首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two years of eddy covariance measurements of above- and below-canopy carbon fluxes and static opaque chamber and gas chromatography technique measurements of soil respiration for three treatments (bare soil, soil litterfall, soil litterfall seedling) were carried out in a tropical seasonal rain forest. In addition, data of photosynthesis of dominant tree species and seedlings, leaf area index, litter production and decomposing speed, soil moisture, soil temperature and photosynthetic photon flux density within the forest were all measured concurrently. Data from January 2003 to December 2004 are used to present annual variability of carbon flux and relationships between carbon flux and impact factors. The results show that carbon flux of this forest presented unusual tendency of annual variation; above-canopy carbon fluxes were negative in the dry season (November-April) and mainly positive in the rainy season, but overall the forest is a carbon sink. Carbon flux has obviously diurnal variation in this tropical seasonal rain forest. Above-canopy carbon fluxes were negative in the daytime and absolute values were larger in the dry season than that in the rainy season, causing the forest to act as a carbon sink; at night, carbon fluxes were mainly positive, causing the forest to act as a carbon source. Dominant tree species have greater photosynthesis capability than that of seedlings, which have a great effect on above-canopy carbon flux. There was a significant correlation between above-canopy carbon flux and rate of photosynthesis of tree species. There was also a significant correlation between above-canopy carbon flux and rate of photosynthesis of seedlings; however, the below-canopy carbon flux was only significantly correlated with rate of photosynthesis of seedlings during the hot-dry season. Soil respiration of the three treatments displayed a markedly seasonal dynamic; in addition, above-canopy carbon fluxes correlated well with soil respiration, litterfall production, litterfall decomposition rate, precipitation, and soil moisture and temperature. A primary statistical result of this study showed that above-canopy carbon flux in this forest presented carbon source or sink effects in different seasons, and it is a carbon sink at the scale of a year.  相似文献   

2.
In order to discuss the values and daily variation characteristics of heat storage fluxes in a tropical seasonal rain forest in Xishuangbanna, the sensible and latent heat storage flux within air column, canopy heat storage flux, energy storage by photosynthesis and ground heat storage above the soil heat flux plate, as well as the ratios of these heat storage fluxes to the net radiation in the cool-dry, hot-dry and rainy season were compared and analyzed based on the observation data of carbon fluxes, meteorological factors and biomass within this tropical seasonal rain forest from January 2003 to December 2004. The findings showed that heat storage terms ranged significantly in the daytime and weakly in the nighttime, and the absolute values of sensible and latent heat storage fluxes were obviously greater than other heat storage terms in all seasons. In addition, the absolute values of total heat storage fluxes reached the peak in the hot-dry season, then were higher in the rainy season, and reached the minimum in the cool-dry season. The ratios of heat storage fluxes to net radiation generally decreased with time in the daytime, moreover, the sensible and latent heat storage dominated a considerable fraction of net radiation, while other heat storage contents occupied a smaller fraction of the net radiation and the peak value was not above 3.5%. In the daytime, the ratios of the total heat storage to net radiation were greater and differences in these ratios were distinct among seasons before 12:00, and then they became lower and differences were small among seasons after 12:00. The energy closure was improved when the storage terms were considered in the energy balance, which indicated that heat storage terms should not been neglected. The energy closure of tropical seasonal rain forest was not very well due to effects of many factors. The results would help us to further understand energy transfer and mass exchange between tropical forest and atmosphere. Moreover, they would supply a research basis for studying energy closure at other places.  相似文献   

3.
4.
CO2 fluxes from soils and related environmental factors were measured in three forest ecosystems of Dinghu Mountain using static chamber-gas chromatograph technique for one year. The seasonal pattern of CO2 flux, contribution of litter on total CO2 flux and the correlations of CO2 flux with soil temperature and soil water content were examined for each type of forest. The results were given as followings: (1) The seasonal patterns of CO2 flux from soil of the three types of forest were similar, with a higher CO2 flux in rainy season than in dry season. The comparative relations of mean annual CO2 fluxes between the three sites were expressed as:monsoon forest > mixed forest > pine forest. (2) CO2 fluxes from litter decomposition in monsoon forest, mixed forest and pine forest accounted for 24.43%, 41.75% and 29.23% of the corresponding total CO2 fluxes from forest floor, respectively. (3) Significant relationships were found between CO2 fluxes and soil temperatures at 5 cm depth for the three types of forest, which could be best described by exponential equations. The calculated Q10 values based on soil temperature at 5 cm depth ranged from 1.86 to 3.24. More significant relationships were found between CO2 fluxes and soil water content when the annual variation coefficients of soil moisture were higher.  相似文献   

5.
Zhang  Yiping  Sha  Liqing  Yu  Guirui  Song  Qinghai  Tang  Jianwei  Yang  Xiaodong  Wang  Yuesi  Zheng  Zheng  Zhao  Shuangju  Yang  Zhen  Sun  Xiaomin 《中国科学:地球科学(英文版)》2006,49(2):150-162

Two years of eddy covariance measurements of above-and below-canopy carbon fluxes and static opaque chamber and gas chromatography technique measurements of soil respiration for three treatments (bare soil, soil+litterfall, soil+litterfall+seedling) were carried out in a tropical seasonal rain forest. In addition, data of photosynthesis of dominant tree species and seedlings, leaf area index, litter production and decomposing speed, soil moisture, soil temperature and photosynthetic photon flux density within the forest were all measured concurrently. Data from January 2003 to December 2004 are used to present annual variability of carbon flux and relationships between carbon flux and impact factors. The results show that carbon flux of this forest presented unusual tendency of annual variation; above-canopy carbon fluxes were negative in the dry season (November–April) and mainly positive in the rainy season, but overall the forest is a carbon sink. Carbon flux has obviously diurnal variation in this tropical seasonal rain forest. Above-canopy carbon fluxes were negative in the day-time and absolute values were larger in the dry season than that in the rainy season, causing the forest to act as a carbon sink; at night, carbon fluxes were mainly positive, causing the forest to act as a carbon source. Dominant tree species have greater photosynthesis capability than that of seedlings, which have a great effect on above-canopy carbon flux. There was a significant correlation between above-canopy carbon flux and rate of photosynthesis of tree species. There was also a significant correlation between above-canopy carbon flux and rate of photosynthesis of seedlings; however, the below-canopy carbon flux was only significantly correlated with rate of photosynthesis of seedlings during the hot-dry season. Soil respiration of the three treatments displayed a markedly seasonal dynamic; in addition, above-canopy carbon fluxes correlated well with soil respiration, litterfall pro-duction, litterfall decomposition rate, precipitation, and soil moisture and temperature. A primary sta-tistical result of this study showed that above-canopy carbon flux in this forest presented carbon source or sink effects in different seasons, and it is a carbon sink at the scale of a year.

  相似文献   

6.
Two years of eddy covariance measurements of above-and below-canopy carbon fluxes and static opaque chamber and gas chromatography technique measurements of soil respiration for three treatments (bare soil, soil+litterfall, soil+litterfall+seedling) were carried out in a tropical seasonal rain forest. In addition, data of photosynthesis of dominant tree species and seedlings, leaf area index, litter production and decomposing speed, soil moisture, soil temperature and photosynthetic photon flux density within the forest were all measured concurrently. Data from January 2003 to December 2004 are used to present annual variability of carbon flux and relationships between carbon flux and impact factors. The results show that carbon flux of this forest presented unusual tendency of annual variation; above-canopy carbon fluxes were negative in the dry season (November–April) and mainly positive in the rainy season, but overall the forest is a carbon sink. Carbon flux has obviously diurnal variation in this tropical seasonal rain forest. Above-canopy carbon fluxes were negative in the day-time and absolute values were larger in the dry season than that in the rainy season, causing the forest to act as a carbon sink; at night, carbon fluxes were mainly positive, causing the forest to act as a carbon source. Dominant tree species have greater photosynthesis capability than that of seedlings, which have a great effect on above-canopy carbon flux. There was a significant correlation between above-canopy carbon flux and rate of photosynthesis of tree species. There was also a significant correlation between above-canopy carbon flux and rate of photosynthesis of seedlings; however, the below-canopy carbon flux was only significantly correlated with rate of photosynthesis of seedlings during the hot-dry season. Soil respiration of the three treatments displayed a markedly seasonal dynamic; in addition, above-canopy carbon fluxes correlated well with soil respiration, litterfall pro-duction, litterfall decomposition rate, precipitation, and soil moisture and temperature. A primary sta-tistical result of this study showed that above-canopy carbon flux in this forest presented carbon source or sink effects in different seasons, and it is a carbon sink at the scale of a year.  相似文献   

7.
As an elite region of human being’s residence and development, the oasis in arid areas fosters more than 90% of population, produces more than 95% of the industrial and agricultural value, although its acreage takes only 3%―5% of total arid areas[1,2]. In the last decades, the oasis exploitation, harnessing and pro-tecting regional eco-environment have been becomingone of key study objects in the sustainable develop-ment[3―7], as the global environment changes and re-gional environment becom…  相似文献   

8.
Grassland is the largest terrestrial ecosystem in China. It is of great significance to measure accurately the soil respiration of different grassland types for the contribution evaluation of the Chinese terrestrial ecosystem’s carbon emission to the atmospheric CO2 concentration. A three-year (2005-2007) field experiment was carried out on three steppes of Stipa L. in the Xilin River Basin, Inner Mongolia, China, using a static opaque chamber technique. The seasonal and interannual variations of soil respiration rates were analyzed, and the annual total soil respiration of the three steppes was estimated. The numerical models between soil respiration and water-heat factors were established respectively. Similar seasonal dynamic and high annual and interannual variations of soil respiration were found in all of the three steppes. In the growing season, the fluctuation of soil respiration was particularly evident. The coefficients of variation (CVs) for soil respiration in different growing seasons ranged from 54% to 93%, and the annual CVs were all above 115%. The interannual CV of soil respiration progressively decreased in the order of Stipa grandis (S. grandis) steppe Stipa baicalensis (S. baicalensis) steppe Stipa krylovii (S. krylovii) steppe. The annual total soil respiration for the S. baicalensis steppe was 223.62?299.24 gC m-2 a-1, 150.62-226.99 gC m-2 a-1 for the S. grandis steppe, and 111.31–131.55 gC m-2 a-1 for the S. krylovii steppe, which were consistent with the precipitation gradient. The variation in the best fitting temperature factor explained the 63.5%, 73.0%, and 73.2% change in soil respiration in the three steppes at an annual time scale, and the corresponding Q10 values were 2.16, 2.98, and 2.40, respectively. Moreover, the Q10 values that were calculated by soil temperature at different depths all expressed a 10 cm 5 cm surface in the three sampling sites. In the growing season, the soil respiration rates were related mostly to the surface soil moisture, and the 95.2%, 97.4%, and 93.2% variations in soil respiration in the three steppes were explained by the change in soil moisture at a depth of 0-10 cm, respectively.  相似文献   

9.
The brief interaction of precipitation with a forest canopy can create a high spatial variability of both throughfall and solute deposition. We hypothesized that (i) the variability in natural forest systems is high but depends on system-inherent stability, (ii) the spatial variability of solute deposition shows seasonal dynamics depending on the increase in rainfall frequency, and (iii) spatial patterns persist only in the short-term. The study area in the north-western Brazilian state of Rondônia is subject to a climate with a distinct wet and dry season. We collected rain and throughfall on an event basis during the early wet season (n = 14) and peak of the wet season (n = 14) and analyzed the samples for pH and concentrations of , Na+, K+, Ca2+, Mg2+, Cl, , and DOC. The coefficient of variation for throughfall based on both sampling intervals was 29%, which is at the lower end of values reported from other tropical forest sites, but which is higher than in most temperate forests. Coefficients of variation of solute deposition ranged from 29% to 52%. This heterogeneity of solute deposition is neither particularly high nor particularly low compared with a range of tropical and temperate forest ecosystems. We observed an increase in solute deposition variability with the progressing wet season, which was explained by a negative correlation between heterogeneity of solute deposition and antecedent dry period. The temporal stability of throughfall patterns was low during the early wet season, but gained in stability as the wet season progressed. We suggest that rapid plant growth at the beginning of the rainy season is responsible for the lower stability, whereas less vegetative activity during the later rainy season might favor the higher persistence of “hot” and “cold” spots of throughfall quantities. The relatively high stability of throughfall patterns during later stages of the wet season may influence processes at the forest floor and in the soil. Solute deposition patterns showed less clear trends but all patterns displayed a short-term stability only. The weak stability of those patterns is apt to impede the formation of solute deposition-induced biochemical microhabitats in the soil.  相似文献   

10.
11.
12.
Jie Ma  Xin‐Jun Zheng  Yan Li 《水文研究》2012,26(26):4029-4037
As the substantial component of the ecosystem respiration, soil CO2 flux is strongly influenced by infrequent and unpredictable precipitation in arid region. In the current study, we investigated the response of soil CO2 flux to rain pulses at a saline desert in western China. Soil CO2 flux was measured continuously during the whole growing season of 2009 at six sites. We found that there were remarkable changes in amplitude or diurnal patterns of soil CO2 flux induced by rainfall events: from bimodal before rain to a single peak after that. Further analysis indicated that there is a significant linear relationship (P < 0.001) between soil CO2 flux and soil temperature (Tsoil). However, a hysteresis between the waveform of diurnal course of CO2 flux and Tsoil was observed: with soil CO2 flux always peaked earlier than Tsoil. Furthermore, a double exponential decay function was fitted to the soil CO2 flux after rainfall, and total carbon (C) releases were estimated by numerical integration for rainfall events. The relative enhancement and total C release, in association with the rain pulses, was linearly related to the amount of precipitation. According to the size and frequency of rainfall events, the total amount of C release induced by rain pulses was computed as much as 7.88 g C·m–2 in 2009, equivalent to 10.25% of gross primary production. These results indicated that rain pulses played a significant role in the carbon budget of this saline desert ecosystem, and the size of them was a good indicator of rain‐induced flux enhancement. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Continuous measurement of carbon dioxide exchange using the eddy covariance (EC) technique is made at the Qianyanzhou mid-subtropical planted forest as part of the ChinaFLUX network. Qianyanzhou planted forest is affected by typical subtropical continental monsoon climate. It has plentiful water and heat resource but is in inconsistency of its seasonal distribution in the mid-subtropical region, thus seasonal drought frequently occurs in this planted forest. In this study, seasonal drought effect on ecosystem carbon sequestration was analyzed based on net ecosystem productivity (NEP), ecosystem respiration (RE) and gross ecosystem productivity (GEP) at the month scale in 2003 and 2004. In this drought-stressed planted forest, ecosystem carbon sequestration showed a clear seasonality, with low rates during seasonal drought and in winter. The declining degree of ecosystem carbon sequestration under the seasonal drought condition was determined by the accumulation of soil moisture deficits and a co-occurrence of high temperatures. Different drought effects are expected for RE and GEP. The net effect of ecosystem carbon balance depends on how these two quantities are affected relatively to each other. Summer drought and heat wave are two aspects of weather that likely play an important part in the annual NEP of forest in this region.  相似文献   

14.
Streamwatcr chemistry was monitored for five years in six streams in a paired catchment experiment in Mendolong, Sabah, Malaysia, including controls in rain forest and secondary vegetation after the [Borneo fire] of 1982–3 and comparing the effects of different ways of establishing forest plantations with Acacia mangium. Three catchments were covered with selectively logged lowland hill dipterocarp forest (W4-W6) and three (W1-W3) with secondary vegetation after forest fires. The control catchments, W3 and W6 reported in this paper, had no treatments applied. Reference monitoring at all streams was for 25 months and the total period of study reported here is 64 months. The soils in the catchments were mainly Orthic Acrisol in W3 and Gleyic Podsol in W6 and a mix of both soil types in the other catchments. Element baseflow concentrations were generally low and not significantly different from stormflow concentrations for all streams during the reference period. Concentrations were also generally consistently low for the two control streams during the whole period of measurement. Chemical inputs as wet deposition were low as a result of a high input from local convection. The rain forest on the Podsol had a tight nutrient circulation indicated by small net losses of macronutrients. The Podsol was found to have poorer conditions for soil mineralization and more surficial runoff, resulting in higher loads of S, C and N in the organic phases, with higher organic C/N ratio, in the discharge. Nitrogen was found to accumulate in both catchments. An almost double accumulation of N in W3 was attributed to a larger biomass accumulation continuing after the forest fire 3–8 years earlier. On the other hand, the Acrisol in W3 had much larger net losses of S, Si, K, Ca, Mg and Na. Most of differences could be attributed to differences in weathering between the soils and local mineralogical differences.  相似文献   

15.
The impacts of temperature, photosynthetic active radiation (PAR) and vapor pressure deficit (VPD) on CO2 flux above broad-leaved Korean pine mixed forest in the Changbai Mountains were studied based on eddy covariance and meteorological factors measurements.The results showed that, daytime CO2 flux was mainly controlled by PAR and they fit Michaelis-Menten equation. Meanwhile VPD also had an influence on the daytime flux. Drier air reduced the CO2 assimilation of the ecosystem, the drier the air, the more the reduction of the assimilation. And the forest was more sensitive to VPD in June than that in July and August. The respiration of the ecosystem was mainly controlled by soil temperature and they fit exponential equation. It was found that this relationship was also correlated with seasons; respiration from April to July was higher than that from August to November under the same temperature. Daily net carbon exchange of the ecosystem and the daily mean air temperature fit exponential equation. It was also found that seasonal trend of net carbon exchange was the result of comprehensive impacts of temperature and PAR and so on. These resulted in the biggest CO2 uptake in June and those in July and August were next. Annual carbon uptake of the forest ecosystem in 2003 was -184 gC. m-2.  相似文献   

16.
不同出露时间下洞庭湖洲滩土壤及生态系统呼吸特征   总被引:1,自引:0,他引:1  
周延  靖磊  杨萌  史林鹭  吕偲  雷光春 《湖泊科学》2018,30(6):1664-1671
于2015年1月洞庭湖枯水期,针对不同出露时间下的洲滩,调查其土壤理化性质,并利用LI-8100便携式二氧化碳气体分析仪监测其生态系统呼吸.结果表明:在洞庭湖枯水期,洲滩出露后,洲滩土壤有机质、硝态氮、铵态氮和全氮含量随出露时间增长而先升高后降低.土壤溶解性有机碳含量是影响洞庭湖枯水期洲滩生态系统呼吸强度的最重要影响因子.溶解性有机碳含量随出露时间增长而提高,洲滩生态系统呼吸强度随之提高,并在洲滩出露约60天后达到最高值.出露洲滩生态系统呼吸通量均值为0.72±0.55 μmol/(m2·s),超过杨树林地、芦苇地和农田地,成为洞庭湖区冬季CO2排放最活跃的区域.  相似文献   

17.
Soil CO2 efflux in forest and grassland over 5 years from 2005 to 2009 in a semiarid mountain area of the Loess plateau, China, was measured. The aim was to compare the soil respiration and its annual and inter‐annual responses to the changes in soil temperature and soil water content between the two vegetation types for observing soil quality evolution. The differences among the five study years were the annual precipitation (320.1, 370.5, 508.8, 341.6, and 567.4 mm in 2005–2009, respectively) and annual distribution. The results showed that the seasonal change of soil respiration in both vegetation types was similar and controlled by soil temperature and soil water content. The mean soil respiration across 5 years in the forest (3.78 ± 2.68 µmol CO2 m?2 s?1) was less than that in the grassland (4.04 ± 3.06 µmol CO2 m?2 s?1), and the difference was significant. The drought soil in summer depressed soil respiration substantially. The Q10 value across 5‐year measurements was 2.89 and 2.94 for forest and grassland. When soil water content was between wilting point (WP) and field capacity (FC), the Q10 in both types increased with increasing soil water content, and when soil water content dropped to below WP, soil respiration and the Q10 decreased substantially. Although an exponential model was well fitted to predict the annual mean soil respiration for each single year data, it overestimated and underestimated soil respiration, respectively, in drought conditions and after rain for short periods of time during the year. The two‐variable models including temperature and water content variables could be well used to predict soil respiration for both types in all weather conditions. The models proposed are useful for understanding and predicting potential changes in the eastern part of Loess plateau in response to climate change.  相似文献   

18.
Through combining the soil respiration with the main environmental factors under the planting shelterbelt (Populus woodland) and the natural desert vegetation (Tamarix ramosissima Phragmites communis community and Haloxylon ammodendron community) in the western Junngar Basin, the difference in soil respiration under different land use/land cover types and the responses of soil respiration to temperature and soil moisture were analyzed. Results showed that the rate of soil respiration increased with temperature. During the daytime, the maximum soil respiration rate occurred at 18:00 for the Populus woodland, 12:00 for T. ramosissima Ph. communis community, and 14:00 for H. ammodendron community, while the minimum rate all occurred at 8:00. The soil respiration, with the maximum rate in June and July and then declining from August, exhibited a similar trend to the near-surface temperature from May to October. During the growing season, the mean soil respiration rates and seasonal variation differed among the land use/land cover types, and followed the order of Populus woodland >T. ramosissima Ph. communis community > H. ammodendron community. The difference in the soil respiration rate among different land use/land cover types was significant. The soil respiration of Pouplus woodland was significantly correlated with the near-surface temperature and soil temperature at 10 cm depth (P < 0.01) in an exponential manner. The soil respiration of T. ramosissima Ph. communis and H. ammodendron communities were all linearly correlated with the near-surface temperature and soil surface temperature (P < 0.01). Based on the near-surface tempera-ture, the calculated Q10 of Populus woodland, T. ramosissima Ph. communis community and H. ammodendron community were 1.48, 1.59 and 1.63, respectively. The integrated soil respiration of the three land use/land cover types showed a significant correlation with the soil moisture at 0―5 cm, 5― 15 cm and 0―15 cm depths (P < 0.01). The quadratic model could best describe the relationship between soil respiration and soil moisture at 0―5 cm depth (P < 0.01).  相似文献   

19.
Both evergreen and deciduous forests (Efs and Dfs) are widely distributed under similar climatic conditions in tropical monsoon regions. To clarify the hydraulic properties of the soil matrix in different forest types and their effects on soil water storage capacity, the soil pore characteristics (SPC) were investigated in Ef and Df stands in three provinces in Cambodia. Soils in the Ef group were characterized in common by large amounts of coarse pores with moderate pore size distribution and the absence of an extremely low Ks at shallow depths, compared to Df group soils. The mean available water capacity of the soil matrix (AWCsm) for all horizons of the Ef and Df group soils was 0·107 and 0·146 m3 m?3, respectively. The mean coarse pore volume of the soil matrix (CPVsm) in the Ef and Df groups was 0·231 and 0·115 m3 m?3, respectively. A water flow simulation using a lognormal distribution model for rain events in the early dry season indicated that variation in SPC resulted in a larger increase in available soil water in Ef soils than in Df soils. Further study on deeper soil layers in Ef and each soil type in Df is necessary for the deeper understanding of the environmental conditions and the hydrological modelling of each forest ecosystem. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Continuous measurement of carbon dioxide exchange using the eddy covariance (EC) technique was made at two ChinaFLUX forest sites including the young subtropical Pinus plantation (Qianyanzhou) and old temperate broad-leaved Korean pine mixed forest (Changbai Mountains) as part of the ChinaFLUX network. Seasonal patterns and environmental control of ecosystem respiration in the subtropical and temperate forests were evaluated by the often-used multiplicative model and Q10 model as a function of temperature and soil water content. The resuits suggested that ( i ) temperature was found to be a dominant factor in the ecosystem respiration, and most of the temporal variability of ecosystem respiration was explained by temperature. However, in the drought-stressed ecosystem, soil water content controlled the temporal variability of ecosystem respiration other than temperature effects, and soil water content became a dominat factor when severe drought affected the ecosystem respiration; (ii) the regression models analysis revealed that in the drier soil, ecosystem respiration was more sensitive to soil moisture than was expressed by the often-used multiplicative model. It was possible to accurately estimate the seasonal variation of ecosystem respiration based on the Q10 model; and (iii)annual ecosystem respiration derived from the often-used multiplicative model was 1209 g C m-2and 1303 g C m-2, and was consistently a little higher than the Q10 model estimates of 1197 g C m-2 and 1268 g C m-2 for Qianyanzhou and Changbai Mountains, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号