首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau   总被引:15,自引:0,他引:15  
Alpine cold ecosystem with permafrost environment is quite sensitive to climatic changes and the changes in permafrost can significantly affect the alpine ecosystem. The vegetation coverage, grassland biomass and soil nutrient and texture are selected to indicate the regime of alpine cold ecosystems in the Qinghai-Tibet Plateau. The interactions between alpine ecosystem and permafrost were investigated with the depth of active layer, permafrost thickness and mean annual ground temperature (MAGTs). Based on the statistics model of GPTR for MAGTs and annual air temperatures, an analysis method was developed to analyze the impacts of permafrost changes on the alpine ecosystems. Under the climate change and human engineering activities, the permafrost change and its impacts on alpine ecosystems in the permafrost region between the Kunlun Mountains and the Tanggula Range of Qinghai-Tibet Plateau are studied in this paper. The results showed that the per- mafrost changes have a different influence on different alpine ecosystems. With the increase in the thickness of active layer, the vegetation cover and biomass of the alpine cold meadow exhibit a significant conic reduction, the soil organic matter content of the alpine cold meadow ecosystem shows an exponential decrease, and the surface soil materials become coarse and gravelly. The alpine cold steppe ecosystem, however, seems to have a relatively weak relation to the permafrost environment. Those relationships resulted in the fact that the distribution area of alpine cold meadow decreased by 7.98% and alpine cold swamp decreased by 28.11% under the permafrost environment degradation during recent 15 years. In the future 50 years the alpine cold meadow ecosystems in different geomorphologic units may have different responses to the changes of the permafrost under different climate warming conditions, among them the alpine cold meadow and swamp ecosystem located in the low mountain and plateau area will have a relatively serious degradation. Furthermore, from the angles of grassland coverage and biological production the variation characteristics of high-cold eco- systems in different representative regions and different geomorphologic units under different climatic conditions were quantitatively assessed. In the future, adopting effective measures to protect permafrost is of vital importance to maintaining the stability of permafrost engineering and alpine cold eco- systems in the plateau.  相似文献   

3.
多年冻土场地路基地震动位移性状研究   总被引:4,自引:0,他引:4  
直接针对目前多年冻土场地道路工程抗震问题研究尚很薄弱这一事实,以在建的青藏铁路工程的抗震设计与地震加固为应用背景,基于若干种较为典型的多年冻土场地路基工况,开展多年冻土场地路基地震动位移性状的研究工作。研究表明,与不同的场地地形条件相比,场地冻土层厚度对路基地震位移响应的影响更加突出,尤其是含冻土融层路基的地震动位移值较不含冻土融层路基的地震动位移值大,因而冻土融层的存在无疑加剧了多年冻土场地路基的震害响应。  相似文献   

4.
Climate warming must lead the mainly air temperature controlled permafrost to degrade.Based on the numerical simulation,the process of permafrost degradation can be divided into five stages,i.e.,starting stage,temperature rising stage,zero geothermal gradient stage,talic layers stage,and disappearing stage,according to the shape of ground temperature profile.Permafrost on the Qinghai-Tibet Plateau (QTP) is generally considered a relic from late Pleistocene,and has been degenerating as a whole during Holocen...  相似文献   

5.
Zeyong Gao  Fujun Niu  Zhanju Lin 《水文研究》2020,34(26):5659-5673
Thermokarst lakes play a key role in the hydrological and biogeochemical cycles of permafrost regions. Current knowledge regarding the changes caused by permafrost degradation to the hydrochemistry of lakes in the Qinghai-Tibet Plateau (QTP) is limited. To address this gap, a systematic investigation of thermokarst lake water, suprapermafrost water, ground ice, and precipitation was conducted in the hinterland of the QTP. The thermokarst lake water in the QTP was identified to be of the Na-HCO3-Cl type. The mean concentrations of HCO3 and Na+ were 281.8 mg L−1 (146.0–546.2 mg L−1) and 73.3 mg L−1 (9.2–345.8 mg L−1), respectively. The concentrations of Li+, NH4+, K+, F, NO2, and NO3 were relatively low. Freeze-out fractionation concentrated the dissolved solids within the lake water during winter, which was deeply deepened on lake depth and lake ice thickness. Owing to solute enrichment, the ground ice was characterized by high salinity. Conversely, repeated replenishment via precipitation led to lower solute concentrations in the ground ice near the permafrost table compared to that within the permafrost. Although lower solute concentration existed in precipitation, the soil leaching and saline ground ice melting processes enhanced the solute load in suprapermafrost water, which is considered an important water and solute resource in thermokarst lakes. The influencing mechanism of permafrost degradation on thermokarst lake hydrochemistry is presumably linked to: (1) the liberation of soluble materials sequestered in ground ice; (2) the increase of solutes in suprapermafrost water and soil pore water; and (3) the changes in lake morphometry. These results have major implications on the understanding of the effects of ground ice melting on ecosystem functions, biogeochemical processes, and energy balance in a rapidly changing climate.  相似文献   

6.
多年冻土场地路基地震响应动应力性状研究   总被引:3,自引:1,他引:3  
以青藏铁路工程抗震设计与地震加固为应用背景,基于冻土场地路基的若干典型工况,开展多年冻土场地路基地震响应动应力性状的研究工作。研究表明,与不同的场地地形条件相比,冻土层对路基地震响应动应力的影响更加突出,尤其是含冻土层路基的地震动应力幅值、频率较不含冻土层路基的地震动应力幅值、频率大得多,因而冻土层的存在可能加剧了路基的震害响应。  相似文献   

7.
Precipitation plays an important role in permafrost hydrology; it can alter the hydrothermal condition of the active layer and even influence the permafrost aggradation or degradation. Moisture recycling from evaporation and transpiration can greatly contribute to local precipitation in some regions. This study selected four monitoring sites and used an isotope mixing model to investigate local moisture recycling in permafrost regions of the central Qinghai-Tibet Plateau (QTP). The results showed that the local water vapour flux in the summer and autumn were dominantly influenced by westerlies and the Indian monsoon. Moistures for precipitation in Wudaoliang (WDL) and Fenghuoshan (FHS) mainly came from the western QTP, eastern Tianshan Mountains, western Qilian Mountains, and the surrounding regions. In comparsion, more than half of precipitation at Tanggula (TGL) was mostly sourced from the Indian monsoon. Local moisture recycling ratios at the four sites ranged from 14% ± 3.8% to 31.6% ± 4.8%, and depended on the soil moisture and relative humidity. In particular, the higher soil moisture and relative humidity promoted local moisture recycling, but frozen ground might be a potential influencing factor as well. The moisture recycling ratios of the study area were consistent with the results from both the Qinghai Lake Basin and the Nam Co Basin, but differed from those of the northwestern QTP. This difference may indirectly confirm the great spatial variability in precipitation on the QTP. Moreover, the rising air temperature and ground temperature, increasing precipitation, higher soil moisture, higher vegetation cover, and expanding lakes in the study area may be conductive to enhancing future local moisture recycling by altering ground surface conditions and facilitating the land surface evaporation and plant transpiration.  相似文献   

8.
青藏高原冻土带天然气水合物的形成条件与分布预测   总被引:37,自引:7,他引:37       下载免费PDF全文
冻土带是天然气水合物发育的两个重要地质环境之一.青藏高原平均海拔在4000m以上,多年冻土面积约1.4×106km2.本文根据青藏高原冻土层厚度和地温梯度特征,运用天然气水合物的热力学稳定域预测方法,确定中低纬度高海拔区冻土带天然气水合物的产出特征.青藏高原多年冻土带热成因天然气水合物形成的热力学相平衡反映,水合物顶界埋深约27~560m,底界埋深约77~2070m.初步计算表明,青藏高原冻土带水合物天然气资源约1.2×1011~2.4×1014m3.在冻土层越厚、冻土层及冻土层之下沉积层的地温梯度越小的地区,最有利于天然气水合物的发育.气温的季节性变化对天然气水合物影响不大.在全球气温快速上升的背景下,青藏高原天然气水合物将处于失稳状态,天然气水合物顶界下降、底界上升,与冻土带的退化相似,分布区逐渐缩小,最终将完全消失.  相似文献   

9.
冻土物理力学特性与温度密切相关,气候变暖背景下冻土路基地温场的分布和演化规律不仅会影响到路基的静力稳定性,还会影响到其在地震、车辆等动力荷载作用下的响应特征与稳定性。为此,基于现场实测路基坡面温度,系统开展气候变暖背景下青藏高原典型(东西、南北、45°)走向条件下冻土路基地温场分布及演化规律的模拟研究。结果表明,阴阳坡侧浅层土体冻结指数差异较融化指数差异更为显著,东西走向下阴坡冻结指数约为阳坡的2倍,而融化指数约为阳坡的0.83。阴阳坡侧路基本体及活动层季节冻融过程存在明显不同步,东西走向条件下阴坡冻结期(融化期)可较阳坡侧长(短)约1个月。路基修筑后,阴坡一侧路基下部人为上限均有一定的抬升,而阳坡仅南北走向有抬升。此后,在气候变暖及沥青路面吸热效应下,路基人为上限不断下降,最大速率可达20cm/a,且逐步出现融化夹层,其中阳坡融化夹层厚度普遍大于阴坡,差值最大可达2.5m。路基本体季节冻融过程的不同步、人为上限埋深及冻土地温分布的不对称性应在未来青藏高原冻土路基静力、动力稳定性设计和研究中予以考虑。  相似文献   

10.
The Qinghai-Tibet Plateau(QTP)has the highestand largest permafrost coverage in the low-middlelatitudes all over the world.With the progress ofChina’s Western Development,human activities areincreasing significantly on the QTP.For instance,theQinghai-Tibet Railway project started in June2001iscurrently under construction,but permafrost problemwill be one of the critical factors for the engineeringconstruction.Frost heave and permafrost settlementmay destroy engineering construction[1,2]…  相似文献   

11.
Rock glaciers, a feature associated with at least discontinuous permafrost, provide important topoclimatic information. Active and inactive rock glaciers can be used to model current permafrost distribution. Relict rock glacier locations provide paleoclimatic information to infer past conditions. Future warmer climates could cause permafrost zones to shrink and initiate slope instability hazards such as debris flows or rockslides, thus modeling change remains imperative. This research examines potential past and future permafrost distribution in the Colorado Front Range by calibrating an existing permafrost model using a standard adiabatic rate for mountains (0·5 °C per 100 m) for a 4 °C range of cooler and warmer temperatures. According to the model, permafrost currently covers about 12 per cent (326·1 km2) of the entire study area (2721·5 km2). In a 4 °C cooler climate 73·7 per cent (2004·4 km2) of the study area could be covered by permafrost, whereas in a 4°C warmer climate almost no permafrost would be found. Permafrost would be reduced severely by 93·9 per cent (a loss of 306·2 km2) in a 2·0 °C warmer climate; however, permafrost will likely respond slowly to change. Relict rock glacier distribution indicates that mean annual air temperature (MAAT) was once at least some 3·0 to 4·0 °C cooler during the Pleistocene, with permafrost extending some 600–700 m lower than today. The model is effective at identifying temperature sensitive areas for future monitoring; however, other feedback mechanisms such as precipitation are neglected. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Permafrost is a product of long-term energy ex-change between the atmosphere and the ground. Macro-scale distribution of permafrost is controlled overall by climate. However, site-specific variables such as terrain conditions, snow cover, soil/rock type, and moisture content can significantly modify the ef-fect of climate, resulting in localized anomalies in permafrost distribution[1,2]. These factors cause distur-bances to normal thermal regimes and can determine the presence and absence of p…  相似文献   

13.
14.
In the discontinuous permafrost zone of the Northwest Territories (NWT), Canada, snow covers the ground surface for half the year. Snowmelt constitutes a primary source of moisture supply for the short growing season and strongly influences stream hydrographs. Permafrost thaw has changed the landscape by increasing the proportional coverage of permafrost-free wetlands at the expense of permafrost-cored peat plateau forests. The biophysical characteristics of each feature affect snow water equivalent (SWE) accumulation and melt rates. In headwater streams in the southern Dehcho region of the NWT, snowmelt runoff has significantly increased over the past 50 years, despite no significant change in annual SWE. At the Fort Simpson A climate station, we found that SWE measurements made by Environment and Climate Change Canada using a Nipher precipitation gauge were more accurate than the Adjusted and Homogenized Canadian Climate Dataset which was derived from snow depth measurements. Here, we: (a) provide 13 years of snow survey data to demonstrate differences in end-of-season SWE between wetlands and plateau forests; (b) provide ablation stake and radiation measurements to document differences in snow melt patterns among wetlands, plateau forests, and upland forests; and (c) evaluate the potential impact of permafrost-thaw induced wetland expansion on SWE accumulation, melt, and runoff. We found that plateaus retain significantly (p < 0.01) more SWE than wetlands. However, the differences are too small (123 mm and 111 mm, respectively) to cause any substantial change in basin SWE. During the snowmelt period in 2015, wetlands were the first feature to become snow-free in mid-April, followed by plateau forests (7 days after wetlands) and upland forests (18 days after wetlands). A transition to a higher percentage cover of wetlands may lead to more rapid snowmelt and provide a more hydrologically-connected landscape, a plausible mechanism driving the observed increase in spring freshet runoff.  相似文献   

15.
青藏高原多年冻土区天然气水合物形成条件模拟研究   总被引:11,自引:1,他引:11       下载免费PDF全文
基于野外气体地球化学调查研究,以及前人有关冻土表层温度、冻土层内地温梯度、冻土层下地温梯度等的资料,对青藏高原多年冻土区天然气水合物的形成条件开展了模拟研究. 结果显示:研究区冻土条件能够满足天然气水合物形成的基本要求;气体组成、冻土特征(如冻土厚度或冻土表层温度、冻土层内地温梯度、冻土层下地温梯度等)是影响研究区天然气水合物稳定带厚度的最重要因素,其在不同点位上的差异性可能导致天然气水合物分布的不均匀性的主要原因;研究区最可能的天然气水合物为甲烷与重烃(乙烷和丙烷)的混合气体型天然气水合物;在天然气水合物分布的区域,其产出的上临界点深度在几十至一百多米间,下临界点深度在几百至近一千米间,厚度可达到几百米. 与Canadian Mallik三角洲多年冻土区相比,青藏高原多年冻土区除了冻土厚度小些外,其他条件,如冻土层内地温梯度、冻土层下地温梯度、气体组成等条件较为相近,具有一定的可比性,预示着良好的天然气水合物潜力.  相似文献   

16.
近40年青藏高原湖泊面积变化遥感分析   总被引:6,自引:7,他引:6  
董斯扬  薛娴  尤全刚  彭飞 《湖泊科学》2014,26(4):535-544
以MSS、TM和ETM遥感影像作为主要信息源,综合利用RS、GIS技术,提取青藏高原1970s、1990s、2000s及2010s 4个时段的湖泊面积信息,分别从区域位置、面积规模、海拔高度3方面分析其近40年来的变化趋势及变化特征,同时结合1972-2011年间青藏高原气候变化情况,初步探讨了影响青藏高原湖泊面积变化的主要原因.研究结果表明:(1)青藏高原面积大于10 km2的湖泊有417个,这些湖泊大多是面积为10~100 km2的小型湖泊,空间上集中分布在高原西部地区,海拔上集中在4500~5000 m范围内;(2)近40年青藏高原湖泊面积的变化趋势及差异性特征在整体上表现为湖泊呈加速扩张的趋势,其中2000s-2010s时段是湖泊扩张最显著的时期;在区域位置上,北部地区的湖泊变化最为剧烈;在面积规模上,小型湖泊扩张最为显著;在海拔高度上,低海拔地区湖泊扩张剧烈;(3)近40年青藏高原气候暖湿化程度明显,气候变化对湖泊面积变化影响显著;在气象要素中,降水量的变化是青藏高原湖泊面积变化的主要驱动因子.  相似文献   

17.
Permafrost on the Qinghai-Tibet Plateau (QTP) is widespread, thin, and thermally unstable. Under a warming climate during the past few decades, it has been degrading extensively with generally rising ground temperatures, the deepening of the maximum summer thaw, and with lessening of the winter frost penetration. The permafrost has degraded downward, upward and laterally. Permafrost has thinned or, in some areas, has totally disappeared. The modes of permafrost degradation have great significance in geocryology, in cold regions engineering and in cold regions environmental management. Permafrost in the interior of the QTP is well represented along the Qing-hai-Tibet Highway (QTH), which crosses the Plateau through north to south and traverses 560 km of permafrost-impacted ground. Horizontally, the degradation of permafrost occurs more visibly in the sporadic permafrost zone in the vicinity of the lower limit of permafrost (LLP), along the margins of taliks, and around permafrost islands. Downward degradation develops when the maximum depth of seasonal thaw exceeds the maximum depth of seasonal frost, and it generally results in the formation of a layered talik disconnecting the permafrost from the seasonal frost layer. The downward degrada- tion is divided into four stages: 1) initial degradation, 2) accelerated degradation, 3) layered talik and 4) finally the conversion of permafrost to seasonally frozen ground (SFG). The upward degradation occurs when the geothermal gradient in permafrost drops to less than the geothermal gradients in the underlying thawed soil layers. Three types of permafrost temperature curves (stable, degrading, and phase-changing transitory permafrost) illustrate these modes. Although strong differentiations in local conditions and permafrost types exist, the various combinations of the three degradation modes will ultimately transform permafrost into SFG. Along the QTH, the downward degradation has been proceeding at annual rates of 6 to 25 cm, upward degradation at 12 to 30 cm, and lateral degradation in the sporadic permafrost zone at 62 to 94 cm during the last quarter century. These rates exceed the 4 cm per year for the past 20 years reported for the discontinuous permafrost zone in subarctic Alaska, the 3 to 7 cm per year reported in Mongolia, and that of the thaw-stable permafrost in subarctic Yakutia and Arctic Alaska.  相似文献   

18.
Based on 14 typical drilling holes distributed in the permafrost areas along the Qinghai-Tibet railway, the distribution of wave velocities of soils in the permafrost regions were determined. Using results of dynamic triaxial tests, the results of dynamic triaxiality test and time histories of ground motion acceleration in this area, characteristics of ground motion response were analyzed for these permafrost sites for time histories of ground accelerations with three exceedance probabilities (63%, 10% and 2%). The influence of ground temperature on the seismic displacement, velocity, acceleration and response spectrum on the surface of permafrost were also studied.  相似文献   

19.
SBAS-InSAR技术监测青藏高原季节性冻土形变   总被引:21,自引:0,他引:21       下载免费PDF全文
冻土的冻结和融化的反复交替会造成地质环境与结构的破坏,从而导致房屋和道路等地面工程建筑物的地基破裂或者塌陷,还会引起山体滑坡、洪水暴发以及冰川移动等.因此,监测冻土形变对确保冻土区工程建筑的稳定性和安全性,同时保证冻土区社会经济可持续发展具有重要的意义.目前,在冻土监测方面并没有能大面积监测冻土形变时间演化情况的有效方法,本文提出将InSAR技术中的小基线集方法(SBAS-InSAR)应用于监测冻土来获取其形变时间序列中.考虑到冻土形变呈现明显的季节性特征,本文提出利用周期形变模型来代替传统SBAS方法中的线性形变模型,从而更好地分离出高程残差和大气误差.利用ENVISAT卫星获取的21景ASAR影像图作为实验数据,采用改进的SBAS技术成功获取了青藏高原从羊八井站至当雄站铁路段冻土区的地表形变时间序列图,揭示了该冻土区从2007年到2010年的季节性形变演化情况.通过与研究地区温度变化的联合分析,发现所得到的地表形变结果与冻土的物理变化规律非常吻合,证明了SBAS-InSAR技术在冻土形变监测中具有良好的发展应用前景.  相似文献   

20.
Based on observed data from field-testing embankment of the Qinghai-Tibet Railway, ground-temperature controlling effect of duct-ventilated embankment is studied in this paper.The results show that ventilation ducts can effectively cool the soils surrounding the ducts of the embankment, and the heat budget of the ambient soils in a year shows as heat release. Temperature status of the permafrost below the embankment with ducts buried in the relatively high position is similar to that of the common embankment. The permafrost processes warming all along in the two freezing-thawing cycles when the embankment was constructed. However, the temperature of the frozen soils below the embankment, in which the ducts buried in the relatively low position, rises a little in the initial stage. After that, it cools down gradually. At the same time,ventilation ducts can effectively reduce the thermal disturbance caused by the filled soils. The frozen soils below the common embankment and that with high-posited ducts absorb heat all along in the initial two cycles. While the soils below the embankment with low-posited ducts begin to release heat in the second cycle. This phenomenon proves that the ventilation embankment with low-posited ducts shows efficient temperature-controlling effect. Such embankment can actively cool the subgrade soils and therefore keeps the roadbed thermally stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号