首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The implications of the intrinsic luminosity evolution with cosmological epoch on the value of the density parameter () and evolution of radio sizes of extragalactic radio sources have been considered. It is shown that a power law evolution model of the sortP (1 +z) can be used to contrain the value of . In the presence of a strong luminosity evolution, the model yields an upper limit of 0.5.It is also shown that the angular diameter redshift ( – z) relation for quasars can be interpreted in terms of the assumed luminosity evolution combined with a luminosity-linear size correlation with little or no linear size evolution required. On the other hand, strong linear size evolution is needed to explain the – z data for radio galaxies independent of luminosity.  相似文献   

2.
It is shown that the Hubble curvem(z) for galaxies and quasars averaged over a large volume of data forms in the first approximation a single continuous curve in the interval of red shifts 10–2.5z4.5, which is satisfactorily described by the dependence .A large deviation of the observed mean dependence from the theoretical one predicted by the standard cosmology is explained by the evolution of the galaxy and especially quasar luminosity. The corresponding mid-statistical function of the absolute luminosity variation for the last 4/5 times of existence in the Universe is equal toM(z)M(z 0)=logz/z 0+2z–0.4z 2.The luminosity of the most far distant from the observed quasars on the average by 5–6 stellar magnitudes high than the luminosity of near galaxies and quasars. It is obtained that even the most far distant quasars atz5 are in the maximum of luminosity, or their extinction has just began, thus the quasar formation should be expected forz>(5–6). The relative rate of the luminosity decrease of galaxies and near quasars is rather accurately amounts in the recent epoch 7% per 109 years. The obtained average Hubble curve of galaxies and quasars is evidently the main cause of their evolution in the Universe.  相似文献   

3.
The exact geometry of the Roche curvilinear coordinates (, , ) in which corresponds to the zero-velocity surfaces is investigated numerically in the plane, as well as in the spatial, case for various values of the mass-ratio between the two point-masses (m 1,m 2) constituting a binary system.The geometry of zero-velocity surfaces specified by -values at the Lagrangian points are first discussed by taking their intersections with various planes parallel to thexy-, xz- andyz-planes. The intersection of the zero-velocity surface specified by the -value at the Lagrangian equilateral-triangle pointsL 4,5 with the planex=1/2 discloses two invariable curves passing through the pointsL 4,5 and situated symmetrically with respect to thexy-plane whose form is independent of the mass-ratio.The geometry of the remaining two coordinates (, ) orthogonal to the zero-velocity surfaces is investigated in thexy- andxz-planes from extensive numerical integrations of differential equations generated from the orthogonality relations among the coordinates. The curves (x, y)=constant in thexy-plane are found to be separated into three families by definite envelopes acting as boundaries whose forms depend upon the mass-ratio only: the inner -constant curves associated with the masspointm 1, the inner -constant curves associated with the mass-pointm 2 and the outer -constant curves. All the -constant curves in thexy-plane coalesce at either of the Lagrangian equilateraltriangle pointsL 4,5, except for a limiting case coincident with thex-axis. The curves (x, z)=constant in thexz-plane are also separated by definite envelopes depending upon the mass-ratio into different families: the inner -constant curves associated with the mass-pointm 1, the inner -constant curves associated with the mass-pointm 2 and the outer -constant curves on both sides out of the envelopes. For larger values ofz, the curves =constant tend asymptotically to the line perpendicular to thex-axis and passing through the centre of mass of the system, except for a limiting case coincident with thex-axis. The geometrical aspects of the envelopes for the curves (x, y)=constant in thexy-plane and the curves (x, z)=constant in thexz-plane are also discussed independently.In the three-dimensional space, the Roche coordinates can be conveniently defined in such a way as to correspond to the polar coordinates in the immediate neighbourhood of the origin, and to the cylindrical coordinates at great distances. From numerical integrations of simultaneous differential equations generating spatial curves orthogonal to the zero-velocity surfaces, the surfaces (x, y, z)=constant and the surfaces (x, y, z)=constant are constructed as groups of such spatial curves with common values of some parameters specifying the respective surfaces.On leave of absence from the University of Tokyo as an Honorary Fellow of the Victoria University of Manchester.  相似文献   

4.
Because of a suspicion that a positive correlation exists between the luminosity of the first-class galaxies and the richness of the clusters, an attempt is made of taking into account the difference in richness (and presumably in total population) between the clusters withz<0.1 and the ones with 0.1<z0.2 (all being in the list of Peach, 1969) in the analysis of the redshift-magnitude relation of the brightest members.This analysis carried out with the clusters of richness 1 and 2, both present in the intervals of redshift 0.0–0.1 and 0.1–0.2 supports the steady-state model of the Universe in comparison with the category of the models with =0.This result induces another kind of selection effect, due to difference in the mean space density of the data points between the region withz<0.1 and the one with 0.1<z0.2, the mean volume occupied by the observed cluster being correlated with the luminosity of its brightest galaxy: also in this case the analysis supports the steady-state cosmology, while the tendency is clearly towards lower value ofq 0.The last result brings into consideration the models of the Universe with 0: the results obtained are compatible with those obtained by the analysis of other relations i.e. logN-logS of the 3C sources;N-z relation of the quasistellar objects;m-z for brightest quasars.  相似文献   

5.
I give an interpretation of a result of Simpsonet al. (1988) on the variation with kinetic energyT i of the mean pathlengthX m (T i ) of the galactic cosmic rays (CGRs) in the range 0.1T i 10.0 GeV nucl–1. I argue that the data onX m (T i ) may be interpreted in terms of a model of GCR diffusion on the one-dimensional Alfvén-wave turbulence, having a cutoff in the spectrum at frequencies h , where h is the proton gyrofrequency. The cutoff results in changing of the character of variation of the GCR diffusion coefficientD(T i )T a in the rangeT i 1 GeV nucl–1 towards some more complicated variation at 0.1T i 1.0 GeV nucl–1 due to the peculiarities of the pitch-angle scattering at 900.  相似文献   

6.
The aim of this paper has been to study the neutral helium triplet emission lines identified in the spectrum of the envelope of Nova Delphini. By comparing the observed flux of the neutral helium lines with that calculated theoretically by Robbins, we find that the optical thickness in the center of the line 3889 is of the order of 21.50 for summer 1969. The optical thickness obtained by this method is here denoted tran(3889).On the other hand, we obtain the number of neutral helium atoms in the 23S state [N(23S)] by considering the equilibrium between the mechanisms that populate and depopulate this state. We then find that the depopulation by photoionization due to the radiation of Ly (Hi), transitions to the 21S, 21p and 23p states by electron collision, photoionization due to the continuum radiation of the central star, are 82.70%, 13.20%, 2.40%, 0.90% and 0.80% respectively. We find that the mechanism of the photoionization by Ly is the dominant mechanism of depopulation of 23S state. We calculated ( 3889) of the order of 82.37, fromN(23S), obtained in the preceding paragraph. The optical thickness obtained by this method is here denoted bal(3889).The difference between tran(3889) and bal(3889) is very large and it cannot be attributed to calculation errors. We have considered all the mechanisms that can depopulate the 23S state, so we then conclude that the difference between tran(3889) and bal(3889) is due to the heterogeneity of the envelope of the Nova, already found by us in our previous study of the profiles of the permitted and forbidden lines. Finally, we find from this study a filling factor of the order of 0.30.  相似文献   

7.
The observed dependences of the spectral indices () of extragalactic radio sources on redshift (z) and radio luminosity (P) are investigated taking into account the possible luminosity selection effects in bright source samples. Using the steep spectrum (>0.5) extended (D>20 Kpc) sources from a compilation of three complete samples, the contribution of the luminosity selection effects to the observed -z relation is quantitatively estimated.We show that a highly significant fraction (54%) of the observed spectral steepening with redshift can be attributed to these luminosity selection effects present in most well-studied flux density-limited samples.  相似文献   

8.
The variation of radio luminosity with redshift and its effect on the analysis of the angular size-redshift (z) relation for a bright radio source sample (s 178 10Jy) has been investigated. By assuming a power law dependence of luminosity on redshift of the formP (1 +z), it was found that 4.4 (with correlation coefficientr 0.99) for at leastz 0.3. Correction for such a strongP – (1 +z) correlation when considering thez data for the sample led to a steeperz slope. This could be explained by assuming linear size evolution of the formD (1 +z)n withn = 2.8 – 3.3 consistent with both theoretical results and those obtained for more homogeneous source samples.  相似文献   

9.
In this paper I present a new evolution model of QSOs luminosity. The model is based on edges distribution of apparent magnitude-redshift of QSOs. After the quasars were formed, the luminosities were increasing until they attained their maximum value atz=2+a, where –0.1a0.6, then the luminosities were decreasing. If the QSOs originate from superconducting cosmic string of same initial massM i 1012 M , the formation epochs are different, most of the quasars start atz cutoff5.6. The most luminous QSOs start at later epochz cutoff5.15. The present sky survey echniques may give us the possibility to see the formation of QSOs at apparent magnitudem V 22.5 by chance of 0.3%.  相似文献   

10.
Analytic structure of high-density steady isothermal spheres is discussed using the TOV equation of hydrostatic equilibrium which satisfies an equation of state of the kind:P = K g , = g c 2.Approximate analytical solutions to the Tolman-Oppenheimer-Volkoff (TOV) equations of hydrostatic equilibrium in (, ), (,U) and (u, v) phase planes in concise and simple form useful for short computer programmes or on small calculator, have been given. In Figures 1, 2, and 3, respectively, we display the qualitative behaviours of the ratio of gas density g to the central density gc , g / gc ; pressureP to the gc ,P/ gc ; and the metric componente , for three representative general relativistic (GR) isothermal configurations =0.1, 0.2, and 0.3. Figure 4 shows the solution curve (, ) for =0.1, 0.2, and 0.3 (=0 represents the classical (Newtonian) curve). Numerical values of physical quantitiesv (=4r 2 P *(r)), in steps ofu (=M(r)/r)=0.03, and the mass functionU, in steps of =0.2 (dimensionless radial distance), are given, respectively, in Tables I and II. Other interesting features of the configurations, such as ratio of gravitational radius 2GM/c 2 to the coordinate radiusR, mass distributionM(r)/M, pressure (or density) distributionP/P c , binding energy (B.E.), etc., have also been incorporated in the text. It has further been shown that velocity of sound inside the configurations is always less than the velocity of light.Part of the work done at Azerbaijan State University, Baku, U.S.S.R., and Mosul University, Mosul, Iraq, 1985-1986  相似文献   

11.
The velocity gradients of the contrastreaming electron beams observed in the Earth's magnetosphere can excite three types of ordinary mode instabilities, namely (i) B-resonance electron instability, (ii) ion cyclotron instability, and (iii) unmagnetized ion instability. The B-resonance electron instability occurs at small values of the shear parameter 10–4<S<10–3, whereS = [(1/e){dU o(x)}/(dx)] (U 0(x) and e being the streaming velocity of the electron beams and the electron cyclotron frequency, respectively). Near the equatorial plane of the bouncing electron beams region, this instability can generate electromagnetic waves having frequenciesf(0.045–0.2) Hz and wavelentghs (0.5–10)km, and the wave magnetic field is polarised in a radial direction. This instability can also occur in the plasma sheet region during the earthwards and tailwards plasma flows events and can generate waves, with wave magnetic field polarised along north-south direction, in the frequency rangef(0.007–0.02) Hz with (10–100)km nearR=–35R E . For 10–3<S<10–2, the ion cyclotron instability is excited and it can generate waves up to 5th harmonic or so of ion cyclotron frequency. ForS>10–2, the unmagnetized ion instability is excited which can generate electromagnetic waves having frequences from 5 to 50 Hz and typical wavelengths (0.5–6)km. The growth rates of all the three velocity shear driven instabilities are reduced in the presence of cold background plasma. The turbulence generated by these instabilities may give rise to enhanced effective electron-electron and electron-ion collisions and broaden the bouncing electron beams.  相似文献   

12.
The aim of the present paper will be to present a new approach to the light changes of eclipsing binary systems. The light changes have been expanded into the Fourier-Bessel and Dini series. The coefficients of these expansions which are the Hankel transforms of the order of the loss of light (1–l) have been expressed in terms of the eclipse elements. These discrete Hankel transformsH (j m ) andH ( m ) valid for only the positive real zerosj m and m of the functionsJ and [xJ(x)+J (x)] have been generalized for any positive value of andy. Thus, these general expressions for the Hankel transforms of the light curves which are valid for all types of eclipses, for any arbitrary degree of the adopted limb-darkening law and, moreover, for any positive value of the free parameters andy, may be used for the solution of the elements of eclipsing binary systems.  相似文献   

13.
R. Grant Athay 《Solar physics》1988,116(2):223-237
An attempt is made in this paper to determine the coefficient a in a power-law relationship of the form V ~T between the r.m.s. velocity fluctuation, V for raster images with 3 resolution and the temperature, T of line formation using SMM solar data. For T between 8000 and 105 K, the data suggest a best fit with 3/4 < 1. It is argued, however, that unresolved fine structure tends to reduce the observed value of V and that higher resolution data may yield different values for . Skylab data have shown that the non-thermal line broadening velocity, , is proportional to T 1/2. Also, for all temperatures less than 105 K, V . This latter result, however, is again dependent on spatial resolution and may not be true in observations made with sufficient spatial resolution. The magnitudes of both V and indicate that bulk motions play important roles in the structure of the solar atmosphere as well as in its energy and momentum balance. It is important, therefore, to identify the true nature of such motions with better accuracy than is possible with currently available data.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

14.
Computations of polarization and intensity of radiation from a unit stellar surface area are presented, as well as a study of the numerical characteristics of atmospheres — single-scattering albedo and the initial source function(), which define the polarization behaviour of atmospheres. The radiatively stable models of stellar atmospheres presented by Kuruczet al. (1974) and Kurucz (1979) have been used for calculations. Since the versus optical depth dependence is rather weak, it has been assumed that (=cost. With a fixed effective temperatureT eff maximum values of are characteristic of stars featuring the lowest surface gravity accelerationg. Among stars with radiatively stable atmospheres, maximum values of (=5000 Å) 0.4–0.6 are exhibited by supergiants withT eff=8000–20 000 K. The plot of () is characterized by discontinuities at the boundaries of spectral series for hydrogen and, sometimes, for helium. Maximum are attained in the Lyman region of =912–1200 Å, where can reach the value 0.7–0.9 for supergiants, this value being 0.3 for Main-Sequence stars. For stars withT eff 35 000 K, high values of also are attained for <912 Å. Within the infrared region, is always small because of bremsstrahlung absorption.A rapid growth of the source functionB with < typical for ultraviolet range (within the Wien part of spectrum), together with high values of results in the strong polarization of emission from a unit stellar surface element, sometimes exceeding the values for the case of a pure electron scattering. For longer wavelengths, where the limb-darkening coefficient is smaller, the plane of polarization abruptly turns 90° in the central parts of the visible stellar disk.  相似文献   

15.
Neckel  Heinz 《Solar physics》2003,212(2):239-250
The coefficients A 0 of the limb-darkening functions I()/I center=P 5()=A ii (i=0,...5, =cos), published by Neckel and Labs (1994), and the corresponding disk-center intensities I center=I(=1), which were taken from the absolutely calibrated Kitt Peak FTS Atlas of the disk center (Brault et al., see Neckel and Labs, 1984, and Neckel 1999), are used to derive `limb intensities' I limb=I(=0)=A 0 I center. The corresponding `limb temperatures' T limb vary only slightly with wavelength; the mean value (4750 K) and the wavelength of maximum intensity (605 nm) conform to Wien's law (max T=0.288 cm K). Further, T limb agrees closely with that temperature, which follows from Avrett's (2000) model of the photosphere for 5000.006; for this layer the optical thickness along the line of sight is close to 1 (`the limb'; compare Unsöld, 1968). The slight variation of T limb with wavelength is presumably due to systematic errors in the Neckel and Labs intensity data: it corresponds almost precisely to the differences between their data and the more recent ones provided by, e.g., Burlov-Vasiljev, Gurtovenko, and Matvejev (1995), and Burlov-Vasiljev, Matvejev, and Vasiljeva (1998). Two simple correction functions (for 550 nm and 550 nm) are proposed, which apply to all Neckel and Labs intensity data (disk center and full disk, line spectrum and (quasi) continuum), and to the absolutely calibrated Kitt-Peak FTS Atlas (spectra of disk center and full disk) as well.  相似文献   

16.
The consequences of a cosmological term varying asS –2 in a spatially isotropic universe with scale factorS and conserved matter tensor are investigated. One finds a perpetually expanding universe with positive and gravitational constantG that increases with time. The hard equation of state 3P>U (U mass-energy density,P scalar pressure) applied to the early universe leads to the expansion lawSt (t cosmic time) which solves the horizon problem with no need of inflation. Also the flatness problem is resolved without inflation. The model does not affect the well known predictions on the cosmic light elements abundance which come from standard big bang cosmology.In the present, matter dominated universe one findsdG/dt=2H/U (H is the Hubble parameter) which is consistent with observations provided <10–57 cm–2. Asymptotically (S) the term equalsGU/2, in agreement with other studies.  相似文献   

17.
As a consequence of the Taylor–Proudman balance, a balance between the pressure, Coriolis and buoyancy forces in the radial and latitudinal momentum equations (that is expected to be amply satisfied in the lower solar convection zone), the superadiabatic gradient is determined by the rotation law and by an unspecified function of r, say, S(r), where r is the radial coordinate. If the rotation law and S(r) are known, then the solution of the energy equation, performed in this paper in the framework of the ML formalism, leads to a knowledge of the Reynolds stresses, convective fluxes, and meridional motions. The ML-formalism is an extension of the mixing length theory to rotating convection zones, and the calculations also involve the azimuthal momentum equation, from which an expression for the meridional motions in terms of the Reynolds stresses can be derived. The meridional motions are expanded as U r(r,)=P 2(cos)2(r)/r 2+P 4(cos)4(r)/r 2 +..., and a corresponding equation for U (r,). Here is the polar angle, is the density, and P 2(cos), P 4(cos) are Legendre polynomials. A good approximation to the meridional motion is obtained by setting 4(r)=–H2(r) with H–1.6, a constant. The value of 2(r) is negative, i.e., the P 2 flow rises at the equator and sinks at the poles. For the value of H obtained in the numerical calculations, the meridional motions have a narrow countercell at the poles, and the convective flux has a relative maximum at the poles, a minimum at mid latitudes and a larger maximum at the equator. Both results are in agreement with the observations.  相似文献   

18.
By considering the consecutive effects of synchrotron reabsorption, Compton scattering and other kinds of energy losses of relativistic electrons, it may be possibile to form a universal distribution of electrons in the region of reabsorption (synchrotron reactor). This will be either a power law with a power index of the energy spectrumn r=3–5, or a relativistic Maxwell distribution with an electron temperatureT e=4T b(1+), where is the ratio of Compton (or other losses) to synchrotron losses, andT bis the brightness temperature of the radiation. Since the total energy losses of electrons in the reactor is equal to zero, this ensures the continuous existence and accumulation of relativistic electrons in the region of reabsorption and their associated hard scattered radiation. Multiple Compton scattering produces a specific stepped power distribution of scattered radiation by which we can identify the reactor. In the nuclei of quasars W Hand, therefore,n r=3; hence the spectral index of scattered radiation in the corresponding ranges (optical, UV, X- and -ray) is .Consideration of other kinds of losses and gains of energy by electrons can lead to the dependencen =3–5(E) — where (E) may have either positive or negative values—which, in turn, leads to the frequency dependence of the spectral index of scattered radiation = 1 – (), |()| < 1, |(E)| < 1.Within the framework of the model being considered, the physical parameters of the nucleus of quasar 3C 273 are calculated.  相似文献   

19.
In the previously published Parts I and II of the paper, the author has constructed a formal long-periodic solution for the case of 11 resonance in the restricted problem of three bodies to 0(m 3/2), wherem is the small mass parameter of the system. The time-dependencet(, ,m), where is the mean synodic longitude and is related to the Jacobi constant, has been expressed by ahyperelliptic integral. It is shown here that with the approximationm=0 in the integrand, the functiont(, , 0) can be expanded in a series involving standardelliptic functions. Then the problem of inversion can be formally solved, yielding the function (t, , 0).Similarly, the normalized period (,m) of the motion can be approximated by theHagihara hyperelliptic integral (, 0), corresponding tom=0. This integral is also expanded into elliptic functions. Asymptotic forms for (, 0) are derived for 0 and for 1, corresponding to the extreme members of thetadpole branch of the family of orbits.  相似文献   

20.
The stars in the Main Sequence are seen as a hierarchy of objects with different massesM and effective dynamical radiiR eff=R/ given by the stellar radii and the coefficients for the inner structure of the stars.As seen in a previous work (Paper I), during the lifetime in the Main SequenceR eff(t) remains a near invariant when compared to the variation in the time ofR(t) and (t).With such an effectiveR eff one obtains the amounts of actionA c(M), the effective densities eff(M)=(M)3(M), the densities of action and of energy (or mean presures in the stellar interior)a c(M),e c(M), and the potential energiesE p(M).The amounts of action areA cM k withk1.87 for the M stars,k5/3 for the KGF stars, andk1.83 for the A and earlier stars, representing very simples conditions for the other dynamical parameters. For instancek5/3 means a near invariant effective density eff for the KGF stars, while for such stars the mean densities and coefficients present the strongest variations with masses (M)M –1.81, (M)M0.6.The cases for the M stars (e c(M)M –1) and for the A and earlier stars (betweena c(M)=constant and eff(M)M –1) and also discussed. These conditions for the earlier stars also represent reasonable mean values for the whole stellar hierarchy in the range of masses 0.2M M25M .With all this, one can build dynamical HR diagrams withA c(M), Ep(M), eff M p , etc., whose characteristics are analogous to these in the photometrical HR diagram. A comparison is made betweenA c(M) from the models here and the HR diagram with the best known stars of luminosity classes IV, V, and white dwarfs.The comparison of the potential energiesE p(M)M –p according to the stellar models used here and the observed frequency function (MM –q (number of stars in a given interval of masses) from different authors suggests the possibility that the productE p(M)(M) is a constant, but this must be confirmed with further studies of the function (M) and its fine structure.There are analogies between the formulation used here for the stellar hierarchy and other physical processes, for instance, in modified forms of the Kolmogorov law of turbulence and in the formulation used for the hierarchy of molecular clouds in gravitational equilibrium. Besides, the function of actionA c(M) for the stars has analogous properties to the relations of angular momenta and massesJ(M) for different types of objects. The cosmological implications of all this are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号