首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study investigates the organised motion near the canopy-atmosphere interface of a moderately dense spruce forest in heterogeneous, complex terrain. Wind direction is used to assess differences in topography and surface properties. Observations were obtained at several heights above and within the canopy using sonic anemometers and fast-response gas analysers over the course of several weeks. Analysed variables include the three-dimensional wind vector, the sonic temperature, and the concentration of carbon dioxide. Wavelet analysis was used to extract the organised motion from time series and to derive its temporal scales. Spectral Fourier analysis was deployed to compute power spectra and phase spectra. Profiles of temporal scales of ramp-like coherent structures in the vertical and longitudinal wind components showed a reversed variation with height and were of similar size within the canopy. Temporal scales of scalar fields were comparable to those of the longitudinal wind component suggesting that the lateral scalar transport dominates. The existence of a – 1 power law in the longitudinal power spectra was confirmed for a few cases only, with a majority showing a clear 5/3 decay. The variation of effective scales of organised motion in the longitudinal velocity and temperature were found to vary with atmospheric stability, suggesting that both Kelvin-Helmholtz instabilities and attached eddies dominate the flow with increasing convectional forcing. The canopy mixing-layer analogy was observed to be applicable for ramp-like coherent structures in the vertical wind component for selected wind directions only. Departures from the prediction of m = Λ w L s −1 = 8–10 (where Λ w is the streamwise spacing of coherent structures in the vertical wind w and L s is a canopy shear length scale) were caused by smaller shear length scales associated with large-scale changes in the terrain as well as the vertical structure of the canopy. The occurrence of linear gravity waves was related to a rise in local topography and can therefore be referred to as mountain-type gravity waves. Temporal scales of wave motion and ramp-like coherent structures were observed to be comparable.  相似文献   

2.
Ejection and sweep eddy motions are coherent structures in the atmospheric surface layer. These structures are responsible for surface-layer fluxes of sensible heat and momentum. This study analyzes these structures over the same surface in short and tall grass situations. It is shown that momentumsweep eddy motions are dominant in both short and tall grass situations. Theratio between eddy structures revealed that the small-scale eddies are activatedin tall grass conditions. The study applies to unstable conditions duringdaytime.  相似文献   

3.
Using data collected at the Spanish low troposphere research centre CIBA (Centro de Investigación de la Baja Atmósfera) and at the Cabauw Experimental Site for Atmospheric Research (CESAR) in the Netherlands, we analyzed the most significant features of different coherent structures occurring in the stable atmospheric boundary layer. In particular, we used both the Reynolds and wavelet methods to analyze a solitary wave, a gravity wave, a density current and a low-level jet. For each of these structures, we found that wavelet analysis had the capacity to distinguish the different scales involved in these events due to the different timing and heights of the thermal instabilities and downdrafts associated with the disturbances. In addition, the wavelet method highlights the different roles of turbulence and coherent structures in the transfer of heat, moisture and CO2 in the nocturnal boundary layer.  相似文献   

4.
Large-eddy simulation is used to reproduce neutrallystratified airflow inside and immediately above a vegetation canopy. A passive scalaris released from the canopy and the evolution of scalar concentration above the canopyis studied. The most significant characteristic of the scalar concentration is the repeatedformation and dissipation of scalar microfronts, a phenomenon that has been observedin nature. These scalar microfronts consist of downstream-tilted regions of highscalar concentration gradients. Computer visualization tools and a conditional samplingand compositing technique are utilized to analyze these microfronts. Peaks in positivepressure perturbation exceeding an experimental threshold are found to be effectiveindicators of scalar microfronts. Convergence of the streamwise velocity componentand divergence of the cross-stream velocity component are observed in the immediatevicinity of scalar microfronts, which helps explain their relatively longlifetimes. Many of these three-dimensional features have been observedin previous field studies of canopy flow.  相似文献   

5.
Long-term study of coherent structures in the atmospheric surface layer   总被引:1,自引:2,他引:1  
A long-term study of coherent turbulence structures in the atmospheric surface layer has been carried out using 10 months of turbulence data taken on a 30-m tower under varying meteorological conditions. We use an objective detection technique based on wavelet transforms. The applied technique permits the isolation of the coherent structures from small-scale background fluctuations which is necessary for the development of dynamical models describing the evolution and properties of these phenomena. It was observed that coherent structures occupied 36% of the total time with mean turbulent flux contributions of 44% for momentum and 48% for heat. The calculation of a transport efficiency parameter indicates that coherent structures transport heat more efficiently than momentum. Furthermore, the transport efficiency increases with increasing contribution of the structures to the overall transport.  相似文献   

6.
The flux contribution of coherent structures to the total exchange of energy and matter is investigated in a spruce canopy of moderate density in heterogeneous, complex terrain. The study deploys two methods of analysis to estimate the coherent exchange: conditional averages in combination with wavelet analysis, and quadrant analysis. The data were obtained by high-frequency single-point measurements using sonic anemometers and gas analysers at five observation heights above and within the canopy and subcanopy, and represent a period of up to 2.5 months. The study mainly addresses the momentum transfer and exchange of sensible heat throughout the roughness sublayer, while results are provided for the exchange of carbon dioxide and water vapour above the canopy. The magnitude of the flux contribution of coherent structures largely depends on the method of analysis, and it is demonstrated that these differences are attributed to differences in the sampling strategy between the two methods. Despite the differences, relational properties such as sweep and ejection ratios and the variation of the flux contribution with height were in agreement for both methods. The sweep phase of coherent structures is the dominant process close to and within the canopy, whereas the ejections gain importance with increasing distance to the canopy. The efficiency of the coherent exchange in transporting scalars exceeds that for momentum by a factor of two. The occurrence of coherent structures results in a flux error less than 4% for the eddy-covariance method. Based on the physical processes identified from the analysis of the ejection and sweep phases along the vertical profile in the roughness sublayer, a classification scheme for the identification of exchange regimes is developed. This scheme allows one to estimate the region of the canopy participating in the exchange of energy and matter with the above-canopy air under varying environmental conditions.  相似文献   

7.
Observations of water vapour fluctuations over arice field show vapour ramps. Coherent structuresare first revealed by the frequently occurring ramp pattern in the vapourtrace. Wavelet and pseudo-wavelet analysis techniques were used inconditional sampling, and more than 100 hr of data have been analyzedto determine coherent structure characteristics. The most probablecoherent structure duration was in the range 2–12 sec andthe duration range of the most effective coherent structures shows somedifference between heat and water vapour transfers. Coherent structurescontribute to the major part of the total flux.  相似文献   

8.
塔克拉玛干沙漠腹地近地层春季铅直湍流的小波分析   总被引:2,自引:1,他引:2  
利用塔克拉玛干沙漠腹地近地层10m高度处快速响应探测系统的湍流资料,对春季晴天和沙尘暴天气下不同稳定层结的铅直湍流脉动进行小波变化及其方差分析,以期了解铅直湍流的尺度结构特征。结果表明,不稳定层结条件下,春季晴天近地层的铅直湍流脉动以12—17S的周期为主,最小周期为1-1.5s;春季沙尘暴时最主要的周期则为6-10s,最小周期为0.4—0.6s。沙尘暴时不稳定层结的湍流尺度总体上小于晴天,较小尺度波动振荡更加明显,湍流运动比晴天更加频繁。稳定层结条件下,春季晴天以10—16S的周期振荡为主,最小周期为1.3-1.8s;春季沙尘暴则以11—20s的周期振荡为主,最小周期为0.5—0.8s。晴天稳定层结时的铅直脉动比沙尘暴时周期小,小周期的湍流运动更明显一些,但周期更小的波动在沙尘暴天气时则多一些。  相似文献   

9.
A wavelet method is used to estimate kinetic energy and fluxes from data collected under stable conditions during the CASES-99 field campaign. Results in the high frequency range are compared with those obtained by the traditional method used to estimate turbulent moments, which is based on the Reynolds decomposition of variables into a mean and a turbulent part. The fact that the wavelet transform performs much better as a filter than the averaging process accounts for most of the disagreements between results. Since the wavelet method can be applied at very different spectral ranges, it is also used to analyse two different coherent structures: a density current and a train of internal gravity waves. The strong burst of turbulence related to the density current reflects the complexity of the first event. The wavelet method discriminates the different scales of motion, which are present in the perturbation, and is therefore an ideal tool for assessing the interactions between them. A method based on the phase difference between wavelet-transformed time series is then applied to the analysis of the horizontal and vertical structure of the gravity waves, and a three-dimensional image of the oscillations is provided.  相似文献   

10.
Characterization of Coherent structures in the Atmospheric Surface Layer   总被引:3,自引:2,他引:3  
The ramplike coherent structures, observed in the temporal series of temperature and humidity in the atmospheric surface layer, are analyzed using the intermittency function and the wavelet transforms, with Haar, D4 and Mexican Hat functions as mother wavelets, in order to find the most efficient conditional sampling technique. It was found that the intermittency function and the wavelet transform, using Mexican Hat as mother wavelet, are the only ones that sample structures that fulfill the ramplike coherent structures definition of a slow rise followed by a sudden drop in the temporal series. The conditionally averaged structures detected by both techniques were similar for temperature, humidity, and vertical velocity at heights of 3, 5, and 9.4 m. Significant discrepancies were found among the conditional averaged structures detected by both techniques for zonal and meridional components of the wind at 11.5 m. Considering both techniques, it was observed that the averagedcoherent-structure duration ranged from 23.7 ± 0.5 s to 37.8 ± 3.0 s. Furthermore, the averaged number of events per 20-minute period ranged from 20.0 ± 1.0 to 28.5 ± 1.1, and the averaged intermittency factor from 45.0 ± 0.4% to 59.1 ± 1.3%. It was also observed that the averaged duration of the ramplike coherent structures increases with height, while their intensity, number, and intermittency factor decrease. Despite the good matching obtained for temperature and humidity, the coherent-structure properties did not show the expected variation with wind speed, stability parameter, and friction velocity. The Kolmogorov–Smirnov test indicated that the intermittent function and the wavelet transform did not detect coherent structures belonging to the same population.  相似文献   

11.
One-dimensional turbulence (ODT) is a single-column simulation in which vertical motions are represented by an unsteady advective process, rather than their customary representation by a diffusive process. No space or time averaging of mesh-resolved motions is invoked. Molecular-transport scales can be resolved in ODT simulations of laboratory-scale flows, but this resolution of these scales is prohibitively expensive in ODT simulations of the atmospheric boundary layer (ABL), except possibly in small subregions of a non-uniform mesh.Here, two methods for ODT simulation of the ABL on uniform meshes are described and applied to the GABLS (GEWEX Atmospheric Boundary Layer Study; GEWEX is the Global Energy and Water Cycle Experiment) stable boundary-layer intercomparison case. One method involves resolution of the roughness scale using a fixed eddy viscosity to represent subgrid motions. The other method, which is implemented at lower spatial resolution, involves a variable eddy viscosity determined by the local mesh-resolved flow, as in multi-dimensional large-eddy simulation (LES). When run at typical LES resolution, it reproduces some of the key high-resolution results, but its fidelity is lower in some important respects. It is concluded that a more elaborate empirically based representation of the subgrid physics, closely analogous to closures currently employed in LES of the ABL, might improve its performance substantially, yielding a cost-effective ABL simulation tool. Prospects for further application of ODT to the ABL, including possible use of ODT as a near-surface subgrid closure framework for general circulation modeling, are assessed.  相似文献   

12.
We study turbulent flow over two-dimensional hills. The Reynolds stresses are represented by a second-order closure model, where advection, diffusion, production and dissipation processes are all accounted for. We solve a full set of primitive non-hydrostatic dynamic equations for mean flow quantities using a finite-difference numerical method. The model predictions for the mean velocity and Reynolds stresses are compared with the measured data from a wind-tunnel experiment that simulates the atmospheric boundary layer. The agreement is good. The performance of the second-order closure model is also compared withthat of lower level turbulence models, including the eddy-viscositymodel and algebraic Reynolds stress models. It is concluded that thepresent closure is a considerable improvement over the other modelsin representing various physical effects in flow over hills. Thefeasibility of running a finite-difference numerical simulationincorporating a full second-order closure model on an IBM workstationis also demonstrated.  相似文献   

13.
选用2个典型的由地形导致香港国际机场地区出现扰动气流的个例,对天气雷达的谱宽数据与激光雷达的涡流消散率的立方根进行了比较。结果表明,对两组数据作点对点比较时,两者基本上没有相关性,其相关系数小于0.10;其空间平均值之间的相关性较好,相关系数为0.39~0.46。最后,通过对多普勒天气雷达谱宽数据监测香港国际机场邻近地区湍流强度可行性的探讨,提出了多普勒天气雷达的谱宽数据用于监测飞机航道上湍流强度的具体方法与构想。  相似文献   

14.
Land-use practices such as deforestation or agricultural management may affect regional climate, ecosystems and water resources. The present study investigates the impact of surface heterogeneity on the behaviour of the atmospheric boundary layer (ABL), at a typical spatial scale of 1 km. Large-eddy simulations, using an interactive soil–vegetation–atmosphere surface scheme, are performed to document the structure of the three-dimensional flow, as driven by buoyancy forces, over patchy terrain with different surface characteristics (roughness, soil moisture, temperature) on each individual patch. The patchy terrain consists of striped and chessboard patterns. The results show that the ABL strongly responds to the spatial configuration of surface heterogeneities. The stripe configuration made of two patches with different soil moisture contents generates the development of a quasi- two-dimensional inland breeze, whereas a three-dimensional divergent flow is induced by chessboard patterns. The feedback of such small-scale atmospheric circulations on the surface fluxes appears to be highly non-linear. The surface sensible and latent heat fluxes averaged over the 25-km2 domain may vary by 5% with respect to the patch arrangement.  相似文献   

15.
A mass-flux approach is applied to observational data obtained in a convective boundary layer topped with stratocumulus clouds. The observational data were obtained from aircraft measurements during the Atlantic Stratocumulus Transition Experiment (ASTEX). A conditional sampling method is used to calculate average updraft and downdraft values. The vertical fluxes calculated with the mass-flux approach are found to be proportional to the real (measured) fluxes, with a proportionality factor being about 0.6. This value is predicted by theory for two variables having a joint Gaussian distribution function; proportionality factor = 2-1 0.637. The horizontal fractional entrainment and detrainment rates calculated from the data ( 1–2 × 10-2 m-1) are an order of magnitude higher than the rates obtained by large eddy simulations for cumulus convection ( 2–3 × 10-3 m-1) and two orders of magnitude higher than those used in modelling cumulus convection with a mass-flux scheme in an operational weather forecast model ( 3 × 10-4 m-1). A numerical mass-flux model for the thermodynamics was developed and showed that results are in good agreement when compared with measured profiles of the liquid water content.  相似文献   

16.
The structure of the turbulence in the atmospheric surface layer over a monsoon trough region has been studied using structural analysis based on wavelet transform. The observational site is located at the eastern (wet) end of the monsoon trough region, characterized by high moisture in the atmospheric surface layer. On the average relative humidity varied from 70% to 100% during the experiment. The wind and temperature data, collected at Kharagpur (22°25' N, 87°18' E) at six observational hours of a day in June 1990 during the Monsoon Trough Boundary Layer Experiment (MONTBLEX), have been utilized in the study. The wind and instantaneous momentum flux time series were decomposed into 12 scales using the Haar wavelet transform. The eddies exhibited a large temporal variability generating intermittency in the energy and flux distributions. A criterion based on the isotropy has been suggested for separating the large eddies from the small eddies. At the separation scale the isotropy coefficient drops sharply. It is shown that the intermittency in the small eddies resulted from the spatial variation of energy, and deviation of velocity statistics from the Gaussian distribution known as flatness. The deviation from the -5/3 power law has been attributed to the increased mean values of, (i) the coefficient of variation of energy, and (ii) the flatness factor, in the inertial subrange. The decomposition of the instantaneous momentum flux time series reveals that the major contribution to the total flux arises from the large eddies. The quadrant analysis of the momentum flux shows that ejections and sweeps account for a substantial part of the total flux, and quantifies the relative importance of the various spatial scales that contribute to the transport of momentum.  相似文献   

17.
利用地基GPS反演的可降水量资料、地面加密自动站和常规天气资料,对2011年2月发生在河北省的一次回流降雪天气过程进行了分析.结果表明:①降雪过程前期,GPS可降水量由西南向东北逐渐增大,后期自北向南减小,与西南暖湿气流的输送和地面冷高压的南压对应.②第1阶段降雪的主要影响系统为高空槽,GPS可降水量不断增加,对应的实际降水也是先增后减;第2阶段的降雪主要表现为回流降雪,降雪前期GPS可降水量迅速增长,实际降水出现在GPS可降水量峰值及下降阶段.随着地面冷高压逐渐南压,GPS可降水量逐渐下降,实际降水也逐渐减弱至停止.③在探空层结曲线上,高湿层位于地面附近和700 hPa附近,而二者之间的近地层存在着低湿层.  相似文献   

18.
一次罕见大冰雹天气的新一代天气雷达回波分析   总被引:1,自引:0,他引:1  
利用常规资料和多普勒雷达资料,分析了2011年6月24日洛阳嵩县冰雹天气过程。结果表明:高空横槽转竖,干冷空气入侵,中低层强的偏东风辐合,暖湿气流辐合上升,为冰雹的发生提供了有利的动力和水汽条件;高空冷平流,低层暖平流,为强对流性天气的发生提供了不稳定层结;适宜于冰雹生成发展的0℃层高度,指示有利于对流发展的各类指数,为冰雹的分析预报提供了较好的依据;早期的雷达回波信号及其所带来的天气,为提前对强对流天气性质正确判断和监测预警提供了较好的参考信息;强度〉55dBz的回波高度高于-20℃层高度,VIL值〉60kg/m^2,回波顶高〉12km,有中气旋出现等,是降雹的可靠信号。  相似文献   

19.
一次强风暴天气闪电定位资料与雷达资料的综合分析   总被引:16,自引:4,他引:16  
根据2003年6月19日河南一次强风暴天气的闪电定位资料和714CD雷达资料,利用统计和对比分析的方法,发现了闪电活动与雷达强度回波之间存在如下关系:闪电发生频数、强度和雷达回波强度在时间序列上有较好的一致性;在雷达回波发展的不同阶段,闪电发生的位置与雷达强回波位置有时相同,有时偏离,有时甚至无闪电发生;雷达回波速度场分析表明:在低层存在不利于对流发展的环境风场特征时,雷达降水回波在向测站移动的过程中趋于消散,闪电频数也随着减少;在降水回波速度辐合区,对应闪电活动频繁,这对于雷暴天气闪电短时预警工作有一定的参考价值。  相似文献   

20.
Reconciling upper-air temperature trends derived from radiosonde and satellite observations is a necessary step to confidently determine the global warming rate. This study examines the raw and homogenized radiosonde observations over China and compares them with layer-mean atmospheric temperatures derived from satellite microwave observations for the lower-troposphere(TLT), mid-troposphere(TMT), upper-troposphere(TUT), and lower-stratosphere(TLS) by three research groups. Comparisons are for averages over China, excluding the Tibetan Plateau, and at individual stations where metadata contain information on radiosonde instrument changes. It is found that major differences between the satellite and radiosonde observations are related to artificial systematic changes. The radiosonde system updates in the early 2000 s over China caused significant discontinuities and led the radiosonde temperature trends to exhibit less warming in the middle and upper troposphere and more cooling in the lower stratosphere than satellite temperatures. Homogenized radiosonde data have been further adjusted by using the shift-point adjustment approaches to match with satellite products for China averages. The obtained trends during 1979–2015 from the re-adjusted radiosonde observation are respectively 0.203 ± 0.066, 0.128 ± 0.044, 0.034 ± 0.039, and –0.329 ± 0.135 K decade–1 for TLT, TMT, TUT, and TLS equivalents. Compared to satellite trends, the re-adjusted radiosonde trends are within 0.01 K decade–1 for TMT and TUT, 0.054 K decade–1 warmer for TLT, and 0.051 K decade–1 cooler for TLS. The results suggest that the use of satellite data as a reference is helpful in identifying and removing inhomogeneities of radiosonde temperatures over China and reconciling their trends to satellite microwave observations. Future efforts are to homogenize radiosonde temperatures at individual stations over China by using similar approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号