首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low-frequency ambient-noise measurements in the South Fiji basin   总被引:1,自引:0,他引:1  
The effect of wind speed on ambient noise has been measured in an experiment carried out in the South Fiji basin. The noise data in the band 15-250 Hz are well correlated with the variations in the local wind speed. The relationship between noise level N and wind speed ν is expressed by N=B+20n log ν. The constants B and n have been estimated by fitting the data using this model. The analysis indicates that there are two types of behavior: for ν>15 kn, a value of n=1.5 is obtained for the entire band, whereas for ν<15 kn, there is no correlation with wind speed observed in the data. The results suggest that there is a delay of 40-120 min for the effect of wind on the hydrophone noise level  相似文献   

2.
风通过影响海洋表面从而产生200 Hz以上的深海环境噪声,但有研究指出,通过风生表面波之间的非线性相互作用产生的驻波,能够与海床共振构成海底微震,从而产生10 Hz以下的噪声。针对这一新型风生噪声机制,本研究对威克岛海域10 Hz以下的极低频噪声进行了分析。比较了不同频率下海洋环境噪声功率谱级与风速的相关性,并讨论了风速和风向对设立在威克岛南北部二组水听器三联体信号的影响,结果表明2 Hz处的海洋环境噪声级与风速相关性最好,而风速和风向变化越剧烈海洋环境极低频噪声与风速风向的相关性越好。  相似文献   

3.
孙磊  李琪  常哲  高飞 《海洋测绘》2019,39(5):66-69
为探索南海某区域海洋环境噪声谱级与风场的相关特性,结合潜标海洋环境噪声数据及对应海域的海面风场再分析数据,计算各频段噪声级与风速相关系数及线性拟合函数。分析结果表明:400~1 000 Hz频段,海洋环境噪声谱级与海面风速的相关系数在0.5~0.8之间,达到中等相关。1 000~5 000 Hz频段,两者互相关系数大于0.8,达到高度相关。对海洋环境噪声谱级与对数风速的回归分析结果显示,1000~5 000 Hz频段,两者的线性函数关系显著;并且在1 000 Hz附近的拟合斜率最大,海洋环境噪声谱级对海面风速变化的灵敏度最高。  相似文献   

4.
Depth dependence of noise resulting from ship traffic and wind   总被引:1,自引:0,他引:1  
Under conditions of distantly generated noise, the noise level is found to decrease with depth in the mid-northeastern Pacific. These data show a decrease in noise level greater than 25 dB between critical depth and the ocean bottom. A result of this decrease is that locally wind-generated noise can be detected on near-bottom receivers for wind speeds less than 10 kn. It is shown that the noise level generated form local sources such as wind and nearby shipping is almost independent of receiver depth. The differences in spectra shape between the distant shipping noise and wind-generated noise and the low noise levels detected near the ocean bottom allow the measurement in the frequency band at 200-500 Hz of local wind noise level for wind speeds less than 10 kn  相似文献   

5.
基于潜标测量的海洋环境噪声谱特性分析   总被引:3,自引:1,他引:2  
利用海洋环境噪声测量潜标系统对南海典型海域开展了为期3个月的海洋环境噪声测量,16通道海洋环境噪声测量系统每小时测量两分钟噪声信号。数据处理结果表明,800~5 000Hz范围内,噪声谱与风速相关性最好,且风速越大相关性越好,噪声谱与风速的相关性好于与浪高的相关性。风关噪声谱级在海水中部基本不随接收深度发生变化,但由于测量水听器阵长度未能覆盖整个水深,因此未给出海面和海底处谱级变化规律。在400Hz以上的高频段整个风速范围内噪声谱级都随风速发生变化,且噪声谱级与对数风速具有很好的线性关系。  相似文献   

6.
For pt.I see ibid., vol.22, no.3, p.425-33 (1997). Ambient noise measurements collected off the coast of Duck, NC, were used in conjunction with modeled transmission loss (TL) and estimated ambient noise due to wave-breaking to generate estimates of spectral source level densities (per meter of surf zone) of surf-generated ambient noise. Estimates of both continuous (local) and discrete (distant) components of noise intensity due to breaking waves were subtracted from the total measured noise field in order to determine the contribution of the noise from the surf zone. Data for two days, representing high sea-state conditions, are presented. Estimated noise source level densities for heavy surf at Duck, NC, varied from 120 to 125 dB re 1 μPa/Hz1/2/m at 200 Hz to 90-100 dB re 1 μPa/Hz1/2 /m at 900 Hz, with a slope of -5 dB per octave. Results compare well with previous surf noise studies conducted in Monterey Bay as reported in the companion paper by Wilson et al  相似文献   

7.
Measurements in the Levantine Sea with a seismic-type array [i.e., the high-frequency array (27 wavelengths at 348 Hz), the mid-frequency array (27 wavelengths at 175 Hz), and the low-frequency array (21 wavelengths at 58 Hz)] were found to have on average results within 1 dB of the theoretical signal gain. Observed signal gain degradations for peak-tracked and short integration times (1 min) had standard deviations from 2 to 3 dB and were caused by the combination of coherent multipaths, array shape, and array motion. The relative motion of source and receiver (5-8 kn) was an important cause of the average degradation at longer integration times (5 min). Equivalent plane wave beam noise levels were measured as a function of frequency, time, bearing, and aperture length. The beam noise level results show contributions from distant surface-ship-generated noise and natural environmental background noise. These results showed resolved distant shipping with median beam noise levels consistent with array noise gain 1-2 dB greater than the theoretical value for incoherent isotropic noise. The beam noise cumulative probability distribution function versus equivalent plane wave levels differed significantly from log-normality. Beam noise surfaces (beam noise levels versus time and bearing) show a higher density of ships for the high-frequency array when compared to the low-frequency array. Beam-to-beam cross correlations were found be sharply peaked and beam autocorrelation functions versus time showed zero crossing times on the order of 9-10 min. Significant space-time noise fade durations were observed at lower frequencies  相似文献   

8.
海上风电场建设期风机打桩会产生高强度的水下噪声,研究水下冲击打桩噪声的监测方法、特性分析及对海洋生物的影响是非常重要的。采用自容式水下声音记录仪,多点同步测量了福建省兴化湾海上风电场二期工程建设期单次完整的水下冲击打桩噪声,从时频域特性进行了分析,并利用最小二乘法拟合得到了打桩声源级和声暴露级。结果表明:水下冲击打桩噪声是典型的低频、高强度的脉冲信号,单个脉冲持续时间约90~100 ms,峰值声源级约209.4±2 dB,声暴露级约197.7±2 dB;主要能量分布在50 Hz~1 kHz频段,750 m测量点的该频段声压级相比海洋环境背景噪声,提高了约40~50 dB。水下冲击打桩噪声频域能量分布与大黄鱼的听觉敏感频段相重叠,对大黄鱼影响程度和范围较大,实际工程应用中宜采用声暴露级作为评价指标。  相似文献   

9.
Oceanic noise is the background interference in sonar performance prediction and evaluation at high sea states. Statistics of underwater ambient noise during Typhoons Soulik and Nida were analyzed on the basis of experimental measurements conducted in a deep area of the Philippine Sea and the South China Sea. Generated linear regression, frequency correlation matrix (FCM), Burr distribution and Gumbel distribution were described for the analysis of correlation with environmental parameters including wind speed (WS), significant wave height (SWH), and the inter-frequency relationship and probability density function of noise levels (NLs). When the typhoons were quite close to the receivers, the increment of NLs exceeded 10 dB. Whilst ambient noise was completely dominated by wind agitation, NLs were proportional to the cubic and quintic functions of WS and SWH, respectively. The fitted results between NLs and oceanic parameters were different for “before typhoon” and “after typhoon”. The fitted slopes of linear regression showed a linear relationship with the logarithm of frequency. The average observed typhoon-generated NLs were 5 dB lower than the Wenz curve at the same wind force due to the insufficiently developed sea state or the delay between NLs and WS. The cross-correlation coefficient of FCM, which can be utilized in the identification of noise sources in different bands, exceeded 0.8 at frequencies higher than 250 Hz. Furthermore, standard deviation increased with frequency. The kurtosis was equal to 3 at >400 Hz approximately. The characteristics of NLs showed good agreement with the results of FCM.  相似文献   

10.
The underwater acoustic noise of five representative whale-watching boats used in the waters of west Maui was measured in order to study the effects of boat noise on humpback whales. The first set of measurements were performed on 9 and 10 March, close to the peak of the whale season. The ambient noise was relatively high with the major contribution from many chorusing humpback whales. Measurements of boat sounds were contaminated by this high ambient background noise. A second set of measurements was performed on 28 and 29 April, towards the end of the humpback whale season. In both sets of measurements, two of the boats were inflatables with outboard engines, two were larger coastal boats with twin inboard diesel engines and the fifth was a small water plane area twin hull (SWATH) ship with inter-island cruise capabilities. The inflatable boats with outboard engines produced very complex sounds with many bands of tonal-like components. The boats with inboard engines produced less intense sounds with fewer tonal bands. One-third octave band measurements of ambient noise measured on 9 March indicated a maximum sound pressure level of about 123 dB re 1 microPa at 315 Hz. The maximum sound pressure level of 127 dB at 315 Hz was measured for the SWATH ship. One of the boats with outboard engines produced sounds between 2 and 4 kHz that were about 8-10 dB greater than the level of background humpback whale sounds at the peak of the whale season. We concluded that it is unlikely that the levels of sounds produced by the boats in our study would have any grave effects on the auditory system of humpback whales.  相似文献   

11.
Ambient noise measurements made in Monterey Bay, CA, in 1981 were reduced by estimations of wave-breaking noise and the residual noise was combined with modeled transmission loss (TL) to estimate the spectral source level of surf-generated noise. A Hamilton geoacoustic model of the coastal environment was derived and used in a finite-element parabolic equation propagation-loss model to obtain TL values. Estimates of both the continuous, or local, and discrete components of wave-breaking noise intensity were subtracted from the total measured noise field to determine the contribution due to surf only. Surf breaking on a uniform 12.5-km linear section of beach near Ft. Ord was found to be the dominant source of surf-generated noise. Estimated noise source level densities for heavy surf at Ft. Ord beach varied from 138 dB ref. 1 μPa Hz-1/2 m at 1 m from the source at 50 Hz to 107 dB at 1 kHz, with a slope of about -5 dB per octave. Although these results must be considered as preliminary, since they are based on a small number of measurements, they may he useful for prediction of ambient noise in other littoral regions  相似文献   

12.
几种经典海洋环境噪声谱分析   总被引:1,自引:0,他引:1  
目前风关海洋环境噪声实验研究结果较多,其中较为经典的是Knudsen谱、Wenz谱、Piggott谱、Crouch谱,以及风速与噪声谱级的对数关系等。对这几种经典的海洋环境噪声谱进行了概述,分析了其数据来源,并对Wenz谱、Piggott谱和Crouch谱进行了比较,探究了其差异产生的原因,并给出了不同情况下进行风关海洋环境噪声估计时的参考建议。  相似文献   

13.
A digital array of 120 acoustic channels 900 m in length has been constructed to study low-frequency (20-200 Hz) ambient noise in the ocean. The array may be deployed vertically or horizontally from the research platform FLIP and the array elements are localized with a high-frequency acoustic transponder network. The authors describe the instrumentation, telemetry, and navigation systems of the array during a vertical deployment in the northeast Pacific. Preliminary ambient noise spectra are presented for various array depths and local wind speeds. Ambient noise in the frequency band above 100 Hz or below 25 Hz increases with local wind speed. However, in the frequency band 25-100 Hz, ambient noise is independent of wind speed and may be dominated by shipping sources  相似文献   

14.
The correlation of ambient noise with wind speed, and the depth dependence of ambient noise are both investigated, where the ocean noise data were recorded by a vertical line array in the northern South China Sea. It is shown that the correlation coefficients increase with increasing hydrophone depth during typhoon periods when the frequency ≥ 250 Hz, which opposes the generally accepted knowledge that the correlation coefficients of noise level and wind speed decrease with increasing depth during non-typhoon periods. Particularly at frequencies of 250 Hz, 315 Hz and 400 Hz, the correlation coefficients increase by more than 0.05 at depths ranging from 155 m to 875 m. At the three frequencies, the average noise levels also increase with increasing depth during typhoon periods. It is suggested that these differences are attributed to the wind-generated noise in shallow waters and the effect of "downslope enhancement" to sound propagation. During typhoon periods, the surf breaking and surf beat upon the shores and reefs are strengthened, and the source levels are increased. The wind-generated noise in shallow waters interacts with the downslope sea floor, with the noise-depth distribution changed by a "downslope enhancement" effect promoting noise propagation.  相似文献   

15.
Western Hong Kong is home to two species of marine mammals: Indo-Pacific humpbacked dolphins (Sousa chinensis) and finless porpoises (Neophocaena phocaenoides). Both are threatened in many parts of their range in southeast Asia [for example, International Biological Research Institute Reports 9 (1997), 41; Asian Marine Biology 14 (1997) 111]. In 1998, when the new Hong Kong International Airport opened in western Hong Kong, small tankers (about 100 m long, cargo capacity about 6300 metric tons) began delivering fuel to the Aviation Fuel Receiving Facility (AFRF) just off Sha Chau Island, north of the airport. Calibrated sound recordings were taken over a 4-day period from a quiet, anchored boat at distances 80-2000 m from aviation fuel delivery activities at the AFRF. From the recordings, 143 sections were selected for analysis. Narrowband spectral densities on the sound pressures were computed, and one-third octave band levels were derived for center frequencies from 10 to 16,000 Hz. Broadband levels, viz. 10-20,000 Hz. were also computed. The results showed that the Sha Chau area is normally noisy underwater, with the lowest broadband levels measured corresponding to those expected during a storm at sea (sea state 6). This background noise is believed to come largely from heavy vessel traffic in the Urmston Road to the north and east of Sha Chau and from vessels in the Pearl River Estuary to the West. The sound levels from the AFRF tankers are comparable to the levels measured from similar- and smaller-sized supply vessels supporting offshore oil exploration. The strongest sounds recorded were from a tanker leaving the AFRF at distance 100 m from the hydrophone, for which the one-third octave band level at 100 Hz was 141 dB re 1 microPa (spectrum level 127 dB re 1 microPa2/Hz) and the 10-20,000 Hz broadband level was 146 dB. At distances of 100 m or more and frequencies above 300 Hz, the one-third octave band levels were less than 130 dB (spectrum level 111 dB re 1 microPa2/Hz) and decreased with increasing frequency and distance. At distances greater than about 500 m, AFRF-associated sounds were negligible, masked by the generally high noise level of the area and attenuated by poor transmission in the very shallow water (<10 m). Because it is believed that humpbacked dolphins and finless porpoises are not very sensitive to sounds below 300 Hz, the Airport Authority Hong Kong (AA) stipulated that dedicated terminal vessels not radiate underwater sounds at spectrum levels greater than 110 dB re 1 microPa2/Hz at frequencies above 300 Hz and distances greater than 300 m. The spectrum levels at 300 Hz and higher frequencies of sounds from the tankers arriving, departing, or off-loading at AFRF were less than 110 dB re 1 microPa2/Hz even at distances of 200 m or less. The AA stipulation was met. However, it is presently unknown whether the generally strong noise levels of western Hong Kong inhibit acoustically based feeding and communication, or result in increased stress or permanent shifts in hearing thresholds.  相似文献   

16.
The Ieodo Ocean Research Station(IORS) is an integrated meteorological and oceanographic observation base which was constructed on the Ieodo underwater rock located at a distance of about 150 km to the south-west of the Mara-do, the southernmost island in Korea. The underwater ambient noise level observed at the IORS was similar to the results of the shallow water surrounding the Korean Peninsula (Choi et al. 2003) and was higher than that of deep ocean (Wenz 1962). The wind dependence of ambient noise was dominant at frequencies of a few kHz. The surface current dependence of ambient noise showed good correlation with the ambient noise in the frequency of 10 kHz. Especially, the shrimp sound was estimated through investigations of waveform and spectrum and its main acoustic energy was about 40 dB larger than ambient noise level at 5 kHz.  相似文献   

17.
利用我国东南近海5个浮标站观测资料,对2012—2016年ERA-Interim和NCEP/NCAR再分析资料10 m风、2 m气温、海平面气压的适用性进行了评估。结果表明:NCEP/NCAR的再分析10 m风适用性更好,ERA-Interim的2 m气温适用性更好,海平面气压两者差异不大。风速再分析值与观测值具有较好的一致性,相关系数达0.8~0.9,但再分析风速总体上有偏小的趋势,平均偏差在-1.3~0 m/s之间,均方根误差在1.5~3 m/s。再分析资料的平均风向有顺时针偏差的趋势,温州浮标偏右达14°以上,均方根误差大多在40°~50°。不管风速还是风向,5个浮标站中均以舟山浮标的再分析值与观测值最为接近;分析还表明,再分析资料的冬季风代表性相对较差,这是造成风速和风向系统性偏差的主要原因。再分析资料与观测2 m气温相关系数均在0.95以上,且有偏高的趋势,NCEP偏高更为明显,有4个浮标站平均偏差达1~2℃,而ERA-I仅1个浮标站偏差1~2℃,4个在1℃以内。春季和冬季气温偏高最为明显,春季升温过程存在异常偏高的可能,秋季气温与观测值最为接近。海平面气压适用性较好,总体优于10 m风和2 m气温,且季节间差异也不大。  相似文献   

18.
星载微波散射计海面风场与海洋环境噪声的相关特性分析   总被引:2,自引:1,他引:1  
根据海洋环境噪声机理及风关噪声已有的研究成果,提出利用星载微波散射计反演的海面风场数据进行海洋环境噪声分析,并对HY-2A和ASCAT数据与噪声谱级的相关性进行了对比分析。选取南海海域作为研究区,利用潜标测量系统获取的噪声数据和多源散射计风场数据开展了相关实验,并采用NCEP海面风场数据进行对比分析。结果表明,ASCAT数据与噪声的相关性优于HY-2A,散射计数据优于NCEP数据,散射计风场更适合海洋环境噪声的分析研究。该研究内容拓展了微波散射计风场数据的应用领域,并为海洋环境噪声研究提供了更好的技术手段。  相似文献   

19.
Marine surface winds observed by two microwave sensors, SeaWinds and Advanced Microwave Scanning Radiometer (AMSR), on the Advanced Earth Observing Satellite-II (ADEOS-II) are evaluated by comparison with off-shore moored buoy observations. The wind speed and direction observed by SeaWinds are in good agreement with buoy data with root-mean-squared (rms) differences of approximately 1 m s−1 and 20°, respectively. No systematic biases depending on wind speed or cross-track wind vector cell location are discernible. The effects of oceanographic and atmospheric environments on the scatterometry are negligible. Though the wind speed observed by AMSR also showed agreement with buoy observations with rms difference of 1.27 m s−1, the AMSR wind speed is systematically lower than the buoy data for wind speeds lower than 5 m s−1. The AMSR wind seems to have a discontinuous trend relative to the buoy data at wind speeds of 5–6 m s−1. Similar results have been obtained in an intercomparison of wind speeds globally observed by SeaWinds and AMSR on the same orbits. A global wind speed histogram of the AMSR wind shows skewed features in comparison with those of SeaWinds and European Centre for Medium-range Weather Forecasts (ECMWF) analyses.  相似文献   

20.
Three archived reanalysis wind vectors at 10 m height in the wind speed range of 2–15 m/s, namely, the second version of the National Centres for Environmental Prediction(NCEP) Climate Forecast System Reanalysis(CFSv2), European Centre for Medium-Range Weather Forecasting Interim Reanalysis(ERA-I) and NCEPDepartment of Energy(DOE) Reanalysis 2(NCEP-2) products, are evaluated by a comparison with the winds measured by moored buoys in coastal regions of the South China Sea(SCS). The buoy data are first quality controlled by extensive techniques that help eliminate degraded measurements. The evaluation results reveal that the CFSv2 wind vectors are most consistent with the buoy winds(with average biases of 0.01 m/s and 1.76°). The ERA-I winds significantly underestimate the buoy wind speed(with an average bias of –1.57 m/s), while the statistical errors in the NCEP-2 wind direction have the largest magnitude. The diagnosis of the reanalysis wind errors shows the residuals of all three reanalysis wind speeds(reanalysis-buoy) decrease with increasing buoy wind speed, suggesting a narrower wind speed range than that of the observations. Moreover, wind direction errors are examined to depend on the magnitude of the wind speed and the wind speed biases. In general, the evaluation of three reanalysis wind products demonstrates that CFSv2 wind vectors are the closest to the winds along the north coast of the SCS and are sufficiently accurate to be used in numerical models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号