首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mossbauer spectroscopy has been used to determine the redox equilibria of iron and structure of quenched melts on the composition join Na2Si2O5-Fe2O3 to 40 kbar pressure at 1400° C. The Fe3+/ΣFe decreases with increasing pressure. The ferric iron appears to undergo a gradual coordination transformation from a network-former at 1 bar to a network-modifier at higher (≧10 kbar) pressure. Ferrous iron is a network-modifier in all quenched melts. Reduction of Fe3+ to Fe2+ and coordination transformation of remaining Fe3+ result in depolymerization of the silicate melts (the ratio of nonbridging oxygens per tetrahedral cations, NBO/T, increases). It is suggested that this pressure-induced depolymerization of iron-bearing silicate liquids results in increasing NBO/T of the liquidus minerals. Furthermore, this depolymerization results in a more rapid pressure-induced decrease in viscosity and activation energy of viscous flow of iron-bearing silicate melts than would be expected for iron-free silicate melts with similar NBO/T.  相似文献   

2.
The Happo-O’ne peridotite complex is situated in the northeastern part of the Hida Marginal Tectonic Zone, central Japan, characterized by the high-P/T Renge metamorphism, and is considered as a serpentinite mélange of Paleozoic age. Peridotitic rocks, being massive or foliated, have been subjected to hydration and metamorphism. Their protoliths are mostly lherzolites to harzburgites with subordinate dunites. We found a characteristic mineral assemblage, olivine + orthopyroxene + tremolite + chlorite + chromian spinel, being stable at low-T, from 650 to 750°C, and high-P, from 16 to 20 kbar, tremolite–chlorite peridotites of the tremolite zone. Olivines are Fo88–Fo91, and orthopyroxenes (Mg# = 0.91) show low and homogenous distributions of Al2O3 (up to 0.25 wt%), Cr2O3 (up to 0.25 wt%), CaO (up to 0.36 wt%) and TiO2 (up to 0.06 wt%) due to the low equilibration temperature. Chromian spinels, which are euhedral and enclosed mainly in the orthopyroxenes, have high TiO2, 3.1 wt% (up to 5.7 wt%) on average, and high Cr# [=Cr/(Cr + Al) atomic ratio], 0.95 on average but low Fe3+ [=Fe3+/(Cr + Al + Fe3+) atomic ratio, <0.3]. The bulk-rock chemistry shows that the Happo-O’ne metaperidotites with this peculiar spinel are low in TiO2 (0.01–0.02 wt%), indicating no addition of TiO2 from the outside source during the metamorphism; the high TiO2 of the peculiar spinel has been accomplished by Ti release from Ti-bearing high-T pyroxenes during the formation of low-T, low-Ti silicates (<0.1 wt% TiO2) during cooling. Some dunites are intact from hydration: their olivine is Fo92 and spinel shows high Cr#, 0.72. The Happo-O’ne metaperidotites (tremolite–chlorite peridotites), being in the corner of the mantle wedge, are representative of a hydrous low-T, high-P mantle peridotite facies transitional from a higher T anhydrous peridotite facies (spinel peridotites) formed by in situ retrograde metamorphism influenced by fluids from the subducting slab. They have suffered from low-T (<600°C) retrogressive metamorphism to form antigorite and diopside during exhumation of the Renge metamorphic belt.  相似文献   

3.
Quantitative X‐ray maps of composition from a chlorite, K‐white mica, albite, quartz and garnet bearing thin section from a Sambagawa blueschist facies metapelite were combined with a multi‐equilibrium calculation method to calculate a PT‐Fe3+/Fe2+‐deformation map at the millimetre scale. The studied sample was chosen because elongated chlorite crystallization tails (pressure shadows) rimmed by phengite are present, which is an appropriate assemblage for the quantification of the PT evolution. Chlorite temperature and Fe3+ content maps were calculated by successive iterations for each pixel analysis of Fe3+ until convergence of the four chlorite‐quartz‐H2O equilibria that can be written using the Fe‐ and Mg‐amesite, clinchlore, daphnite and sudoite chlorite end‐members. The calculated map of Fe2+/Fe3+ in chlorite is in good qualitative agreement with the in situ mapping of this ratio using XANES (X‐ray absorption near edge structure) techniques. The temperature map indicates that high temperature chlorite zones with low Fe3+ contents alternate with lower temperature zones and higher Fe3+ contents in the crystallization tail. Late fractures perpendicular to the elongation axis of the tail are filled by very low temperature chlorite (<250 °C) showing Fe3+/Fetotal up to 0.4. Groups of chlorite and mica pixels were then identified based on compositional and structural criteria, and a PT‐deformation map was calculated using representative analyses of these groups. The calculated PT‐deformation map suggests that in contrast to chlorite, the composition of most mica did not change significantly during exhumation. Mica reequilibrated in late EW shear bands only. EW shearing was already active at 0.1 GPa, 500 °C, which corresponds to the peak temperature (and probably pressure) conditions, at reduced redox conditions. The intensity of deformation probably decreased with decrease in temperature to ~350–400 °C. At this temperature, a second main deformation event corresponding to a further EW stretching occurred and was still active below 250 °C and more oxidizing conditions. These results indicate that the scale at which PT data can be obtained is now close to the scale of observation of structural geologists. A close link between deformation and mineral reaction is therefore possible at the microscopic scale, which provides information about the relationship between deformation and mineral reactivity, the modalities of deformation with time and the PT conditions at which it occurred.  相似文献   

4.
The stability of pumpellyite + actinolite or riebeckite + epidote + hematite (with chlorite, albite, titanite, quartz and H2O in excess) mineral assemblages in LTMP metabasite rocks is strongly dependent on bulk composition. By using a thermodynamic approach (THERMOCALC), the importance of CaO and Fe2O3 bulk contents on the stability of these phases is illustrated using P–T and P–X phase diagrams. This approach allowed P–T conditions of ~4.0 kbar and ~260 °C to be calculated for the growth of pumpellyite + actinolite or riebeckite + epidote + hematite assemblages in rocks containing variable bulk CaO and Fe2O3 contents. These rocks form part of an accretionary wedge that developed along the east Australian margin during the Carboniferous–Triassic New England Orogen. P–T and P–X diagrams show that sodic amphibole, epidote and hematite will grow at these conditions in Fe2O3‐saturated (6.16 wt%) metabasic rocks, whereas actinolite and pumpellyite will be stable in CaO‐rich (10.30 wt%) rocks. With intermediate Fe2O3 (~3.50 wt%) and CaO (~8.30 wt%) contents, sodic amphibole, actinolite and epidote can coexist at these P–T conditions. For Fe2O3‐saturated rocks, compositional isopleths for sodic amphibole (Al3+ and Fe3+ on the M2 site), epidote (Fe3+/Fe3+ + Al3+) and chlorite (Fe2+/Fe2+ + Mg) were calculated to evaluate the efficiency of these cation exchanges as thermobarometers in LTMP metabasic rocks. Based on these calculations, it is shown that Al3+ in sodic amphibole and epidote is an excellent barometer in chlorite, albite, hematite, quartz and titanite buffered assemblages. The effectiveness of these barometers decreases with the breakdown of albite. In higher‐P stability fields where albite is absent, Fe2+‐Mg ratios in chlorite may be dependent on pressure. The Fe3+/Al and Fe2+/Mg ratios in epidote and chlorite are reliable thermometers in actinolite, epidote, chlorite, albite, quartz, hematite and titanite buffered assemblages.  相似文献   

5.
The pressure and temperature dependence of the composition of sphalerite in equilibrium with troilite + metallic iron has been determined experimentally at 2.5 and 5.0 kbar between 400° and 800°C using both the aqueous and anhydrous alkali halide flux recrystallization techniques. The measured pressure effect is larger than that calculated by us and by Schwarczet al. (1975a), and is described by the equation (T in Kelvins), P (kbar) = ?3.576 + 0.0551T ?0.0296Tlogmole % FeS.Assuming temperatures of final equilibration between sphalerite and troilite of 350°C for iron meteorites and 600°C for enstatite chondrites, published analyses of sphalerites provide estimates of pressures of formation and possible radii of parent objects of meteorites as follows: IA irons (Landes, Sardis, Gladstone, Bogou, Odessa, Toluca) 0.0 to 3.5 kbar, 0 to 442 km; E6 enstatite chondrites (Yilmia, Pillistfer) ?0.2 to 0.7 kbar, 0 to 198 km.  相似文献   

6.
Despite a large number of studies of iron spin state in silicate perovskite at high pressure and high temperature, there is still disagreement regarding the type and PT conditions of the transition, and whether Fe2+ or Fe3+ or both iron cations are involved. Recently, our group published results of a Mössbauer spectroscopy study of the iron behaviour in (Mg,Fe)(Si,Al)O3 perovskite at pressures up to 110 GPa (McCammon et al. 2008), where we suggested stabilization of the intermediate spin state for 8- to 12-fold coordinated ferrous iron ([8–12]Fe2+) in silicate perovskite above 30 GPa. In order to explore the behaviour in related systems, we performed a comparative Mössbauer spectroscopic study of silicate perovskite (Fe0.12Mg0.88SiO3) and majorite (with two compositions—Fe0.18Mg0.82SiO3 and Fe0.11Mg0.88SiO3) at pressures up to 81 GPa in the temperature range 296–800 K, which was mainly motivated by the fact that the oxygen environment of ferrous iron in majorite is quite similar to that in silicate perovskite. The [8–12]Fe2+ component, dominating the Mössbauer spectra of majorites, shows high quadrupole splitting (QS) values, about 3.6 mm s?1, in the entire studied PT region (pressures to 58 GPa and 296–800 K). Decrease of the QS of this component with temperature at constant pressure can be described by the Huggins model with the energy splitting between low-energy e g levels of [8–12]Fe2+ equal to 1,500 (50) cm?1 for Fe0.18Mg0.82SiO3 and to 1,680 (70) cm?1 for Fe0.11Mg0.88SiO3. In contrast, for the silicate perovskite dominating Mössbauer component associated with [8–12]Fe2+ suggests the gradual change of the electronic properties. Namely, an additional spectral component with central shift close to that for high-spin [8–12]Fe2+ and QS about 3.7 mm s?1 appeared at ~35 (2) GPa, and the amount of the component increases with both pressure and temperature. The temperature dependence of QS of the component cannot be described in the framework of the Huggins model. Observed differences in the high-pressure high-temperature behaviour of [8–12]Fe2+ in the silicate perovskite and majorite phases provide additional arguments in favour of the gradual high-spin—intermediate-spin crossover in lower mantle perovskite, previously reported by McCammon et al. (2008) and Lin et al. (2008).  相似文献   

7.
The Ordovician Kellerjochgneiss (Schwaz Augengneiss) is a polymetamorphic orthogneiss-bearing unit and is part of the Austroalpine basement nappes north of the Tauern Window. Within the Kellerjochgneiss a small, strongly deformed metapegmatite dike occurs. The pegmatite crosscuts the gneiss discordantly and contains the mineral assemblage muscovite 1,2+plagioclase+K-feldspar+chlorite+quartz+garnet 1 (Alm67–76Andr0.9–2Sps17–28Prp0.4–5)+garnet 2 (Grs36–46Alm24–32Andr8–21Sps15–17Prp0–1)±stilpnomelane±biotite±clinozoisite. The magmatic protolith assemblage is comprised of relict K-feldspar, quartz and garnet 1. Textural observations indicate that biotite and muscovite cores (muscovite 1) are either part of the magmatic- or an earlier (Variscan?) metamorphic assemblage. Geothermobarometry of the metapegmatite was done on the latest-stage (Eo-Alpine) mineral assemblage garnet 2+muscovite 2+chlorite+stilpnomelane+plagioclase+quartz. Calculations of H2O-absent intersections in the system [KCNFMAS] with the multi-equilibrium program THERMOCALC v.3.1 yielded PT estimates of 4.4 to 6.7 kbar and 321°C to 376°C. Calculations of the PT conditions by using the assemblage muscovite 2+chlorite+stilpnomelane+quartz yielded slightly higher pressures of 6.4 to 7.2 kbar at temperatures of 310–325°C. Correlating these PT data with geochronological data from the neighbouring lithologies (Kellerjochgneiss, Innsbruck Quartzphyllite, Wildschönau Schists) and with structural investigations from these units indicate that the PT estimates obtained in this investigation represent the Eo-Alpine metamorphic overprint. Hence, these unusual rocks provide important information on the Eo-Alpine PT conditions since most samples studied from the investigated Austroalpine basement nappes north of the Tauern Window rarely contain mineral assemblages suitable for geothermobarometry.  相似文献   

8.
The Golyamo Kamenyane serpentinite is a portion of a metaophiolite, located in the Upper High-Grade Unit of the metamorphic basement of the Eastern Rhodope Metamorphic Complex, SE Bulgaria. It consists of metaharzburgite and metadunite hosting layers of metagabbro and some chromitite bodies. All these lithologies were affected by ultrahigh-pressure (UHP) metamorphism and subsequent retrograde evolution during exhumation. Chromite from chromitites can be classified into four textural groups: (1) partly altered chromite, (2) porous chromite, (3) homogeneous chromite and (4) zoned chromite. Partly altered chromite shows unaltered, Al-rich cores with unit cell size of 8.255 Å and Cr# [Cr/(Cr + Al) atomic ratio] = 0.52–0.60, Mg# [Mg/(Mg + Fe2+) atomic ratio] = 0.65–0.70 and Fe3+/(Fe3+ + Fe2+) = 0.20–0.30, surrounded by porous chromite, with a cell size of 8.325 Å, Fe3+/(Fe3+ + Fe2+) < 0.20 and values of Cr# and Mg# evolving from 0.60 to 0.91 and 0.65–0.44, respectively, from core to rim. The chemical composition of porous chromite varies within the following ranges: Cr# = 0.93–0.96, Mg# = 0.48–0.35 and Fe3+/(Fe3+ + Fe2+) = 0.22–0.53. Its unit cell size is very constant (8.350 Å). Most pores in porous and partly altered chromite are filled with chlorite, which also occurs between chromite grains. Homogeneous chromite has Fe3+/(Fe3+ + Fe2+) = 0.55–0.66, Cr# = 0.96–0.99, Mg# = 0.32–0.19 and a cell size of 8.385 Å. The cores of zoned chromite are similar to those of partially altered chromite, but the rims are identical to homogeneous chromite. Although chlorite predominates in the silicate matrix of homogeneous and zoned chromite, it coexists with some antigorite, talc and magnesiohornblende. Mineral data and thermodynamic modeling allow interpretation of the alteration patterns of chromite as the consequence of a two-stage process developed during retrograde metamorphic evolution coeval with fluid infiltration. During the first stage, chromite reacts in the presence of fluid with olivine to produce chlorite and Cr- and Fe2+-rich residual chromite (ferrous chromite) at ~700 to ~450 °C. This dissolution–precipitation reaction involves continuous chromite mass loss resulting in the development of a porous texture. This stage takes place progressively on cooling under water-saturated and reducing conditions. The second stage mainly consists of the formation of homogeneous chromite with ferrian chromite composition by the addition of magnetite to the porous ferrous chromite during a late oxidizing hydrothermal event.  相似文献   

9.
We report here rare evidence for the early prograde P-Tevolution of garnet-sillimanite-graphite gneiss(khondalite)from the central Highland Complex,Sri Lanka.Four types of garnet porphyroblasts(Grt_1,Grt_2,Grt_3 and Grt_4)are observed in the rock with specific types of inclusion features.Only Grt_3 shows evidence for non-coaxial strain.Combining the information shows a sequence of main inclusion phases,from old to young:oriented quartz inclusions at core,staurolite and prismatic sillimanite at mantle,kyanite and kyanite pseudomorph,and biotite at rim in Grt_1;fibrolitic sillimanite pseudomorphing kyanite±corundum,kyanite,and spinel+sillimanite after garnet+corundum in Grt_2;biotite,sillimanite,quartz±spinel in Grt_3;and ilmenite,rulite,quartz and sillimanite in Grt_4.The pre-melting,original rock composition was calculated through stepwise re-integration of melt into the residual,XRF based composition,allowing the early prograde metamorphic evolution to be deduced from petrographical observations and pseudosections.The earliest recognizable stage occurred in the sillimanite field at around 575℃ at 4.5 kbar.Subsequent collision associated with Gondwana amalgamation led to crustal thickening along a P-T trajectory with an average dP/dT of ~30 bar/℃ in the kyanite field,up to ~660℃ at 6.5 kbar,before crossing the wet-solidus at around 675 ℃ at 7.5 kbar.The highest pressure occurred at P 10 kbar and T around 780℃ before prograde decompression associated with further heating.At 825℃ and 10.5 kbar,the rock re-entered into the sillimanite field.The temperature peaked at 900℃ at ca.9-9.5 kbar.Subsequent near-isobaric cooling led to the growth of Grt_4 and rutile at T ~880℃.Local pyrophyllite rims around sillimanite suggest a late stage of rehydration at T400℃,which probably occurred after uplift to upper crustal levels.U-Pb dating of zircons by LAICPMS of the khondalite yielded two concordant ~(206)Pb/~(238)U age groups with mean values of 542±2 Ma(MSWD=0.24,Th/U=0.01-0.03)and 514±3 Ma(MSWD=0.50,Th/U=0.01-0.05)interpreted as peak metamorphism of the khondalite and subsequent melt crystallization during cooling.  相似文献   

10.
Annealing at 400?T?600 °C (40?P?60 MPa and HM buffer-controlled f(O2)) of tourmalines synthesised at the same T and P with NNO buffer induces an oxidation of Fe2+ into Fe3+ in some Y sites only (Mössbauer Spectroscopy data). Annealing in the same conditions of natural tourmalines is consistent with these results. FTIR spectroscopy shows that oxidation of Fe2+ into Fe3+ is charge-balanced by deprotonation of the external OH(3) groups. To cite this article: Y. Fuchs et al., C. R. Geoscience 334 (2002) 245–249.  相似文献   

11.
Mutual relationships among temperatures estimated with the most widely used geothermometers for garnet peridotites and pyroxenites demonstrate that the methods are not internally consistent and may diverge by over 200°C even in well-equilibrated mantle xenoliths. The Taylor (N Jb Min Abh 172:381–408, 1998) two-pyroxene (TA98) and the Nimis and Taylor (Contrib Mineral Petrol 139:541–554, 2000) single-clinopyroxene thermometers are shown to provide the most reliable estimates, as they reproduce the temperatures of experiments in a variety of simple and natural peridotitic systems. Discrepancies between these two thermometers are negligible in applications to a wide variety of natural samples (≤30°C). The Brey and Köhler (J Petrol 31:1353–1378, 1990) Ca-in-Opx thermometer shows good agreement with TA98 in the range 1,000–1,400°C and a positive bias at lower T (up to +90°C, on average, at T TA98 = 700°C). The popular Brey and Köhler (J Petrol 31:1353–1378, 1990) two-pyroxene thermometer performs well on clinopyroxene with Na contents of ~0.05 atoms per 6-oxygen formula, but shows a systematic positive bias with increasing NaCpx (+150°C at NaCpx = 0.25). Among Fe–Mg exchange thermometers, the Harley (Contrib Mineral Petrol 86:359–373, 1984) orthopyroxene–garnet and the recent Wu and Zhao (J Metamorphic Geol 25:497–505, 2007) olivine–garnet formulations show the highest precision, but systematically diverge (up to ca. 150°C, on average) from TA98 estimates at T far from 1,100°C and at T < 1,200°C, respectively; these systematic errors are also evident by comparison with experimental data for natural peridotite systems. The older O’Neill and Wood (Contrib Mineral Petrol 70:59–70, 1979) version of the olivine–garnet Fe–Mg thermometer and all popular versions of the clinopyroxene–garnet Fe–Mg thermometer show unacceptably low precision, with discrepancies exceeding 200°C when compared to TA98 results for well-equilibrated xenoliths. Empirical correction to the Brey and Köhler (J Petrol 31:1353–1378, 1990) Ca-in-Opx thermometer and recalibration of the orthopyroxene–garnet thermometer, using well-equilibrated mantle xenoliths and TA98 temperatures as calibrants, are provided in this study to ensure consistency with TA98 estimates in the range 700–1,400°C. Observed discrepancies between the new orthopyroxene–garnet thermometer and TA98 for some localities can be interpreted in the light of orthopyroxene–garnet Fe3+ partitioning systematics and suggest localized and lateral variations in mantle redox conditions, in broad agreement with existing oxybarometric data. Kinetic decoupling of Ca–Mg and Fe–Mg exchange equilibria caused by transient heating appears to be common, but not ubiquitous, near the base of the lithosphere.  相似文献   

12.
The so-called ‘Porphyro??des’ Unit of South Brittany is located below units marked by an early HP–LT event (blueschists from the Île de Groix) and above units marked by Upper Carboniferous HT metamorphism. PT estimates in the Porphyro??des (at Belle-Île-en-Mer), using the phengite–chlorite thermobarometer, indicate pressures around 8 kbar and temperatures of 350–400 °C. These new estimates suggest that the early tectonic history of the ‘Porphyro??des’ should be linked to that of the overlying Blueschists, and imply a much larger areal extension of the HP–LT domain in this part of the Hercynian Belt. To cite this article: F. Le Hébel et al., C. R. Geoscience 334 (2002) 205–211.  相似文献   

13.
Lithian ferrian enstatite with Li2O = 1.39 wt% and Fe2O3 7.54 wt% was synthesised in the (MgO–Li2O–FeO–SiO2–H2O) system at P = 0.3 GPa, T = 1,000°C, fO2 = +2 Pbca, and a = 18.2113(7), b = 8.8172(3), c = 5.2050(2) Å, V = 835.79(9) Å3. The composition of the orthopyroxene was determined combining EMP, LA-ICP-MS and single-crystal XRD analysis, yielding the unit formula M2(Mg0.59Fe 0.21 2+ Li0.20) M1(Mg0.74Fe 0.20 3+ Fe 0.06 2+ ) Si2O6. Structure refinements done on crystals obtained from synthesis runs with variable Mg-content show that the orthopyroxene is virtually constant in composition and hence in structure, whereas coexisting clinopyroxenes occurring both as individual grains or thin rims around the orthopyroxene crystals have variable amounts of Li, Fe3+ and Mg contents. Structure refinement shows that Li is ordered at the M2 site and Fe3+ is ordered at the M1 site of the orthopyroxene, whereas Mg (and Fe2+) distributes over both octahedral sites. The main geometrical variations observed for Li-rich samples are actually due to the presence of Fe3+, which affects significantly the geometry of the M1 site; changes in the geometry of the M2 site due to the lower coordination of Li are likely to affect both the degree and the kinetics of the non-convergent Fe2+-Mg ordering process in octahedral sites.  相似文献   

14.
Four samples of synthetic chromium-bearing spinels of (Mg, Fe2+)(Cr, Fe3+)2O4 composition and four samples of natural spinels of predominantly (Mg, Fe2+)(Al, Cr)2O4 composition were studied at ambient conditions by means of optical absorption spectroscopy. Synthetic end-member MgCr2O4 spinel was also studied at pressures up to ca. 10 GPa. In both synthetic and natural samples, chromium is present predominantly as octahedral Cr3+ seen in the spectra as two broad intense absorption bands in the visible range caused by the electronic spin-allowed 4 A 2g  → 4 T 2g and 4 A 2g  → 4 T 1g transitions (U- and Y-band, respectively). A distinct doublet structure of the Y-band in both synthetic and natural spinels is related to trigonal distortion of the octahedral site in the spinel structure. A small, if any, splitting of the U-band can only be resolved at curve-fitting analysis. In all synthetic high-chromium spinels, a couple of relatively narrow and weak bands of the spin-allowed transitions 4 A 2g  → 2 E g and 4 A 2g  → 2 T 1g of Cr3+, intensified by exchange-coupled interaction between Cr3+ and Fe3+ at neighboring octahedral sites of the structure, appear at ~14,400 and ~15,100 cm?1. A vague broad band in the range from ca. 15,000 to 12,000 cm?1 in synthetic spinels is tentatively attributed to IVCr2+ + VICr3+ → IVCr3+ + VICr2+ intervalence charge-transfer transition. Iron, mainly as octahedral Fe3+, causes intense high-energy absorption edge in near UV-range (ligand–metal charge-transfer O2? → Fe3+, Fe2+ transitions). As tetrahedral Fe2+, it appears as a strong infrared absorption band at around 4,850 cm?1 caused by electronic spin-allowed 5 E → 5 T 2 transitions of IVFe2+. From the composition shift of the U-band in natural and synthetic MgCr2O4 spinels, the coefficient of local structural relaxation around Cr3+ in spinel MgAl2O4–MgCr2O4 system was evaluated as ~0.56(4), one of the lowest among (Al, Cr)O6 polyhedra known so far. The octahedral modulus of Cr3+ in MgCr2O4, derived from pressure-induced shift of the U-band of Cr3+, is ~313 (50) GPa, which is nearly the same as in natural low-chromium Mg, Al-spinel reported by Langer et al. (1997). Calculated from the results of the curve-fitting analysis, the Racah parameter B of Cr3+ in natural and synthetic MgCr2O4 spinels indicates that Cr–O-bonding in octahedral sites of MgCr2O4 has more covalent character than in the diluted natural samples. Within the uncertainty of determination in synthetic MgAl2O4 spinel, B does not much depend on pressure.  相似文献   

15.
The influence of oxygen fugacity (fO2) and temperature on the valence and structural state of iron was experimentally studied in glasses quenched from natural aluminosilicate melts of granite and pantellerite compositions exposed to various T-fO2 conditions (1100–1420°C and 10?12–10?0.68 bar) at a total pressure of 1 atm. The quenched glasses were investigated by Mössbauer spectroscopy. It was shown that the effect of oxygen fugacity on the redox state of iron at 1320–1420°C can be described by the equation log(Fe3+/Fe2+) = k log(fO2) + q, where k and q are constants depending on melt composition and temperature. The Fe3+/Fe2+ ratio decreases with decreasing fO2 (T = const) and increasing temperature (fO2 = const). The structural state of Fe3+ depends on the degree of iron oxidation. With increasing Fe3+/Fe2+ ≥ 1, the dominant coordination of Fe3+ changes from octahedral to tetrahedral. Ferrous iron ions occur in octahedral (and/or five-coordinated) sites independent of Fe3+/Fe2+.  相似文献   

16.
A series of natural omphacites from a wide range of P, T occurrences were investigated by electron microprobe (EMP), infrared (IR)-, Mössbauer (MS)- and optical spectroscopy in the UV/VIS spectral range (UV/VIS), secondary ion mass spectrometry (SIMS) and single crystal structure refinement by X-ray diffraction (XRD) to study the influence of hydrogen loss on valence state and site occupancies of iron. In accordance with literature data we found Fe2+ at M1 as well as at M2, and in a first approach assigned Fe3+ to M1, as indicated by MS and XRD results. Hydrogen content of three of our omphacite samples were measured by SIMS. In combination with IR spectroscopy we determined an absorption coefficient: ε i,tot = 65,000 ± 3,000 lmolH2O ?1 cm?2. Using this new ε i,tot value, we obtained water concentrations ranging from 60 to 700 ppm H2O (by weight). Hydrogen loss was simulated by stepwise heating the most water rich samples in air up to 800°C. After heat treatment the samples were analyzed again by IR, MS, UV/VIS, and XRD. Depending on the type of the OH defect, the grade of dehydration with increasing temperature is significantly different. In samples relatively poor in Fe3+ (<0.1 Fe3+ pfu), hydrogen associated with vacancies at M2 (OH bands around 3,450 cm?1) starts to leave the structure at about 550°C and is completely gone at 780°C. Hydrogen associated with Al3+ at the tetrahedral site (OH bands around 3,525 cm?1, Koch-Müller et al., Am Mineral, 89:921–931, 2004) remains completely unaffected by heat treatment up to 700°C. But all hydrogen vanished at about 775°C. However, this is different for a more Fe3+-rich sample (0.2 Fe3+ pfu). Its IR spectrum is characterized by a very intense OH band at 3,515 cm?1 plus shoulder at 3,450 cm?1. We assign this intense high-energy band to vibrations of an OH dipole associated with Fe3+ at M1 and a vacancy either at M1 or M2. OH release during heating is positively correlated with decrease in Fe2+ and combined with increase in Fe3+. That dehydration is correlated with oxidation of Fe2+ is indirectly confirmed by annealing of one sample in a gas mixing furnace at 700°C under reducing conditions keeping almost constant OH? content and giving no indication of Fe2+-oxidation. Obtained data indicate that in samples with a relatively high concentration of Fe2+ at M2 and low-water concentrations, i.e., at a ratio of Fe2+ M2/H > 10 dehydration occurs by iron oxidation of Fe2+ exclusively at the M2 site following the reaction: \( {\left[ {{\text{Fe}}^{{{\text{2 + [ M2]}}}}{\text{OH}}^{ - } } \right]} = {\left[ {{\text{Fe}}^{{{\text{3 + [ M2]}}}} {\text{O}}^{{{\text{2}} - }} } \right]} + {\text{1/2}}\;{\text{H}}_{{\text{2}}} \uparrow . \) In samples having relatively low concentration of Fe2+ at M2 but high-water concentrations, i.e., ratio of Fe2+ M2/H < 5.0 dehydration occurs through oxidation of Fe2+ at M1.  相似文献   

17.
《Precambrian Research》1999,93(2-3):181-199
The Wutai Complex represents the best preserved granite-greenstone terrane in the North China Craton. The complex comprises a sequence of metamorphosed ultramafic to felsic volcanic rocks, variably deformed granitoid rocks, along with lesser amounts of siliciclastic and carbonate rocks and banded iron formations. Petrological evidence from the Wutai amphibolites indicates four metamorphic evolutionary stages. The M1 assemblage is composed of plagioclase+quartz+actinolite+chlorite+epidote+biotite+rutile, preserved as mineral inclusions in garnet porphyroblasts. The metamorphic conditions for this assemblage cannot be quantitatively estimated. The M2 stage is represented by garnet porphyroblasts in a matrix of quartz, plagioclase, amphibole, biotite, rutile and ilmenite. PT conditions for this assemblage have been estimated using the program Tweequ at 10–12 kbar and 600–650°C. The M3 assemblage is shown by amphibole+plagioclase±ilmenite symplectic coronas around embayed garnets and yields PT conditions of 6.0–7.0 kbar and 600–650°C. M4 is represented by chlorite and epidote rimming garnet, chlorite rimming amphibole and epidote replacing plagioclase under greenschist-facies conditions of 400–500°C and relatively lower pressures. Taken together, the qualitative PT estimates from M1 and M4 and the quantitative PT estimates from M2 and M3 define a clockwise PT path for the Wutai amphibolites.The estimated PT path from the four stages suggests that the Wutai Complex underwent initial burial and crustal thickening (M1+M2), subsequent isothermal exhumation (M3), and finally cooling and retrogression (M4). This tectonothermal path, along with those of the Fuping and Hengshan complexes, which bound the southeast and northwest margins, respectively, of the Wutai Complex, is considered to record the early Paleoproterozoic collision between the eastern and western segments of the North China craton.  相似文献   

18.
Synthetic ringwoodite γ-(Mg1?x Fe x )2SiO4 of 0.4 ≤ x ≤ 1.0 compositions and variously colored micro-grains of natural ringwoodite in shock metamorphism veins of thin sections of two S6-type chondrites were studied by means of microprobe analysis, TEM and optical absorption spectroscopy. Three synthetic samples were studied in addition with Mössbauer spectroscopy. The Mössbauer spectra consist of two doublets caused by VIFe2+ and VIFe3+, with IS and QS parameters close to those established elsewhere (e.g., O’Neill et al. in Am Mineral 78:456–460, 1993). The Fe3+/Fetotal ratio evaluated by curve resolution of the spectra, ranges from 0.04 to 0.1. Optical absorption spectra of all synthetic samples studied are qualitatively very similar as they are directly related to the iron content. They differ mostly in the intensity of the observed absorption features. The spectra consist of a very strong high-energy absorption edge and a series of absorption bands of different width and intensity. The three strongest and broadest absorptions of them are attributed to splitting of electronic spin-allowed 5 T 2g → 5 E g transitions of VIFe2+ and intervalence charge-transfer (IVCT) transition between ferrous and ferric ions in adjacent octahedral sites of the ringwoodite structure. The spin-allowed bands at ca. 8,000 and 11,500 cm?1 weakly depend on temperature, whilst the Fe2+/Fe3+ IVCT band at ~16,400 cm?1 displays very strong temperature dependence: i.e., with increasing temperature it decreases and practically disappears at about 497 K, a behavior typical for bands of this type. With increasing pressure the absorption edge shifts to lower energies while the spin-allowed bands shift to higher energy and strongly decreases in intensity. The IVCT band also strongly weakens and vanishes at about 9 GPa. We assigned this effect to pressure-induced reduction of Fe3+ in ringwoodite. By analogy with synthetic samples three broad bands in spectra of natural (meteoritic) blue ringwoodite are assigned to electronic spin-allowed transitions of VIFe2+ (the bands at ~8,600 and ~12,700 cm?1) and Fe2+/Fe3+ IVCT transition (~18,100 cm?1), respectively. Spectra of colorless ringwoodite of the same composition consist of a single broad band at ca. 12,000 cm?1. It is assumed that such ringwoodite grains are inverse (Fe, Mg)2SiO4-spinels and that the single band is caused by the split spin-allowed 5 E → 5 T 2 transition of IVFe2+. Ringwoodite of intermediate color variations between dark-blue and colorless are assumed to be partly inversed ringwoodite. No glassy material between the grain boundaries in the natural colored ringwoodite aggregates was found in our samples and disprove the cause of the coloration to be due to light scattering effect (Lingemann and Stöffler in Lunar Planet Sci 29(1308), 1998).  相似文献   

19.
Oxygen isotopic fractionation in the system quartz-albite-anorthite-water   总被引:1,自引:0,他引:1  
Oxygen isotopic fractionations have been determined between quartz and water, albite and water, and anorthite and water at temperatures from 300 to 825°C, and pressures from 1.5. to 25 kbar. The equilibrium quartz-feldspar fractionation curves can be approximated by the following equations: 1000ln αQ?PI = (0.46 + 0.55β)106T?2 + (0.02 + 0.85β) between 500 and 800°C 1000ln αQ?PI = (0.79 + 0.90β)106T?2 — (0.43 ? 0.30β) between 400 and 500°C where β is the mole-fraction of anorthite in plagioclase.Application of these isotopic thermometer calibrations to literature data on quartz and feldspar gives temperatures for some metamorphic rocks which are concordant with quartz-magnetite temperatures. Plutonic igneous rocks typically have quartz-feldspar fractionations which are substantially larger than the equilibrium values at solidus temperatures, indicating substantial retrograde exchange effects.  相似文献   

20.
Ultrabasic xenoliths (pyroxenites, lherzolites, harzburgites) in recent (Neogene–Quaternary) volcanoes have been studied in three localities within Syria: Jubates (North), Mhailbeh (Center), Tel Thannoun (South). PT conditions of mineral equilibration have been estimated by pyroxene thermometry (temperature) and maximum CO2 density in primary inclusions (minimum pressure). Pyroxenites equilibrate at significantly higher conditions (T about 1200 °C, P>15 kbar) than lherzolites and harzburgites (900<T<1100 °C, P between 10 and 15 kbar). All are within the spinel lherzolite field, whereas Cretaceous xenoliths originate within the garnet lherzolite field. To cite this article: A. Bilal, F. Sheleh, C. R. Geoscience 336 (2004).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号