldera walls. The Christmas Mountains caldera complex and two similar structures in Trans-Pecos Texas constitute a newly recognized caldera type, here termed a laccocaldera. They differ from more conventional calderas by having developed over thin laccolithic magma chambers rather than more deep-seated bodies, by their extreme precaldera doming and by their small size. However, they are similar to other calderas in having initial Plinian-type air-fall eruption followed by column collapse and ash-flow generation, multiple cycles of eruption, contemporaneous eruption and collapse, apparent pistonlike subsidence of the calderas, and compositional zoning within the magma chamber. Laccocalderas could occur else-where, particularly in alkalic magma belts in areas of undeformed sedimentary rocks.  相似文献   

2.
Peralkaline silicic welded ash-flow tuffs differ characteristically in a number of properties from most calc-alkaline welded tuffs, due to their generally lower viscosity and higher temperatures. For example, individual cooling units are relatively small (less than 30 m thick, less than 5 km3 in volume); rocks can be thoroughly welded and crystallized to feldspar, quartz, and mafic minerals; several primary deformational structures (e.g. lineations, stretching of pumice, folds, ramp structures) indicate late stage laminar creep, resulting from the low yield strength of the nearly homogeneous glass of very low viscosity. Theoretical considerations also suggest that peralkaline melts are of low viscosity and high temperature, as inferred from,e.g., their chemical composition (high iron- and alkali-, and low alumina-concentrations). The low viscosity may also be due to trapping of volatiles. Absence or paucity of OH-bearing phenocryst phases, paucity of pyroclastic rocks, other than ash flow tuffs, formed from highly explosive eruptions, and apparently high crystallization temperatures, indicate that peralkaline silicic magmas are comparatively dry. The common occurrence of peralkaline ash-flow tuffs may be due to an increased water content of the magmas, resulting also in amphibole phenocrysts in some welded tuffs, or to specific volcanotectonic conditions. Ash flows of peralkaline composition move as particularly dense particulate flows. This type of flowage and the very rapid welding of the low viscosity glass lead to a high degree of homogenization of the fine glass shards. This in turn inhibits complete degassing of the collapsing ash flow. Semiclosed systems result where gas overpressures can develop and where volatiles play an important role by fluxing crystallization and transporting dissolved matter. Several types of vesicles can form under these conditions: (a) Spherical vesicles within collapsed ash and pumice particles formed after deposition of the ash flow. (b) Round or irregular vesicles transsecting pyroclastic particles, vesicle sheets, and large cavities, several m in diameter, may form in a largely homogenized ash-flow tuff beneath tightly welded layers. (c) Lensoid cavities formed during granophyric crystallization of large pumice particles. Small ash particles of peralkaline composition may assume spherical shapes due to their low viscosity and in some cases, expansion of bubbles. They form during transport and are preserved under low load pressure in the top part of cooling units. Globule lavas and most froth flows are interpreted as welded ash-flow tuffs, some of their unusual features being due to their peralkaline composition.  相似文献   

3.
A new stratigraphy for bimodal Oligocene flood volcanism that forms the volcanic plateau of northern Yemen is presented based on detailed field observations, petrography and geochemical correlations. The >1 km thick volcanic pile is divided into three phases of volcanism: a main basaltic stage (31 to 29.7 Ma), a main silicic stage (29.7 to 29.5 Ma), and a stage of upper bimodal volcanism (29.5 to 27.7 Ma). Eight large-volume silicic pyroclastic eruptive units are traceable throughout northern Yemen, and some units can be correlated with silicic eruptive units in the Ethiopian Traps and to tephra layers in the Indian Ocean. The silicic units comprise pyroclastic density current and fall deposits and a caldera-collapse breccia, and they display textures that unequivocally identify them as primary pyroclastic deposits: basal vitrophyres, eutaxitic fabrics, glass shards, vitroclastic ash matrices and accretionary lapilli. Individual pyroclastic eruptions have preserved on-land volumes of up to ∼850 km3. The largest units have associated co-ignimbrite plume ash fall deposits with dispersal areas >1×107 km2 and estimated maximum total volumes of up to 5,000 km3, which provide accurate and precisely dated marker horizons that can be used to link litho-, bio- and magnetostratigraphy studies. There is a marked change in eruption style of silicic units with time, from initial large-volume explosive pyroclastic eruptions producing ignimbrites and near-globally distributed tuffs, to smaller volume (<50 km3) mixed effusive-explosive eruptions emplacing silicic lavas intercalated with tuffs and ignimbrites. Although eruption volumes decrease by an order of magnitude from the first stage to the last, eruption intervals within each phase remain broadly similar. These changes may reflect the initiation of continental rifting and the transition from pre-break-up thick, stable crust supporting large-volume magma chambers, to syn-rift actively thinning crust hosting small-volume magma chambers.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

4.
A large caldera cluster consisting of at least four calderas (Omine, Odai, Kumano-North and Kumano calderas) existed in the central–southern part of the Kii Peninsula approximately 14–15 Ma. On the other hand, thick Middle Miocene ash-flow tuffs, referred to as the Muro Ash-flow Tuff and the Sekibutsu Tuff Member, are distributed in the northern part of the Kii Peninsula. Although these tuffs are considered to have erupted from the caldera cluster in the central-southern Kii Peninsula, identifying the source caldera in the cluster has been controversial because of similarities in the petrological characteristics and identical radiometric ages of the volcaniclastic rocks of these calderas. We successfully discriminated the characteristics of the eruptive products of each caldera in the caldera cluster based on the apatite trace-element compositions of the pyroclastic dikes and ash-flow tuffs of the calderas. We also demonstrated that the source caldera of at least the lower main part of the Muro Ash-flow Tuff and the Sekibutsu Tuff Member was the Odai Caldera, which is located in the central Kii Peninsula. Our findings show possible correlations among the pyroclastic conduits and ash-flow tuffs of the caldera-fill and/or outflow deposits, even in cases where they have been densely welded and diagenetically altered. This method is useful for the study of deeply eroded ancient calderas.  相似文献   

5.
The Nyamaji volcano is a small eruptive complex of late Miocene age associated with the nearby Usaki ijolite and Sokolo carbonatite intrusion of Homa Bay in the Kavirondo Rift valley of Kenya. It is probably a satellite volcano to the major volcanic structure of Kisingiri - Rangwa which lies 25 km to the west. The Nyamaji volcanic complex is composed of agglomerates, breccias and tuffs erupted from a central vent, whilst at much the same time lavas were extruded from fissures which are now occupied by dykes. These two contemporaneous events gave rise to an interdigitated sequence of pyroclastic deposits and effusive lavas. The pyroclastic rocks of Vulcanian origin cover an area at least 30 km2 in extent, are poorly bedded, and usually are about 25 m (80ft.) thick though they often thin to zero over topographic highs in the pre-existing landscape. At Nyamaji itself, the Strombolian style pyroclastic pile exceeds 330 m (1100 ft.) in thickness over an area of 1 km2, and this marks the position of the original central vent. The fragmental material in the pyroclastic rocks includes ijolite, phonolite, nephelinite, trachyte, carbonatite, granite, and feldspathic and aegirine-bearing fenites; the matrix is sometimes calcareous, sometimes feldspathic. Nephelinitic lavas occur amongst the lowest lavas, but the lavas above are nearly all phonolitic. The oldest dykes are nephelinitic and are rare; the youngest dykes are phonolitic and are abundantly exposed. Both lavas and dykes contain xenoliths similar to those in the pyroclastic rocks. A series of volcanic plugs pierce the lavas. These plugs, mostly non-conduit type, average 200–500 m diameter, are mainly composed of glassy to very fine-grained phonolites, and show good flow structures. The plugs, especially those near the Ruri hills, tend to lie along N - S and E - W lines. The majority of the dykes also lie along these directions. The dominant structural directions within the nearby Usaki ijolite complex and the Wasaki carbonatite are also N - S and E - W, respectively. These directions are quite different from the axis of the Kavirondo rift valley which here is NE - SW, and from the strike of the Precambrian basement. The Nyamaji volcanic structure differs from nearly all the other East African volcanoes by its dominant phonolitic petrochemistry.  相似文献   

6.
Pyroclastic deposits interpreted as subaqueous ash-flow tuff have been recognized within Archean to Recent marine and lacustrine sequences. Several authors proposed a high-temperature emplacement for some of these tuffs. However, the subaqueous welding of pyroclastic deposits remains controversial.The Visean marine volcaniclastic formations of southern Vosges (France) contain several layers of rhyolitic and rhyodacitic ash-flow tuff. These deposits include, from proximal to distal settings, breccia, lapilli and fine-ash tuff. The breccia and lapilli tuff are partly welded, as indicated by the presence of fiamme, fluidal and axiolitic structures. The lapilli tuff form idealized sections with a lower, coarse and welded unit and an upper, bedded and unwelded fine-ash tuff. Sedimentary structures suggest that the fine-ash tuff units were deposited by turbidity currents. Welded breccias, interbedded in a thick submarine volcanic complex, indicate the close proximity of the volcanic source. The lapilli and fine-ash tuff are interbedded in a thick marine sequence composed of alternating sandstones and shales. Presence of a marine stenohaline fauna and sedimentary structures attest to a marine depositional environment below storm-wave base.In northern Anatolia, thick massive sequences of rhyodacitic crystal tuff are interbedded with the Upper Cretaceous marine turbidites of the Mudurnu basin. Some of these tuffs are welded. As in southern Vosges, partial welding is attested by the presence of fiamme and fluidal structures. The latter are frequent in the fresh vitric matrix. These tuff units contain a high proportion of vitroclasis, and were emplaced by ash flows. Welded tuff units are associated with non-welded crystal tuff, and contain abundant bioclasts which indicate mixing with water during flowage. At the base, basaltic breccia beds are associated with micritic beds containing a marine fauna. The welded and non-welded tuff sequences are interbedded in an alternation of limestones and marls. These limestones are rich in pelagic microfossils.The evidence above strongly suggest that in both examples, tuff beds are partly welded and were emplaced at high temperature by subaqueous ash flows in a permanent marine environment. The sources of the pyroclastic material are unknown in both cases. We propose that the ash flows were produced during submarine fissure eruptions. Such eruptions could produce non-turbulent flows which were insulated by a steam carapace before deposition and welding. The welded ash-flow tuff deposits of southern Vosges and northern Anatolia give strong evidence for existence of subaqueous welding.  相似文献   

7.
We propose that the fluid mechanics of magma chamber replenishment leads to a novel process whereby silicic magmas can acquire an important part of their chemical signatures. When flows of basaltic magma enter silicic magma chambers, they assume a ‘fingered' morphology that creates a large surface area of contact between the two magmas. This large surface area provides an opportunity for significant chemical exchange between the magmas by diffusion that is enhanced by continuous flow of silicic liquid traversing the basalt through thin veins. A quantitative analysis shows that a basaltic magma may thereby impart its trace-element and isotopic characteristics to a silicic magma. Depending on concentration differences and diffusion coefficients for the given components, this new mechanism may be as important as crystal fractionation and assimilation in producing the compositional diversity of silicic magmas. It may explain concentration gradients in silicic ash-flow tuffs and should be considered when interpreting the isotopic signatures of silicic rocks, even in the overt absence of mixing. For example, we show that, for several well studied, compositionally graded ash-flow tuffs, the concentrations and isotopic ratios of important geochemical tracers such as strontium could be largely due to this flow-enhanced diffusion process.  相似文献   

8.
The Yampa and Elkhead Mountains volcanic fields were erupted into sediment-filled fault basins during Miocene crustal extension in NW Colorado. Post-Miocene uplift and erosion has exposed alkali basalt lavas, pyroclastic deposits, volcanic necks and dykes which record hydrovolcanic and strombolian phenomena at different erosion depths. The occurrence of these different phenomena was related to the degree of lithification of the rocks through which the magmas rose. Hydrovolcanic interactions only occurred where rising basaltic magma encountered wet, porous, non-lithified sediments of the 600 m thick Miocene Brown's Park Formation. The interactions were fuelled by groundwater in these sediments: there was probably no standing surface water. Dykes intruded into the sediments have pillowed sides, and local swirled inclusions of sediment that were injected while fluidized in steam from heated pore water. Volcanic necks in the sediments consist of basaltic tuff, sediment blocks and separated grains derived from the sediments, lithic blocks (mostly derived from a conglomerate forming the local base of the Brown's Park Formation), and dykes composed of disaggregated sediment. The necks are cut by contemporaneous basalt dykes. Hydrovolcanic pyroclastic deposits formed tuff cones up to 100 m thick consisting of bedded air-fall, pyroclastic surge, and massive, poorly sorted deposits (MPSDs). All these contain sub-equal volumes of basaltic tuff and disaggregated sediment grains from the Brown's Park Formation. Possible explosive and effusive modes of formation for the MPSDs are discussed. Contemporaneous strombolian scoria deposits overlie lithified Cretaceous sedimentary rocks or thick basalt lavas. Volcanic necks intruded into the Cretaceous rocks consist of basalt clasts (some with spindle-shape), lithic clasts, and megacrysts derived from the magma, and are cut by basalt dykes. Rarely, strombolian deposits are interbedded with hydrovolcanic pyroclastic deposits, recording changes in eruption behaviour during one eruption. The hydrovolcanic eruptions occurred by interaction of magma with groundwater in the Brown's Park sediments. The explosive interactions disaggregated the sediment. Such direct digestion of sediment by the magma in the vents would probably not have released enough water to maintain a water/magma mass ratio sufficient for hydrovolcanic explosions to produce the tuff cones. Probably, additional water (perhaps 76% of the total) was derived by flow through the permeable sediments (especially the basal conglomerate to the formation), and into the vents.  相似文献   

9.
The Igwisi Hills volcanoes (IHV), Tanzania, are unique and important in preserving extra-crater lavas and pyroclastic edifices. They provide critical insights into the eruptive behaviour of kimberlite magmas that are not available at other known kimberlite volcanoes. Cosmogenic 3He dating of olivine crystals from IHV lavas and palaeomagnetic analyses indicates that they are Upper Pleistocene to Holocene in age. This makes them the youngest known kimberlite bodies on Earth by >30?Ma and may indicate a new phase of kimberlite volcanism on the Tanzania craton. Geological mapping, Global Positioning System surveying and field investigations reveal that each volcano comprises partially eroded pyroclastic edifices, craters and lavas. The volcanoes stand <40?m above the surrounding ground and are comparable in size to small monogenetic basaltic volcanoes. Pyroclastic cones consist of diffusely layered pyroclastic fall deposits comprising scoriaceous, pelletal and dense juvenile pyroclasts. Pyroclasts are similar to those documented in many ancient kimberlite pipes, indicating overlap in magma fragmentation dynamics between the Igwisi eruptions and other kimberlite eruptions. Characteristics of the pyroclastic cone deposits, including an absence of ballistic clasts and dominantly poorly vesicular scoria lapillistones and lapilli tuffs, indicate relatively weak explosive activity. Lava flow features indicate unexpectedly high viscosities (estimated at >102 to 106?Pa?s) for kimberlite, attributed to degassing and in-vent cooling. Each volcano is inferred to be the result of a small-volume, short-lived (days to weeks) monogenetic eruption. The eruptive processes of each Igwisi volcano were broadly similar and developed through three phases: (1) fallout of lithic-bearing pyroclastic rocks during explosive excavation of craters and conduits; (2) fallout of juvenile lapilli from unsteady eruption columns and the construction of pyroclastic edifices around the vent; and (3) effusion of degassed viscous magma as lava flows. These processes are similar to those observed for other small-volume monogenetic eruptions (e.g. of basaltic magma).  相似文献   

10.
The ultramafic Eocene Missouri River Breaks volcanic field (MRBVF, Montana, USA) includes over 50 diatremes emplaced in a mostly soft substrate. The current erosion level is 1.3–1.5 km below the pre-eruptive surface, exposing the deep part of the diatreme structures and some dikes. Five representative diatremes are described here; they are 200-375 m across and have sub-vertical walls. Their infill consists mostly of 55-90 % bedded pyroclastic rocks (fine tuffs to coarse lapilli tuffs) with concave-upward bedding, and 45–10 % non-bedded pyroclastic rocks (medium lapilli tuffs to tuff breccias). The latter zones form steep columns 15–135 m in horizontal dimension, which cross-cut the bedded pyroclastic rocks. Megablocks of the host sedimentary formations are also present in the diatremes, some being found 1 km or more below their sources. The diatreme infill contains abundant lithic clasts and ash-sized particles, indicating efficient fragmentation of magma and country rocks. The spherical to sub-spherical juvenile clasts are non-vesicular. They are accompanied by minor accretionary lapilli and armored lapilli. The deposits of dilute pyroclastic density currents are locally observed. Our main interpretations are as follows: (1) the observations strongly support phreatomagmatic explosions as the energy source for fragmentation and diatreme excavation; (2) the bedded pyroclastic rocks were deposited on the crater floor, and subsided by 1.0–1.3 km to their current location, with subsidence taking place mostly during the eruption; (3) the observed non-bedded pyroclastic columns were created by debris jets that punched through the bedded pyroclastic material; the debris jets did not empty the mature diatreme, occupying only a fraction of its width, and some debris jets probably did not reach the crater floor; (4) the mature diatreme was nearly always filled and buttressed by pyroclastic debris at depth – there was never a 1.3–1.5-km-deep empty hole with sub-vertical walls, otherwise the soft substrate would have collapsed inward, which it only did near the surface, to create the megablocks. We infer that syn-eruptive subsidence shifted down bedded pyroclastic material and shallow sedimentary megablocks by 0.8–1.1 km or more, after which limited post-eruptive subsidence occurred. This makes the MRBVF diatremes an extreme end-member case of syn-eruptive subsidence in the spectrum of possibilities for maar-diatreme volcanoes worldwide.  相似文献   

11.
The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (>200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40–60%) of juvenile clasts (to 3–4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5–10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow-layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age.The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows. The inferred eruptive style may be in part related to synchronous disruption of the southern margin of the Fish Canyon magma chamber by block faulting. The Pagosa Peak eruptive sources are apparently buried in the southern La Garita caldera, where northerly extensions of observed syneruptive faults served as fissure vents. Cumulative vent cross-sections were large, leading to relatively low emission velocities for a given discharge rate. Many successive pyroclastic flows accumulated sufficiently rapidly to weld densely as a cooling unit up to 1000 m thick and to retain heat adequately to permit rheomorphic flow. Explosive potential of the magma may have been reduced by degassing during ascent through fissure conduits, leading to fracture-dominated magma fragmentation at low vesicularity. Subsequent collapse of the 75×35 km2 La Garita caldera and eruption of the Fish Canyon Tuff were probably triggered by destabilization of the chamber roof as magma was withdrawn during the Pagosa Peak eruption.  相似文献   

12.
The 18–24 January 1913 eruption of Colima Volcano consisted of three eruptive phases that produced a complex sequence of tephra fall, pyroclastic surges and pyroclastic flows, with a total volume of 1.1 km3 (0.31 km3 DRE). Among these events, the pyroclastic flows are most interesting because their generation mechanisms changed with time. They started with gravitanional dome collapse (block-and-ash flow deposits, Merapi-type), changed to dome collapse triggered by a Vulcanian explosion (block-and-ash flow deposits, Soufrière-type), then ended with the partial collapse of a Plinian column (ash-flow deposits rich in pumice or scoria,). The best exposures of these deposits occur in the southern gullies of the volcano where Heim Coefficients (H/L) were obtained for the various types of flows. Average H/L values of these deposits varied from 0.40 for the Merapi-type (similar to the block-and-ash flow deposits produced during the 1991 and 1994 eruptions), 0.26 for the Soufrière-type events, and 0.17–0.26 for the column collapse ash flows. Additionally, the information of 1991, 1994 and 1998–1999 pyroclastic flow events was used to delimit hazard zones. In order to reconstruct the paths, velocities, and extents of the 20th Century pyroclastic flows, a series of computer simulations were conducted using the program FLOW3D with appropriate Heim coefficients and apparent viscosities. The model results provide a basis for estimating the areas and levels of hazard that could be associated with the next probable worst-case scenario eruption of the volcano. Three areas were traced according to the degree of hazard and pyroclastic flow type recurrence through time. Zone 1 has the largest probability to be reached by short runout (<5 km) Merapi and Soufrière pyroclastic flows, that have occurred every 3 years during the last decade. Zone 2 might be affected by Soufriere-type pyroclastic flows (∼9 km long) similar to those produced during phase II of the 1913 eruption. Zone 3 will only be affected by pyroclastic flows (∼15 km long) formed by the collapse of a Plinian eruptive column, like that of the 1913 climactic eruption. Today, an eruption of the same magnitude as that of 1913 would affect about 15,000 inhabitants of small villages, ranches and towns located within 15 km south of the volcano. Such towns include Yerbabuena, and Becerrera in the State of Colima, and Tonila, San Marcos, Cofradia, and Juan Barragán in the State of Jalisco.  相似文献   

13.
Well defined, laterally continuous welded tuff beds from <1 cm to 2 m thick are more common than has previously been recognized. Examples ranging in composition from rhyolitic to basaltic are described from Ordovician volcanic areas in Britain and Norway, and from the Miocene of the Canary Islands. Bedded welded tuffs are most common in areas of alkaline and peralkaline acidic pyroclastics. They generally occur within successions of massive, welded ash-flow tuff, or within non-welded air-fall tuff successions. Sequences consisting entirely of bedded welded tuff range from <1 m up to 75 m thick. Bedded welded tuffs are thought to originate in three ways. Poorly sorted, thick-bedded welded tuffs are interpreted as the deposits of pyroclastic flows, in which case the beds represent either individual flows units or the layers within flow units. Better sorted, thin-bedded welded tuffs are thought to be of air-fall origin. Thirdly, welding may be produced by the effects of an external heat source on non-welded bedded tuffs.  相似文献   

14.
The variation in the activity patterns of the Chichinautzin volcanic rocks is discussed. This sequence of lavas and pyroclastic deposits is located in the central part of the Mexican Volcanic Belt, directly south of Mexico City, and is typical of its Quaternary monogenetic vulcanism. One-hundred and fourty-six volcanoes and their deposits covering 952 km2 were mapped. Cone density is 0.15 km2 with heights ranging from to 315 m and crater diameters from 50 to 750 m. Ratios of cone height/diameter decreased from 0.20 to 0.12 with age. Basal diameters varied from 0.1 km to 2 km. Lavas are mainly blocky andesites but some dacites and basalts were found. Lengths of flows range from 1.0 to 21.5 km with heights of 0.5 to 300 m and aspect rations of 21.4 to 350. Three types of volcanic structures are found in the area: scoria cones, lavas cones and thick flows lacking a cone. Pyroclastic deposits are basically Strombolian although some deposits were produced by more violent activity and lava cones seem to have formed by activity transitional to Hawaiian-type vulcanism. Therre is a dominant E-W trend shown mainly by the orientation of cone clusters. The Chichinautzin volcanic centers are compared to the monogenetic volcanoes of the Toluca and Paricutin areas which are similar.  相似文献   

15.
Petrological studies of 12 volcanic rock units in the northeast segment of the Taum Sauk Caldera, the major structural feature in the western part of the St. Francois Mountains, indicate that they were probably derived from the same magma chamber. These calc-alkalic rocks become progressively silica and alkali rich and calcium poor from the base to the top of the stratigraphic column. In the part of the northeast segment of the caldera studied in detail, the extrusives are over 5 thick and have a volume of over 500 km3. Rock units consisting of ash-flow tuffs, bedded airfall tuffs and lava flows were apparently deposited within a single episode of volcanic activity, since no signs of extensive erosion were observed among them. Although the rocks are completely devitrified, the preservation of pyroclastic and flow features is excellent. These volcanics are exposed representatives of a 1.3–1.4 b.y. old belt of volcanics and associated plutons which extends from southern Ohio to the Texas Panhandle any may represent a belt of continental accretion.  相似文献   

16.
A brief account is presented for the Lebombo volcanic succession which crops out in Natal, South Africa. The volcanic belt is of late Karoo age and is composed of a thick sequence of basaltic lavas (Sabie River Formation) overlain by an equally voluminous succession of acid-flows (Jozini Formation) erupted over a period of about 70 m.y. Field relationships indicate that the Lebombo basalt pile consists of simple and compound flow units. The rhyolite succession consists of thick (80–284 m) flows units characterised by features found in both ignimbrites and rhyolitic lavas respectively. It is postulated that they were extruded as high temperature, low volatile pyroclastic flows. The Bumbeni volcanic complex which crops out near the southern termination of the Lebombo mountains, disconformably overlies the Jozini Formation and is characterised by a suite of rocks that includes rhyolite lavas, air-fall and ash-flow tuffs, syenite intrusions and basic-intermediate lavas. Dolerite dykes are ubiquitous throughout the succession and an extremely dense concentration of basic intrusions located along the western margin of the belt gives rise to the Rooi Rand dyke swarm. Rare sill-forms are found associated with the mafic volcanies. Acid intrusives are represented by simple and composite quartz-porphyry intrusions and rhyolite dykes. The structure of the Lebombo is that of a faulted monocline, tilted to the east, developed prior to the fragmentation of eastern Gondwanaland. The volcanic belt is located at the tectonic contact between two major Precambrian elements, the 3,000 m.y. Kaapvaal craton to the west and the southerly extension of the 550 m.y. Mozambique belt to the east. It is bounded to the south by the 1,000 m.y. old Natal-Namaqua mobile belt.  相似文献   

17.
This paper documents a complex sequence of interbedded lapilli-fall, base-surge, and pyroclastic-flow deposits, here named the Monte Guardia sequence, that erupted from volcanic centers in the southern part of Lipari (Aeolian Island Arc). Radiocarbon data from ash-flow tuffs above and below this sequence bracket its eruption between 22,600 and 16,800 years ago. Geologic evidence, however, suggests that this single eruptive cycle had a more restricted duration of years to tens-of-years. The basis for our interpretations comes from data measured at 38 detailed sections located throughout the island. The Monte Guardia sequence rests on a series of lower rhyolitic endogenous domes in the southern part of Lipari and it covers the oldest lavas, lahars, and pyroclastic flows in the north. Only in the northeast part of the island is it covered by younger deposits which there consist of lapilli tuffs and lavas of the Monte Pilato rhyolitic cycle. The deposit ranges in thickness from more than 60 m surrounding the vents in the south to less than a few decimeters at 10 km distance in the north. Throughout most of the island the Monte Guardia sequence overlies a thin andesitic lapilli-fall layer which is a key bed for correlation. This lapilli tuff probably erupted from a volcanic center on another island of the Aeolian Arc (possibly Salina). The principal activity of the Monte Guardia sequence started with an explosion that formed a continuous breccia blanket covering most of the island. Some pumiceous blocks within this breccia are composed of alternating bands of acidic and andesitic composition suggesting that the initiation of pyroclastic activity could have been triggered by magma mixing. Typical Monte Guardia sequence consists of explosive products that grade from magmatic (pumice-fall) to phreatomagmatic (base-surge) character. The eruptive cycle is characterized by a number of energy decreasing megarhythms that start with a lapilli-fall bed and end with a base-surge set that progresses through sand-wave, massive, and planar beds. Isopach maps of the fall and surge deposits indicate that both types were directed to the northwest by prevailing winds. Existing topographic relief was an additional factor that affected the emplacement of surge products. At the end of the cycle andesitic pyroclastic flows and rhyolitic endogenous domes were emplaced above the Monte Guardia deposits near the vent.  相似文献   

18.
Palaeomagnetic techniques for estimating the emplacement temperatures of volcanic deposits have been applied to pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa. Lithic clasts were sampled from a variety of lithofacies from three pipes for which the internal geology is well constrained (the Cretaceous A/K1 pipe, Orapa Mine, Botswana, and the Cambrian K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling breccias with varying abundances of lithic inclusions, layered crater-filling pyroclastic deposits, talus breccias and volcaniclastic breccias. Basalt lithic clasts in the layered and massive vent-filling pyroclastic deposits in the A/K1 pipe at Orapa were emplaced at >570°C, in the pyroclastic crater-filling deposits at 200–440°C and in crater-filling talus breccias and volcaniclastic breccias at <180°C. The results from the K1 and K2 pipes at Venetia suggest emplacement temperatures for the vent-filling breccias of 260°C to >560°C, although the interpretation of these results is hampered by the presence of Mesozoic magnetic overprints. These temperatures are comparable to the estimated emplacement temperatures of other kimberlite deposits and fall within the proposed stability field for common interstitial matrix mineral assemblages within vent-filling volcaniclastic kimberlites. The temperatures are also comparable to those obtained for pyroclastic deposits in other, silicic, volcanic systems. Because the lithic content of the studied deposits is 10–30%, the initial bulk temperature of the pyroclastic mixture of cold lithic clasts and juvenile kimberlite magma could have been 300–400°C hotter than the palaeomagnetic estimates. Together with the discovery of welded and agglutinated juvenile pyroclasts in some pyroclastic kimberlites, the palaeomagnetic results indicate that there are examples of kimberlites where phreatomagmatism did not play a major role in the generation of the pyroclastic deposits. This study indicates that palaeomagnetic methods can successfully distinguish differences in the emplacement temperatures of different kimberlite facies.  相似文献   

19.
Apoyo caldera, near Granada, Nicaragua, was formed by two phases of collapse following explosive eruptions of dacite pumice about 23,000 yr B.P. The caldera sits atop an older volcanic center consisting of lava flows, domes, and ignimbrite (ash-flow tuff). The earliest lavas erupted were compositionally homogeneous basalt flows, which were later intruded by small andesite and dacite flows along a well defined set of N—S-trending regional faults. Collapse of the roof of the magma chamber occurred along near-vertical ring faults during two widely separated eruptions. Field evidence suggests that the climactic eruption sequence opened with a powerful plinian blast, followed by eruption column collapse, which generated a complex sequence of pyroclastic surge and ignimbrite deposits and initiated caldera collapse. A period of quiescence was marked by the eruption of scoria-bearing tuff from the nearby Masaya caldera and the development of a soil horizon. Violent plinian eruptions then resumed from a vent located within the caldera. A second phase of caldera collapse followed, accompanied by the effusion of late-stage andesitic lavas, indicating the presence of an underlying zoned magma chamber. Detailed isopach and isopleth maps of the plinian deposits indicate moderate to great column heights and muzzle velocities compared to other eruptions of similar volume. Mapping of the Apoyo airfall and ignimbrite deposits gives a volume of 17.2 km3 within the 1-mm isopach. Crystal concentration studies show that the true erupted volume was 30.5 km3 (10.7 km3 Dense Rock Equivalent), approximately the volume necessary to fill the caldera. A vent area located in the northeast quadrant of the present caldera lake is deduced for all the silicic pyroclastic eruptions. This vent area is controlled by N—S-trending precaldera faults related to left-lateral motion along the adjacent volcanic segment break. Fractional crystallization of calc-alkaline basaltic magma was the primary differentiation process which led to the intermediate to silicic products erupted at Apoyo. Prior to caldera collapse, highly atypical tholeiitic magmas resembling low-K, high-Ca oceanic ridge basalts were erupted along tension faults peripheral to the magma chamber. The injection of tholeiitic magmas may have contributed to the paroxysmal caldera-forming eruptions.  相似文献   

20.
Young pumice deposits on Nisyros,Greece   总被引:1,自引:1,他引:1  
The island of Nisyros (Aegean Sea) consists of a silicic volcanic sequence upon a base of mafic-andesitic hyaloclastites, lava flows, and breccias. We distinguish two young silicic eruptive cycles each consisting of an explosive phase followed by effusions, and an older silicic complex with major pyroclastic deposits. The caldera that formed after the last plinian eruption is partially filled with dacitic domes. Each of the two youngest plinian pumice falls has an approximate DRE volume of 2–3 km3 and calculated eruption column heights of about 15–20 km. The youngest pumice unit is a fall-surge-flow-surge sequence. Laterally transitional fall and surge facies, as well as distinct polymodal grainsize distributions in the basal fall layer, indicate coeval deposition from a maintained plume and surges. Planar-bedded pumice units on top of the fall layer were deposited from high-energy, dry-steam propelled surges and grade laterally into cross-bedded, finegrained surge deposits. The change from a fall-to a surge/flow-dominated depositional regime coincided with a trend from low-temperature argillitic lithics to high-temperature, epidote-and diopside-bearing lithic clasts, indicating the break-up of a high-temperature geothermal reservoir after the plinian phase. The transition from a maintained plume to a surge/ash flow depositional regime occurred most likely during break-up of the high-temperature geothermal reservoir during chaotic caldera collapse. The upper surge units were possibly erupted through the newly formed ringfracture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号