首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In the Aberfoyle Sn/W district of N.E. Tasmania, mineralization is in quartz veins associated with Devonian granite. The host rocks to the mineralization are folded Silurian quartzites, greywackes and shales and these also contain abundant pre-mineralization quartz veins which can be difficult to distinguish from irregularly mineralized ore veins on geological criteria, especially in drill core. It was found that the decrepitation characteristics of the quartz, chiefly the intensity ratio of high and low temperature peaks, which are developed in all decrepigrams, enable a distinction between the two generations of veins to be readily made. The differences between the fluid inclusions in the two generations of veins are relatively subtle, however it seems clear that “CO2-rich” inclusions having a wide range of composition and density are the main source of decrepitation events and that the major differences in decrepitation behaviour can be correlated with differences in average homogenization temperature of these inclusions. Even those ore veins which have undergone moderate ductile deformation have the typical signature of their origin. The decrepitation results are supported by analyses of inclusion gases by Raman microprobe. These analyses differentiate a third group of veins which are possibly unmineralized veins belonging to a separate hydrothermal system.  相似文献   

2.
爆裂法是一种经济快速的流体包裹体测温技术,由于该技术的影响因素较多且测试精度往往不是很高,历来受到很多学者的质疑。为了讨论爆裂法测温技术的可靠性,在前人研究的基础上,利用冷热台对大吉山钨矿含矿石英脉中的包裹体爆裂温度进行了显微测温,分析了包裹体个体大小对爆裂温度的影响,发现两者之间存在着明显的反相关性;同时,对数据的进一步分析发现爆裂法测温曲线反映的爆裂峰是2期3类包裹体爆裂叠加的结果,但是实验测得的爆裂温度区间与爆裂法测温结果基本上是吻合的,这说明爆裂法测温技术虽然有较多的影响因素,但是在一定程度上是可靠的,尤其是在找矿勘探方面其潜力很大,值得推广应用。  相似文献   

3.
The Dongshengmiao Pb-Zn deposit located in the Mesoproterozoic aulacogen in a passive continental margin in the north- west margin of the North-China Craton is widely considered to be a untypical SEDEX deposit.Recently,new types of mineralization such as chalcopyrite veins and re-crystallized sphalerite ores with visible hydrothermal alteration have been found in the deposit at depth.In this paper we report the decrepitation temperatures of fluid inclusions in chalcopyrite,sphalerite and quartz from these new types of ores.The decrepitation temperatures of fluid inclusions in chalcopyrite(4 samples),sphalerite(2 samples)and quartz(5 samples)are 303~456℃,97~497℃,146~350℃and 350~556℃,respectively.The decrepitation temperatures of fluid inclusions in the vein-type chalcopyrite are similar to the decrepitation temperatures of fluid inclusions in chalcopyrite from the Hercynian Oubulage porphyry Cu-Au deposit(313~514℃)and the Chehugou porphyry Cu-Mo deposit(277~485℃),supporting our interpretation that the Dongshengmiao deposit was overprinted by magmatic hydrothermal mineralization.The decrepitation temperatures of fluid inclusions in re-crystallized sphalerite from the Dongshengmiao deposit are characterized by two peaks,97~358℃and 358~497℃.The decrepitation temperatures of fluid inclusions in quartz in ehalcopyrite veins from the Dongshengmiao deposit are also characterized by two peaks,146~350℃and 350~556℃.The lower and higher temperature peaks in both cases are considered to represent two separate mineralization events,original SEDEX mineralization and magmatic hydrothermal overprinting,respectively.The higher decrepitation temperatures of fluid inclusions in quartz and sphalerite from the Dongshengmiao deposit are similar to the decrepitation temperatures(340~526℃)of fluid inclusions in sphalerite from the Baiyinnuoer skarn-type Pb-Zn deposit in the region. Replacement of pyrite by sphalerite and overgrowth of chalcopyrite on pyrite in the Dongshengmiao support our interpretation that the original SEDEX mineralization was overprinted by magmatic hydrothermal activity in the deposit.Our results suggest that there may be separate porphyry and skarn-type deposits related to Hercynian magmatism and associated hydrothermal activities in the Langshan area, which are potential exploration targets in the future.  相似文献   

4.
The acoustic decrepitation method heats a small monomineralic sample and counts pressure impulses as the inclusions burst when they develop high internal pressures.For aqueous fluids,the decrepitation temperature is correlated with the homogenisation temperature,but gas rich fluids give a distinct and characteristic low temperature decrepitation peak which can be used to recognize gas rich fluid inclusions.This information is useful in exploration for Au deposits,which are frequently associated with CO_2 rich and sometimes CH_4 rich fluids. This distinctive decrepitation occurs because the CO_2 rich inclusion fluids expand according to the gas law and develop internal pressures high enough to burst the host mineral grain at temperatures well below their homogenisation temperatures.In contrast,aqueous fluids condense to a liquid and vapour phase during post-entrapment cooling.Upon subsequent heating their internal pressures do not increase significantly until after homogenisation to a single phase occurs and hence they do not decrepitate"prematurely"as gas rich inclusions do. This behaviour is usually regarded as an annoyance in conventional microthermometric homogenisation studies,but can readily be used as an exploration aid to find mineralisation deposited from such gas rich fluids.Decrepitation results on samples from Cowra Ck, NSW,Australia,which have also been microthermometrically measured for CO_2 content,show that amounts of less than 5 mole % CO_2 are easily distinguished by decrepitation and amounts as low as 1 mole % CO_2 may be determinable. Examples of the use of acoustic decrepitation in the study of 6 gold mines in the Shandong and Hebei provinces of China are discussed.  相似文献   

5.
Stepped heating and crushing experiments have been used to investigate the noble gas and halogen degassing behaviour of quartz in detail. Samples with diverse character were selected from the Eloise and Osborne, Iron Oxide Copper Gold (IOCG) ore deposits, and the Railway Fault, 13 km south of the Mt Isa Mine, in the Proterozoic Mt Isa Inlier of northeast Australia. Quartz has been shown to have a bimodal degassing profile. The first degassing mode at temperatures of <700 °C is caused by thermally induced mechanical decrepitation of fluid inclusions. Changes in the Br/Cl, I/Cl, Ar/Cl and 40Ar/36Ar composition of gas released at different temperatures up to 700 °C can be related to the decrepitation of different types of fluid inclusion observed by microthermometry. These variations with temperature permit deconvolution of the complex fluid inclusion assemblages associated with the IOCG samples; the ultra high salinity, multi solid (MS) and liquid-vapour-daughter (LVD) fluid inclusions, with a predominantly primary origin, decrepitate at higher temperatures than lower salinity liquid-vapour (LV) and monophase (M) fluid inclusions that have a predominantly secondary origin. Three of the IOCG samples have primary MS and LVD fluid inclusions characterized by molar Br/Cl values of between 0.25 × 10−3 and 0.66 × 10−3, I/Cl between 0.37 × 10−6 and 5.0 × 10−6, 40Ar/36Ar values of <1000 and low 36Ar concentrations of 0.7-1.0 × 10−6 cm3 cm−3H2O. These low values are most easily explained by the involvement of halite dissolution water in IOCG genesis. One of the IOCG samples has Br/Cl of 1.3-2.0 × 10−3 and I/Cl of 10 × 10−6, similar to juvenile magmatic fluids in Phanerozoic Porphyry Copper Deposits. This sample also has a higher 36Ar concentration of 3.5 × 10−6 cm3 cm−3H2O and a slightly elevated 40Ar/36Ar of 2236. Step heating reveals limited and non-systematic variation within the more homogenous population of LV fluid inclusions from the Railway Fault. The samples have mean values of 8.1 × 10−3 for Br/Cl; 9.4-12 × 10−6 for I/Cl; <2000 for 40Ar/36Ar; and 4.7-4.8 × 10−6 cm3 cm−3H2O for 36Ar concentration. The Br/Cl values are similar to those previously reported for basinal brines present in silicic alteration at the Mt Isa Mine and the additional data can be explained by interaction of such a bittern brine with fine grained sedimentary rocks in the sub-surface. The second mode of quartz degassing occurs between 1200 and 1450 °C and releases a greater volume of gas than the first degassing mode. Several lines of evidence, including microscope observations, indicate that the gas released at high temperature is also from the fluid inclusion reservoir. However, its release may be triggered by a metastable phase transition of quartz (∼1200 °C) and caution is required in interpretation of the fluid compositions obtained at these temperatures. The data provide an improved understanding of fluid inclusion decrepitation behaviour that is different to that obtained in lower temperatures experiments designed by other workers to investigate H-isotope fractionation.  相似文献   

6.
Gold-copper-bismuth mineralization in the Tennant Creek goldfield of the Northern Territory occurs in pipe-like, ellipsoidal, or lensoidal lodes of magnetite ± hematite ironstones which are hosted in turbiditic sedimentary rocks of Proterozoic age. Fluid inclusion studies have revealed four major inclusion types in quartz associated with mineralized and barren ironstones at Ten nant Creek; (1) liquid-vapour inclusions with low liquid/vapour ratios (Type I), (2) liquid-vapour inclusions with high liquid/vapour ratios or high vapour/liquid ratios and characteristic dark bubbles (Type II), (3) liquid-vapour-halite inclusions (Type III), and (4) liquid-vapour inclusions with variable liquid/vapour ratios (Type V). Type I inclusions are present in the barren ironstones and the unmineralized portions of fertile ironstones, whereas Types II and III inclusions are recognized in fertile ironstones. Trails of Types II and III inclusions cut trails of Type I inclusions. Type I fluid inclusions have homogenization temperatures of 100° to 350 °C with a mode at 200° to 250 °C. Type II inclusions in mineralized ironstones (e.g. Juno, White Devil, Eldorado, TC8 and Gecko K-44 deposits) have homogenization temperatures of 250 °C to 600 °C with a mode of 350 °C. Type I fluid inclusions have a salinity range of 10 to 30 NaCl equiv. wt %. Salinity measurements on fluid inclusions in the mineralized zones gave a range of 10 to 50 NaCl equiv. wt % with a mode of 35 NaCl equiv. wt %. Fluid inclusion studies indicate that the Tennant Creek ironstones were formed from a relatively low temperature and moderately saline fluid, where as gold and copper mineralization was deposited from later hydrothermal fluids of higher temperature and salin ity. Gas analysis indicates the presence of N2 and CO2, with very minor CH4 in Types II inclusions but no N2 or CH4 gases in Type I inclusions. Microprobe analysis of the fluid inclusion decrepitates indicates that the inclusions from Tennant Creek contain sodium and calcium as dominant cations and potassium in a subordinate amount. The high temperatures ( 350 °C), high salinities ( 35 NaCl equiv. wt. %) and cation composition of the Tennant Creek ore fluids suggest that the ore fluids were derived from upward migrating heated basinal brines, although contribution from a magmatic source cannot be ruled out. Close association of vapour-rich Type IIb and salt-rich Type III inclusions in the mineralized ironstones (e.g. Juno, White Devil, Eldorado, TC8 and Gecko K-44) indicates heterogeneous trapping of ore fluids. This heterogeneous trapping is interpreted to be due to unmixing (exsolution) of a gas-rich (e.g. N2) fluid during the upward migration of the metal bearing brines and/or due to degassing caused by reaction of oxidized ore fluids and host ironstones. Fluid inclusion data have important implications regarding the deposition of gold in the ironstones, and may have application in discriminating fertile from barren ironstones.  相似文献   

7.
The Dongpo tungsten ore deposit, the largest scheelite skarn deposit in China, is located at the contact of a 172-m. y. biotite granite with a Devonian marble. The mineralization associated with the granite includes W, Bi-Mo, Cu-Sn and Pb-Zn ores. Several W mineralization stages are shown by the occurrence of ore in massive skarn deposits and in later cross-cutting veins. The high garnet/pyroxene ratio, the hedenbergite and diopside-rich pyroxene and the andradite-rich garnet show the deposit belongs to the oxidized skarn type. Detailed fluid inclusion studies of granite, greisen, skarn and vein samples reveal three types of fluid inclusion: (1) liquid-rich, (2) gas-rich and (3) inclusions with several daughter minerals. Type (3) is by far the most common in both skarn and vein samples. The dominant daughter mineral in fluid inclusions is rhembic, highly birefringent, and does not dissolve on heating even at 530°C. We assume that this mineral is calcite. The liquid phase in most of the fluid inclusions has low to moderate salinities: 0–15 wt. %; in a few has higher salinities (30–40 wt. % NaCl equivalent). The homogenization temperatures of inclusions in the skarn stage range from 350°C to 530°C, later tungsten mineralization-stage inclusions homogenize between 200°C and 300°C, as do inclusions in veins. Fluid inclusions in granite and greisen resemble those of the late tungsten mineralization stage, with low salinity and homogenization temperatures of 200°–360°C. The tungsten-forming fluids are probably a mixture that came from biotite granite and the surrounding country rocks.  相似文献   

8.
ABSTRACT The decrepitation behaviour of fluid inclusions in quartz at one atmosphere confining pressure has been evaluated using pure H2O synthetic inclusions formed by healing fractures in natural quartz. Three different modes of non-elastic deformation, referred to as stretching, leakage or partial decrepitation, and total decrepitation have been observed. The internal pressure required to initiate non-elastic deformation is inversely related to inclusion size according to the equation: internal pressure (kbar) = 4.26 D-0.423 where D is the inclusion diameter in microns. Regularly shaped inclusions require a higher internal pressure to initiate non-elastic deformation than do irregularly shaped inclusions of similar size. Heating inclusions through the α/β quartz inversion results in mechanical instability in the quartz crystal and leads to mass decrepitation of inclusions owing to structural mismatches generated by pressure gradients in the quartz around each inclusion. Long-term heating experiments (∼2 years) suggest that the internal pressure required to initiate non-elastic deformation does not decrease significantly with time and indicates that short-lived thermal fluctuations in natural systems should not alter the inclusion density and homogenization temperature. Inclusions that do exhibit decreased density (higher homogenization temperature) are, however, always accompanied by a change in shape from irregular to that of a negative crystal. Observations of this study are consistent with elasticity theory related to fracture generation and propagation around inclusions in minerals. These results indicate that an inclusion will not be influenced by a neighbouring inclusion, or other defect in the host phase, as long as the distance between the two is >2–4 diameters of the larger of the two inclusions.  相似文献   

9.
余昌涛 《地质科学》1982,(3):309-314
本文旨在通过对山东招远玲珑金矿床含金石英脉中流体包裹体特征的观察和测温,对矿床的成矿温度、压力和成矿介质的性质提出一些初浅的看法。  相似文献   

10.
Naturally re-equilibrated fluid inclusions have been found in quartz crystals from alpine fissures of the Western Carpathians. Re-equilibration textures, such as planar arrangement of the decrepitation clusters as well as the quartz c- and a-axis oriented fracturing indicate explosion of fluid inclusions. The extent of fracturing, which is dependent on inclusion diameters, suggests inclusion fluid overpressures between 0.6–1.9 kb. Microthermometry data are controversial with the textures because of indicating roughly fixed initial fluid composition and density during re-equilibration, although inclusion volumes have been sometimes substantially reduced by crystallization of newly-formed quartz. It is concluded that fluid loss from re-equilibrated inclusions must have been compensated for by replacing equivalent quartz volume from cracks into parent inclusion. Such a mechanism has operated in a closed system and the re-equilibration related cracks have not been connected with mineral surface. The compositional and density differences between aqueous inclusions in decrepitation clusters and CO2-rich parent inclusions cannot be interpreted in terms of classical fluid immiscibility. Moreover, monophase liquid-filled aqueous inclusions and coexisting monophase CO2 vapour-filled inclusions in the decrepitation clusters are thermodynamically unacceptable under equilibrium metamorphic conditions. The effect of disjoining pressure resulting from structural and electrostatic forces in very thin fractures is suspected to have caused density and compositional inconsistencies between parent and cluster inclusions, as well as the unusual appearance of cluster inclusions. In high-grade metamorphic conditions, the re-equilibration probably leads to boundary layer-induced immiscibility of homogeneous H2O–CO2–NaCl fluids and to formation of compositionally contrasting CO2-rich and aqueous inclusions.  相似文献   

11.
The Mangabeira deposit is the only known Brazilian tin mineralization with indium. It is hosted in the Paleo- to Mesoproterozoic Mangabeira within-plate granitic massif, which has geochemical characteristics of NYF fertile granites. The granitic massif is hosted in Archean to Paleoproterozoic metasedimentary rocks (Ticunzal formation), Paleoproterozoic peraluminous granites (Aurumina suite) and a granite–gneiss complex. The mineralized area comprises evolved Li-siderophyllite granite, topaz–albite granite, Li–F-rich mica greisens and a quartz–topaz rock, similar to topazite. Two types of greisens are recognized in the mineralized area: zinnwaldite greisen and Li-rich muscovite greisen, formed by metasomatism of topaz–albite granite and Li-siderophyllite granite, respectively. Cassiterite occurs in the quartz–topaz rock and in the greisens. Indium minerals, such as roquesite (CuInS2), yanomamite (InAsO4·2H2O) and dzhalindite (In(OH3)), and In-rich cassiterite, sphalerite, stannite group minerals and scorodite are more abundant in the quartz–topaz rock, and are also recognized in albitized biotite granite and in Li-rich muscovite greisen. The host rocks and mineralized zones were subsequently overprinted by the Brasiliano orogenic event.Primary widespread two-phase aqueous and rare coeval aqueous-carbonic fluid inclusions are preserved in quartz from the topaz–albite granite, in quartz and topaz from the quartz–topaz rock and in cassiterite from the Li-rich muscovite greisen. Eutectic temperatures are − 25 °C to − 23 °C, allowing modeling of the aqueous fluids in the system H2O–NaCl(–KCl). Rare three-phase H2O–NaCl fluid inclusions (45–50 wt.% NaCl equiv.) are restricted to the topaz–albite granite. Salinities and homogenization temperatures of the aqueous and aqueous-carbonic fluid inclusions decrease from the topaz–albite granite (15–20 wt.% NaCl equiv.; 400 °C–450 °C), to the quartz–topaz rock (10–15 wt.% NaCl equiv.; 250 °C–350 °C) and to the greisen (0–5 wt.% NaCl equiv.; 200 °C–250 °C). Secondary fluid inclusions have the same range of salinities as the primary fluid inclusions, and homogenize between 150 and 210 °C.The estimated equilibrium temperatures based on δ18O of quartz–mica pairs are 610–680 °C for the topaz–albite granite and 285–370 °C for the Li-rich muscovite greisens. These data are coherent with measured fluid inclusion homogenization temperatures. Temperatures estimated using arsenopyrite geothermometry yield crystallization temperatures of 490–530 °C for the quartz–topaz rock and 415–505 °C for the zinnwaldite greisens. The fluids in equilibrium with the topaz–albite granite have calculated δ18O and δD values of 5.6–7.5‰ and − 67 to − 58‰, respectively. Estimated δ18O and δD values are mainly 4.8–7.9‰ and − 60 to − 30‰, respectively, for the fluids in equilibrium with the quartz–topaz rock and zinnwaldite greisen; and 3.4–3.9‰ and − 25 to − 17‰, respectively, for the Li-rich muscovite greisen fluid. δ34S data on arsenopyrite from the quartz–topaz rock vary from − 1.74 to − 0.74‰, consistent with a magmatic origin for the sulfur. The integration of fluid inclusion with oxygen isotopic data allows for estimation of the minimum crystallization pressure at ca. 770 bar for the host topaz–albite granite, which is consistent with its evolved signature.Based on petrological, fluid inclusion and isotope data it is proposed that the greisens and related Mangabeira Sn–In mineralization had a similar hydrothermal genesis, which involved exsolution of F-rich, Sn–In-bearing magmatic fluids from the topaz–albite granite, early formation of the quartz–topaz rock and zinnwaldite greisen, progressive cooling and Li-rich muscovite greisen formation due to interaction with meteoric water. The quartz–topaz rock is considered to have formed in the magmatic-hydrothermal transition. The mineralizing saline and CO2-bearing fluids are interpreted to be of magmatic origin, based on the isotopic data and paragenesis, which has been documented as characteristic of the tin mineralization genetically related to Proterozoic within-plate granitic magmatism in the Goias Tin Province, Central Brazil.  相似文献   

12.
Quartz-topaz rocks from the New England district, New South Wales, have mineralogical, textural and field relationships suggesting a magmatic origin. These rocks (called topazites) occur as dykes and sills intruding a biotite granite and sediments in a roof pendant. Where they have intruded into sediments, the topazites have a narrow aureole of induration or hornfels. One type of primary solid inclusion, thought to be silicate glass, has a composition ranging from that of the topazite towards that of nearby granite. Primary fluid inclusions contain an aqueous solution of alkali chlorides with concentrations of total salts to 57 wt%. These fluid inclusions indicate crystallization temperatures in the range 570–620° C, close to the experimentally determined solidus of a vapour-saturated, topaz-normative melt. The presence of primary fluid inclusions indicates crystallization of topazite following saturation of a granitic magma with water and the formation of immiscible silicate and aqueous phases. Partitioning of alkali metals into the aqueous phase left a silicate melt that could only crystallize quartz and topaz.  相似文献   

13.
Acoustic emission (AE) from quartz during heating was measured with a high resolution decrepitometer on more than 350 samples from various conditions of formation and geological settings. The emitted acoustic signals can accumulate in very sharp peaks or extend over a wide temperature range. Different types and conditions of quartz formation can be distinguished from total counts and individual AE-patterns. Correlation of the determined AE peaks with microthermometric investigations, optical and scanning electron microscopical (SEM) studies of polished and etched thin sections showed that the sound, generated during heating, is caused by several distinguishable mechanisms. The main cause is the thermal expansion mismatch and thermal anisotropy of the quartz. In all cases the sound is emitted from opening and propagating microcracks. At temperatures below 380° C the main sources of AE are the rupture of grain boundaries, transgranular fracturing and decrepitation of large fluid inclusions. In the temperature range of 350–550° C, intragranular fracturing, sometimes enhanced by Brasil twinning, and reopening of healed fissures, often decorated with large numbers of small secondary fluid inclusions, cause distinct peaks of acoustic emission. At the α-β inversion temperature (≈ 573° C) massive emission of sound occurs if the quartz is twinned according to the Dauphiné law. Measurement of AE can help to determine critical temperatures of material failure and reveal information on the residual strain in rocks. Different generations of quartz veins can be distinguished, even if covered by soil and the extent of alteration zones can be determined by the varying AE patterns.  相似文献   

14.
Medium to coarse-grained Neo-Proterozoic Nagthat siliciclastic rocks form a part of the Krol Formation in the Lesser Himalayan geotectonic zone. Fluid inclusion and geochemical studies have been carried out on the Nagthat siliciclastics from the Tons valley to determine their provenance during the Proterozoic and their recrystallisation during maximum burial to uplift. Fluid inclusion studies have been carried out on detrital, recrystallised quartz grains and quartz overgrowths. Major and trace element analyses of the siliciclastics, the relationships of SiO2 with various trace elements, and the association of various trace elements with mineral species suggest a granitic source for these siliciclastics. Primary Q1 aqueous brine inclusions and Q3 H2O–CO2 fluid with 0.9 gm/cm3 CO2 density in detrital quartz grains characterised the protolith of the sandstone as granite or metamorphic rocks. H2O–NaCl fluids participated in the cementation history, temperatures of quartz overgrowth from 198 to 232 °C show the effect of maximum burial. The re-equilibration of the primary fluid due to elevated internal pressure > confining pressure is evident from features like ‘C’ shaped cavities, stretching of the inclusions, their migration, decrepitation clusters, etc. During recrystallisation these inclusions were equilibrated at 187 ° and 235 °C in a restricted fluid of aqueous, moderately saline composition. The observed inclusion morphology is attributed to a decrease in external pressure related to isothermal decompression uplift.  相似文献   

15.
The Pennaichaung and Yetkanzintaung W-Sn Prospects are located in Tavoy Township, Tennasserim Division, southern Burma. The W-Sn mineralization at the Pennaichaung is closely related with a small, satellitic granitoid pluton of presumably Late Mesozoic age, which intruded the metaclastic rocks of Mergui Group (mostly Carboniferous). The mineralized quartz veins at the Pennaichaung penetrated the granitoid-metasedimentary rocks contact. In contrary to the Pennaichaung deposit, the W-Sn veins at the Yetkanzintaung are exclusively in the metasedimentary rocks of slates and quartzites of Margui Group. Mineralized quartz veins in the Pennaichaung area trend NNE-SSW, NW-SE and NE-SW with a maximum thickness of 30 cm, but only quartz veins trending NNE-SSW are found to be productive and contained economically workable wolframite and cassiterite. Majority of the mineralized quartz veins in the Yetkanzintaung area trend approximately N-S with easterly dip of 50°–70°. The thickness of the ore veins in the Yetkanzintaung area are thinner than those of the Pennaichaung and range from 1 cm to 20 cm with an average width of 5 cm. Fluid inclusion studies of the quartz from the ore veins cutting the granitoid in the Pennaichaung area have yielded a filling temperature range of 170°–270°C with a maximum mode of 220°C, while quartz crystals from the ore veins in the nearby metasedimentary rocks gave a filling temperature range of 140°–220°C with a maximum mode of 160°C. Hence, the Pennaichaung deposit was thought to have emplaced under a filling temperature range of 140°–270°C. A similar low filling temperature range was recorded for the Yetkanzintaung deposit. Quartz from the Yetkanzintaung ore veins have yielded filling temperatures of 200°–240°C, whereas the fluorites associated with the mineralized quartz veins gave a temperature range of 140°–160°C. Limited freezing runs indicate a salinity of less than 5 NaCl equivalent weight percent for inclusions in quartz from both orebodies. No fluid inclusion evidence of boiling of ore fluids nor presence of liquid CO2 was observed in this study. Thus, the ore fluids responsible for the W-Sn mineralization at the Pennaichaung and Yetkanzintaung areas were of low temperature, diluted, CO2-deficient, NaCl brines.  相似文献   

16.
Fluid and solid inclusions have been studied in selected samples from a series of spinel-bearing Crdiopside-and Al-augite-series ultramafic (harzburgites, lherzolites, and olivine-clinopyroxene-rich rocks), and gabbroic xenoliths from Hierro, Canary Islands. In these samples several generations of fluid inclusions and ultramafic-and mafic-glass inclusions may be texturally related to different stages of crystal growth. The fluid inclusions consist of pure, or almost pure, CO2. The solid inclusions in the ultramafic xenoliths comprise early inclusions of devitrified ultramafic glass, sulphide inclusions, as well as polyphase inclusions (spinel+clinopyroxene±glass±other silicates) believed to have formed from trapped basaltic melts. Vitreous basaltic glass±CO2±sulphide±silicates are common as secondary inclusions in the ultramafic xenoliths, and as primary inclusions in the gabbroic xenoliths. Microthermometry gives minimum trapping temperatures of 1110° C for the early ultramafic-and mafic-glass inclusions, and a maximum of 1260–1280° C for late inclusions of host basaltic glass. In most samples the CO2 inclusions show a wide range in homogenization temperatures (-40 to +31° C) as a result of decrepitation during ascent. The lowest homogenization temperatures of about-40° C, recorded in some of the smallest CO2 inclusions, indicate a minimum depth of origin of 35 km (12 kbar) for both the Cr-diopside-and Al-augite-series xenoliths. The gabbroic xenoliths originate from a former magma chamber at a depth of 6–12 km.Contribution no. 100 of the Norwegian programme of the International Lithosphere Project  相似文献   

17.
The enderbites from Tromøy in the central, granulite facies part of the Proterozoic Bamble sector of southern Norway contain dominantly CO2 and N2 fluid inclusions. CO2 from fluid inclusions in quartz segregations in enderbites was extracted by mechanical (crushing) and thermal decrepitation and the δ13C measured. Measurement was also made on samples washed in 10% HCl, oxidized with CuO at high temperatures, and step-wise extracted with progressive heating. Results between the different techniques are systematic. The main results show δ13C of -4.5±1.5% for crushing and -7±2% for thermal decrepitation. δ13C is about constant for CO2 extracted at different temperatures and points to a homogeneous isotopic composition. Due to the presence of carbonate particles and/or induced contaminations for the extraction by thermal decrepitation, the results for the crushing experiments are assumed the most reliable for fluid-inclusion CO2. Very low values of δ13C have not been found in enderbite samples and δ13C combined with δ18O of the host quartzes (8-11%) indicates juvenile values. In addition, the fluid inclusions were examined by microthermometry and Raman analysis and host quartz by acoustic emission and cathodoluminescence. CO2 fluid inclusions have varying densities with a frequency maximum of 0.92 g cm-3 and generally do not concur with trapping densities at granulite conditions. Textures show that CO2 must have been trapped in fluid inclusions in one early event, but transformed to different extents during late isothermal uplift without important fractionation of isotope compositions. The present data support a model of intrusion and crystallization of a CO2-rich enderbitic magma at granuiite conditions.  相似文献   

18.
The origin of secondary calcite-silica minerals in primary and secondary porosity of the host Miocene tuffs at Yucca Mountain has been hotly debated during the last decade. Proponents of a high-level nuclear waste repository beneath Yucca Mountain have interpreted the secondary minerals to have formed from cool, descending meteoric fluids in the vadose zone; critics, citing the presence of two-phase fluid inclusions, argued that the minerals could only have formed in the phreatic zone from ascending hydrothermal fluids. Understanding the origin, temperature, and timing of these minerals is critical in characterizing geologically recent fluid flux at the site, and has significant implications to whether waste should be stored at Yucca Mountain.Petrographic and paragenetic studies of 155 samples collected from the Exploratory Studies Facility (ESF) and repository block cross drift (ECRB) tunnels indicate that heterogeneously distributed calcite with lesser chalcedony, quartz, opal, and fluorite comprise the oldest secondary minerals. These are typically overgrown by intermediate-aged calcite, often exhibiting distinctive bladed habits. The youngest event recorded across the site is the deposition of Mg-enriched (up to ∼1 wt%) and depleted, growth-zoned calcite intergrown with U-enriched opal. The cyclical variation in Mg enrichment and depletion is probably related to climate changes that have occurred during the last few million years. The distribution of secondary minerals is consistent with precipitation in the vadose zone.Fluid inclusion petrography of sections from the 155 samples determined that 96% of the fluid inclusion assemblages (FIAs) contained liquid-only inclusions that formed at ambient temperatures (<35°C). However, 50% of the samples (n = 78) contained relatively rare FIA that contain both liquid-only and liquid plus vapor inclusions (herein termed two-phase FIAs) that formed at temperatures above 35°C. Virtually all of these two-phase FIAs occur in paragenetically old calcite; rare two-phase inclusion assemblages were also observed in early fluorite and quartz, and early-intermediate calcite. Homogenization temperatures (≡ trapping temperatures) across Yucca Mountain are generally 45 to 60°C, but higher temperatures reaching 83°C were recorded in calcite from the north portal and ramp of the ESF. Cooler temperatures of ∼35 to 45°C were recorded in the intensely fractured zone. Multiple populations of two-phase FIAs from lithophysal cavities in the ESF and ECRB cross drift indicate early fluid cooling with time from temperatures >45°C in early calcite, to <35 to 45°C in paragenetically younger calcite. Freezing point depressions range from −0.2 to −1.6°C, indicating trapping of a low salinity fluid. The majority of intermediate calcite and all outermost Mg-enriched calcite contains rare all-liquid inclusions and formed from ambient temperature (<35°C) fluids.Carbon and oxygen isotope data reveal a consistent trend of decreasing δ13C (from 9.5 to −8.5‰) and increasing δ18O (from 5.2 to 22.1‰) values from paragenetically early calcite to Mg-enriched growth-zoned calcite. Depleted δD values (−131 to −90‰) of inclusion fluids from intermediate and the youngest Mg-enriched calcite indicate derivation from surface meteoric fluids. Recalculation of δ18OH2O values of −12 to −10‰ is consistent with derivation from paleometeoric fluids.Results of integrated U-Pb dating (opal and chalcedony) and fluid inclusion microthermometry indicate that two-phase FIAs that trapped fluids of >50°C are older than 6.29 ± 0.30 Ma. Two-phase FIAs in paragenetically later calcite, which formed from fluids of 35 to 45°C, are older than 5.32 ± 0.02 Ma. There is no evidence for trapping of fluids with elevated temperatures during the past 5.32 my. The youngest Mg-enriched calcite intergrown with opal began to precipitate between about 1.9 to 2.9 Ma and has continued to precipitate within the past half million years. The presence of liquid-only inclusions and the consistent occurrence of Mg-enriched calcite and opal as the youngest event indicate a minor, but chemically distinct, ambient temperature (<35°C) fluid flux during the past 2 to 3 my.  相似文献   

19.
Synthetic hydrocarbon and aqueous inclusions have been created in the laboratory batch reactors in order to mimic inclusion formation or re-equilibration in deeply buried reservoirs. Inclusions were synthesized in quartz and calcite using pure water and Mexican dead oil, or n-tetradecane (C14H30), at a temperature and pressure of 150 °C and 1 kbar. One-phase hydrocarbon inclusions are frequently observed at standard laboratory conditions leading to homogenization temperatures between 0 and 60 °C. UV epifluorescence of Mexican oil inclusions is not uniform; blue and green-yellow colored inclusions coexist; however, no clear evidence of variations in fluid chemistry were observed. Homogenization temperatures were recorded and the maxima of Th plotted on histograms are in good agreement with expected Th in a range of 6 °C. Broad histograms were reconstructed showing non-symmetrical Th distributions over a 20 °C temperature range centered on the expected Th. This histogram broadening is due to the fragility of the fluid inclusions that were created by re-filling of pre-existing microcavities. Such Th histograms are similar to Th histograms recorded on natural samples from deeply buried carbonate reservoirs. Th values lower than those expected were measured for hydrocarbon inclusions in quartz and calcite, and for aqueous inclusions in calcite. However, the results confirm the ability of fluid inclusions containing two immiscible fluids to lead to PT reconstructions, even in overpressured environments.  相似文献   

20.
The Lianhuashan tungsten deposit occurs in the volcanic terrain in the coastal area of Southeast China,where rhyolite,quartz porphyry and granite consitute a complee magmatic series.The orebodies are located in the endo-and exo-contacts between the quartz porphyry and the metasandstone of the Xiaoping coal measues.Hongenization temperatures of melt inclusions in zircon and quartz are 1100℃and 1050℃ for rhyolite,1000℃ and 860℃for quartz porphyry,and 950-1000℃and 820℃ for granite,respectively,demonstrating that the rockforming temperatures dropped successively from the eruptive to the intrusive rocks and that the homogenization temperatures of melt inclusions in zircon are 50-180℃higher than those in quartz.Homogenization temperatures of gas-liquid inclusions in quartz are 230-520℃(mostly 230-270℃)for quartz porphyry,200-450℃(mostly 200-360℃)for ore-bearing quartz veins,150-210℃for granite 170-200℃ for the vein quartz in it.Quartz from the quartz porphyry and from the ore-earing quartz veins show similar characteristics in inclusion type and homogenization temperature,indicating that intergranular solutions must have been formed upon cooling of magma and that ore-forming solutions for the tungstem mineralization were evolved mainly from ore-bearing intergranular solutions in the quartz porphyry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号