首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 1938, Clair A. Brown published his classic paleobotanical discoveries from the Tunica Hills of southeastern Louisiana, indicating ice-age plant migrations of more than 1100 km. Brown collected fossils of both boreal trees such as white spruce (Picea glauca) and southern coastal plain plants from deposits mapped as the Port Hickey (Prairie) river terrace by Harold N. Fisk. Subsequent revisions of terrace mapping, radiocarbon dating, and paleoecological analysis reconciled Brown's conceptual and stratigraphic “mixing” of these two ecologically incompatible fossil plant groups. An older Terrace 2 (of Sangamonian to Altonian age) contains the warm-temperate assemblage. A younger Terrace 1 (of Farmdalian, Woodfordian, and Holocene age) includes full-glacial and late-glacial remains of both boreal and cool-temperate plants; and a warm-temperate suite of plants dates from the Holocene interglacial. New plant fossil localities with radiocarbon chronologies are now available from within the Lower Mississippi Valley of Missouri and Arkansas as well as from the adjacent Ozark Plateaus, the Interior Low Plateaus of Kentucky and Tennessee, and the bordering Blufflands of Tennessee, Mississippi, and Louisiana. These studies demonstrate that glacial and interglacial patterns of vegetation have been influenced by regional changes in climate, glacial runoff, and regime of the Mississippi River.  相似文献   

2.
The age and number of important fossil-producing late Pleistocene terraces in the Tunica Hills have recently become quite controversial. One hypothesis holds that only a single loess-mantled Farmdalian terrace flanks the streams in this area. The other maintains that there are two terraces. The youngest is considered essentially Holocene in age while the older is Sangamon in age. Radiometric and stratigraphic evidence collected for this study indicates that there are two terraces. The youngest is late Woodfordian to Holocene in age while the other is Farmdalian.  相似文献   

3.
Among numerous stream-valley terrace deposits of the Gulf and Atlantic coastal plains that occupy chronologically and spatially intermediate positions between the youngest coastwise (coast-parallel) Pleistocene surface and the present, active floodplain, those of the Tunica Hills seem to provide by far the best opportunity for radiometric dating. Earlier views on the age of the Little Bayou Sara creek alluvium, represented by a single, 8 to 10-m-thick unit, ranged between the last interglaciation and middle Holocene. Reexamination of these deposits in the Little Bayou Sara and adjacent valleys clearly suggests their Late Pleistocene (apparently Farmdalian Interstade) age. The majority of the 14 available dates from the Little Bayou Sara and Tunica Bayou valleys proved to be too young, due to postdepositinal contamination. Dates ranging between 33,720 and 25,965 yr B.P. came from samples thought to be uncontaminated. Plant and faunal elements with boreal affinities in the unique fossil assemblage appear to be relicts of a preceding, full-glacial period, as regarded by Brown (1938). The absence of colder climate taxa from the Wilcox Bluff flora on Bayou Sara is insufficient evidence for a suggested Sangamon Interglacial age of the flora, and the terrace stratigraphy holds no proof for that view either. Only a single, loess-mantled, constructional, Quaternary, valley-terrace surface is present in the area. A narrow, low, actively developing floodplain terrace along Little Bayou Sara, cut into the Pleistocene alluvial unit, is primarily erosional in origin and has no bearing on the age of that unit. The age of the Tunica Hills terrace unit may provide comparison for dating intermediate valley-terrace deposits in favorable coastal settings elsewhere.  相似文献   

4.
Reinvestigation of Quaternary sediments in West Feliciana Parish, southeastern Louisiana, and adjacent Wilkinson County, southwestern Mississippi, has resulted in revision of previous terrace stratigraphy of this portion of the Gulf Coastal Plain. Plant-macrofossil and pollen assemblages incorporated in fluviatile terrace deposits in the study area are reexamined in light of the current stratigraphic understanding. Macrofossils identified as white spruce (Picea glauca), tamarack (Larix laricina), and northern white cedar (Thuja occidentalis), recovered from these terrace deposits along with fossil remains of distinctly southern plant species, were initially interpreted as the result of dynamic intermixing of aggressive boreal species within a southern forest during the early Wisconsin (Brown, 1938). Failure to distinguish chronologically separate fossiliferous deposits resulted in the conceptual “mixing” of northern and southern plant species which came from two distinct fluviatile terrace sequences. Terrace 2 is now believed to be a fluviatile and coastwise depositional terrace of Sangamon Interglacial age; deposits of terrace 2 contain a distinctly warm-temperate plant assemblage. Fluviatile terrace 1 dates from 12,740 ± 300 to 3457 ± 366 BP and is now considered to be related to late glacial and Holocene aggradation and lateral migration of the Mississippi River (the local base level for streams in the study area); basal portions of terrace 1 contain fossils of white spruce, tamarack, and many plant species today characteristic of the cool-temperate Mixed Mesophytic Forest Association. Terrace 1 fossil deposits occur in fluviatile terraces along tributary streams of the Mississippi River at elevations 15 to 30 m above the maximum recorded historic flood stage of the Mississippi River. The plant macrofossils represent remains of species that grew at or very near the site of deposition; they were not “rafted in” by floodwaters of the Mississippi River. We present quantitative data for plant macrofossils and pollen that support our hypothesis that at least local cooling along the Blufflands of Mississippi and Louisiana promoted southward migrations of mixed mesophytic forest species and certain boreal species along this major pathway during late Wisconsin continental glaciation.  相似文献   

5.
Nonconnah Creek, located in the loess-mantled Blufflands along the eastern wall of the Lower Mississippi Alluvial Valley in Tennessee displays a sedimentary sequence representing the Altonian Substage through the Woodfordian Substage of the Wisconsinan Stage. The site has a biostratigraphic record for the Altonian and Farmdalian Substages that documents warm-temperate upland oak-pine forest, prairie, and bottomland forest. At 23,000 yr B.P., white spruce and larch migrated into the Nonconnah Creek watershed and along braided-stream surfaces in the Mississippi Valley as far as southeastern Louisiana. The pollen and plant-macrofossil record from Nonconnah Creek provides the first documentation of a full-glacial locality in eastern North America for beech, yellow poplar, oak, history, black walnut, and other mesic deciduous forest taxa. During the full and late glacial, the Mississippi Valley was a barrier to the migration of pine species, while the adjacent Blufflands provided a refuge for mesic deciduous forest taxa. Regional climatic amelioration, beginning about 16,500 yr B.P., is reflected by increases in pollen percentages of cooltemperate deciduous trees at Nonconnah Creek. The demise of spruce and jack pine occurred 12,500 yr B.P. between 34° and 37° N in eastern North America in response to postglacial warming.  相似文献   

6.
Previous radiocarbon ages of detrital moss fragments in basal organic sediments of Lake Emma indicated that extensive deglaciation of the San Juan Mountains occurred prior to 14,900 yr B.P. (Carrara et al., 1984). Paleoecological analyses of insect and plant macrofossils from these basal sediments cast doubt on the reliability of the radiocarbon ages. Subsequent accelerator radiocarbon dates of insect fossils and wood fragments indicate an early Holocene age, rather than a late Pleistocene age, for the basal sediments of Lake Emma. These new radiocarbon ages suggest that by at least 10,000 yr B.P. deglaciation of the San Juan Mountains was complete. The insect and plant macrofossils from the basal organic sediments indicate a higher-than-present treeline during the early Holocene. The insect assemblages consisted of about 30% bark beetles, which contrasts markedly with the composition of insects from modern lake sediments and modern specimens collected in the Lake Emma cirque, in which bark beetles comprise only about 3% of the assemblages. In addition, in the fossil assemblages there were a number of flightless insect species (not subject to upslope transport by wind) indicative of coniferous forest environments. These insects were likewise absent in the modern assemblage.  相似文献   

7.
At Green Pond, a small permanent sinkhole pond in Bartow County, northwest Georgia, organic silty clays are buried by up to 2 m of colluvium. Pollen from the clays shows that a Pinus-Quercus-herb (pine-oak-herb) flora was present before 29,630 radiocarbon yr ago. It is interpreted as the product of a xeric woodland with prairie-like openings. Between 29,630 and approximately 25,000 BP, pollen of Pinus and herbs was sparse; Quercus and Carya (hickory) predominated in the pollen rain. There were few other deciduous trees. Oak-hickory forest is thought to have been present. From 25,000 to 23,000 BP, more diverse forest with pines and some Picea (spruce) became established. At the same time Taxodium (swamp cypress) was locally abundant, as were shrubs characteristic of Coastal Plain swamps. Some time after 23,000 BP, the pond basin filled with colluvium and no further sedimentation took place, other than thin muck sedimented on the bottom of the present Green Pond.The sediments were first thought to be of Sangamon age because the pollen sequence has many of the characteristics of an interglacial cycle, but the radiocarbon dates correlate them firmly with the Farmdalian Interstadial. A comparison with known Farmdalian sites is made, but the important sites are in the northern United States and adjacent Canada, too far away to make a useful comparison of the details of pollen diagrams from the two areas. At another Bartow County pond site, Bob Black Pond (Watts, 1970), a flora predominantly of pine with spruce and oak was present immediately before 22,900 BP and a strikingly cold flora with jack-pine, spruce and northern herbs followed immediately after. The radiocarbon dates indicate that the sedimentary sequence at Bob Black Pond immediately follows that at Green Pond.  相似文献   

8.
Pollen, plant macrofossil, and radiocarbon-dating studies of seven exposures of fluvial sediments in the Tunica Hills region of southeastern Louisiana and southwestern Mississippi provide new information on late Wisconsinan vegetation, flora, and environment of the region. The assemblages date between 25,250 and 17,530 yr B.P. Pollen and macrofossil assemblages are dominated by Picea, which comprises 40-70% of the pollen assemblages. Abies and Larix pollen and macrofossils are absent, in contrast to sites to the north in the central Mississippi Valley. Deciduous hardwoods (Quercus, Fagus, Fraxinus, Carya, Juglans nigra, Acer, Ulmus) are minor components of both pollen and macrofossil assemblages. Radiocarbon dates of Picea and Quercus wood indicate that these two genera grew contemporaneously in the region. Regional upland forests were dominated by Picea. Picea cones and cone fragments are not typical of any extant North American species, and probably represent either an extinct species or an extinct variety or subspecies of Picea glauca. Late Wisconsinan climate of the region was cooler than present, but not necessarily as cool as implied by P. glauca or other "boreal" taxa.  相似文献   

9.
《Quaternary Research》1987,28(1):144-156
Equus Cave, in Quaternary tufa near Taung in the semiarid woodland of the southern Kalahari, yielded 2.5 m of sediment in which a rich assemblage of bones and coprolites was preserved. The fossils were accumulated mainly by hyenas during the late Pleistocene and Holocene. Pollen from coprolites reflects diet as well as vegetation over relatively large areas visited by hyenas, while pollen from sediments represents more local sources. The pollen sequence derived from coprolites and sediments demonstrates how the vegetation evolved from open grassland with small shrubs and occasional trees during the late Pleistocene, to open savanna with more small shurbs, then, during the last 7500 yr, to modern savanna. Temperatures were not more than 4°C cooler and it was slightly moister than today during the late Pleistocene phase; it became gradually warmer but relatively dry before optimal temperature and moisture conditions developed around 7500 yr B.P. Climatic conditions slightly less favorable for woodland occurred during part of the late Holocene.  相似文献   

10.
Fine-grained lacustrine, riverine and ash-fall sediments of the Shooting Iron Formation, whose late Pliocene age is established by Blancan gastropods and vertebrates, yield a pollen flora that is essentially similar in composition to the modern pollen rain in the Jackson Hole area. The Pliocene assemblage suggests a climate like that of the Jackson valley and foothills today. These spectra also resemble a Pliocene pollen flora from Yellowstone Park dated at ∼ 2.02 Ma. However, the underlying Miocene Teewinot sediments differ by containing pollen of four exotic deciduous hardwoods (Tertiary relicts) that suggest a summer-moist climate, unlike that of today. The Shooting Iron sediments lie with an angular unconformity on and above the Miocene lake sediments of the Teewinot Formation. Both of these deposits probably preceded the main uplift of the Teton Range based on the absence of Precambrian clasts in the Tertiary valley deposits. Because the Pliocene floras were modern in aspect, a Plio-Pleistocene transition would be floristically imperceptible here. The sequence denotes a protracted period of relative stability of climate during Teewinot time, and a shift in vegetational state (summer-wet trees drop out) sometime between the latest Miocene and latest Pliocene. The Pliocene spectra suggest a dry, cooler climate toward the end of Shooting Iron time.  相似文献   

11.
This paper provides the first radiometrically dated evidence of Holocene alluvial landform development in Upper Wharfedale, Yorkshire Dales. Four river terraces are identified. Terraces 1 and 2 are closely linked to Late Devensian and early Holocene environmental change, with gravel reworked from local glacial and periglacial sources prior to cementation by carbonate‐rich waters. U‐series dating of cement provides age estimates for cementation of between ca. 5.1–7.4 kyr BP for Terrace 1 and ca. 3.6–>8.0 kyr BP for Terrace 2. U‐series dating of tufas overlying Terraces 1 and 2 produced ages of ca. 4.2–4.5 kyr BP and ca. 2.1–2.2 kyr BP respectively, and provide upper age limits for terrace formation. Terrace 3 marks a change in sediment calibre, supply and sedimentation style, and 14C dating suggests that the principal source of fine‐grained material may be agricultural expansion in the Yorkshire Dales from ca. ad 600 (1350 cal. yr BP). Radiocarbon dates indicate that Terrace 4 was deposited from the eleventh century, with initiation of the contemporary floodplain between the fifteenth and seventeenth centuries ad. Both these lowest units contain sediments contaminated with heavy metals as a result of mining activities within the catchment. The evidence presented in this study is comparable to that of research undertaken in upland environments elsewhere in northern and western Britain, thereby adding to the corpus of information currently available for evaluating the fluvial geomorphological response to climate and vegetation change during the Holocene. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
At White Pond near Columbia, South Carolina, a pollen assemblage of Pinus banksiana (jack pine), Picea (spruce), and herbs is dated between 19,100 and 12,800 14C yr B.P. Plants of sandhill habitats are more prominent than at other sites of similar age, and pollen of deciduous trees is infrequent. The vegetation was probably a mosaic of pine and spruce stands with prairies and sand-dune vegetation. The climate may have been like that of the eastern boreal forest today. 14C dates of 12,800 and 9500 yr B.P. bracket a time when Quercus (oak), Carya (hickory), Fagus (beech), and Ostrya-Carpinus (ironwood) dominated the vegetation. It is estimated that beech and hickory made up at least 25% of the forest trees. Conifers were rare or absent. The environment is interpreted as hickory-rich mesic deciduous forest with a climate similar to but slightly warmer than that of the northern hardwoods region of western New York State. After 9500 yr B.P. oak and pine forest dominated the landscape, with pine becoming the most important tree genus in the later Holocene.  相似文献   

13.
A 14-m-thick section of marine and nonmarine sediments of the Gubik Formation of northern Alaska, exposed in bluffs near Ocean Point on the Colville River, has been studied by means of pollen analysis. Pollen from the marine sediments, of probable late Pliocene age, records a boreal forest of spruce and birch with minor amounts of alder in the adjacent terrestrial vegetation. Pine and perhaps true fir were probably at or near their northern limit here, but hemlocks and hardwoods were absent. The suggested environment for the Arctic Slope during the time represented by the marine sediments is similar to that of present-day Anchorage. Pollen floras from the overlying fluvial strata, of early or middle Pleistocene age, record predominantly herbaceous taxa indicating tundra conditions probably more severe than those of the present day. These deposits were most likely contemporaneous with glacial conditions in the Brooks Range to the south. Pollen of woody taxa (spruce, alder, birch, heaths) is rare through most of the section, although birch and alder percentages similar to those found in modern river sediments indicate an interstadial or interglacial warming in midsection. Inland climates during glacial episodes may have been similar to those of the present Arctic coast.  相似文献   

14.
The Kenai Peninsula of south‐central Alaska is a region of high topographic diversity with a complex glacial history. The sedimentary record of two small lakes [Sunken Island (SIL; 76 m a.s.l.) in the Kenai Lowlands; Choquette (CL; 527 m a.s.l.) in the Caribou Hills upland] exemplifies the postglacial development of the conifer–hardwood forest over an elevational range there. A herb–shrub tundra was established at both sites after deglaciation. By ~10.7 ka, poplar (Populus sp.) and alder (Alnus) dominated the lowland forest, while alder with minor poplar occurred at the upland site. Lake levels lower than today occurred during the early Holocene until ~8 ka. Subsequently at SIL, the near‐modern Kenai birch (Betula kenaica) – white spruce (Picea glauca) forest maintained prominence throughout the Holocene. However, at CL, alder dominated with dwarf birch and other subshrubs; small amounts of white spruce arrived ~5.2 ka. Black spruce (Picea mariana) grew around SIL by ~4 ka, but never gained prominence at CL. Fire, a prominent agent of disturbance in the Kenai Lowlands since ~8 ka, was essentially absent at the hardwood‐dominated upland site before ~6 ka, and rare thereafter. This suggests an important link between fire and spruce in Kenai forests.  相似文献   

15.
Late Pleistocene organic-rich sediments exposed in coastal bluffs near the head of Plaza Creek, East Falkland, have yielded conventional and AMS 14C dates of between 36 and 28 ka BP, and possess a pollen spectrum dominated by grasses, indicating a vegetation assemblage similar to that of the present day. Although some sample dates are anomalous and contamination by non-contemporaneous carbon cannot be ruled out entirely, the age estimates are consistent with evidence and dates from Antarctica, South America and the amphi-North Atlantic for climate shifts to interstadial conditions at around that time. The organic-rich units are developed in and enclosed by deposits attributed to processes of periglacial mass wasting. Grain-size characteristics suggest that these sediments may have been emplaced by solifluction, shallow translational landsliding and surface wash in at least five mass-wasting episodes. Some of the mass-wasting sediments might correlate with solifluction deposits above and below a podsolic soil dated to 26 ka BP at San Carlos, East Falkland, and with periods of cirque and valley glaciation identified in the uplands of the Falkland Islands. The similarity between late Pleistocene interstadial, Holocene and present-day pollen assemblages, and the lack of vegetation change within these periods, is characteristic of most cool temperate Southern Ocean islands, and may reflect the lack of sensitivity of the vegetation to climate change and/or a lack of climate variability for the time intervals covered. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
石宁 《第四纪研究》1996,16(4):319-328
华北地区的云杉属和冷杉属在早上新世就有大量的发展。榆社盆地在4.4MaBP.时,云杉属在孢粉植物群中的含量达50%一70%,与云杉属同时发现的还有一些喜暖植物。根据化石和孢粉学证据、沉积条件、古地形及欧洲的旁证材料推测,上新世云杉属和冷杉属的生态习性与现代生活在寒冷地带的云杉、冷杉不同,它们是一些可以生长在相对暖湿气候条件下的种类。上新世以森林为主的植被在2.3MaB.P.时转变为疏林草原,亚热带植物基本迁离榆社盆地。云杉属和冷杉属不仅在孢粉植物群中大量减少,在木本植物中也降为次要组分。古植物的演化和迁移历史反映了冰期气候和东亚季风气候发展的历程。  相似文献   

17.
Fossil ostracod assemblages were investigated in five AMS 14 C‐dated cores from various water depths of the Laptev and Kara seas ranging from the upper continental slope (270 m) to the present‐day shelf depth (40 m). Six fossil assemblages were distinguished. These represent the varying environmental conditions at the North Siberian continental margin since about 18 ka. In the cores from the shelf the ostracod assemblages reflect the gradual transition from an estuarine brackish‐water environment to modern marine conditions since 12.3 ka, as induced by the regional early Holocene transgression. The core from the upper continental slope dates back to c. 17.6 ka and contains assemblages that are absent in the shelf cores. The assemblage older than 10 ka stands out as a specific community dominated by relatively deep‐water Arctic and North Atlantic species that also contains euryhaline species. Such an assemblage provides evidence for past inflows of Atlantic‐derived waters from as early as c. 17.2 ka, probably facilitated by upwelling in coastal polynyas, and a considerable riverine freshwater influence with enhanced surface water stratification owing to the proximity of the palaeocoastline until early Holocene times. In all studied cores, relative increases in euryhaline species dominant in the inner‐shelf regions are recorded in the mid–late Holocene sediments (<7 ka), which otherwise already contain modern‐like ostracod assemblages with relatively deep‐water species. This observation suggests euryhaline species to be largely sea‐ice‐ and/or iceberg‐rafted and therefore may provide evidence for a climate cooling trend.  相似文献   

18.
Early Holocene sediments from a continental Antarctic lake (Ace Lake, Vestfold Hills, East Antarctica) contained abundant fossil rotifers of the genus Notholca. The fossil is similar to specimens of Notholca sp. present in modern-day Ace Lake and other fresh and brackish lakes of the Vestfold Hills. Cyanobacteria and protists (chrysophyte cysts, dinoflagellate cysts, and rhizopod tests) were also recovered from the core samples. These sediments were deposited early in the freshwater phase of Ace Lake, soon after deglaciation of the area. The occurrence of this trophically diverse assemblage of organisms at an early stage in the evolution of the lake suggests either that they were part of an endemic Antarctic flora and fauna which pre-dated the last glacial maximum and survived in glacial refugia or that efficient intercontinental dispersal had occurred.  相似文献   

19.
Chronology of the last recession of the Greenland Ice Sheet   总被引:1,自引:0,他引:1  
A new deglaciation chronology for the ice‐free parts of Greenland, the continental shelf and eastern Ellesmere Island (Canada) is proposed. The chronology is based on a new compilation of all published radiocarbon dates from Greenland, and includes crucial new material from southern, northeastern and northwestern Greenland. Although each date provides only a minimum age for the local deglaciation, some of the dates come from species that indicate ice‐proximal glaciomarine conditions, and thus may be connected with the actual ice recession. In addition to shell dates, dates from marine algae, lake sediments, peat, terrestrial plants and driftwood also are included. Only offshore and in the far south have secure late‐glacial sediments been found. Other previous reports of late‐glacial sediments (older than 11.5 cal. kyr BP) from onshore parts of Greenland need to be confirmed. Most of the present ice‐free parts of Greenland and Nares Strait between Greenland and Ellesmere Island were not deglaciated until the early Holocene. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
A late glacial to early Holocene lacustrine and peat succession, rich in conifer remains and including some palaeolithic flint artefacts, has been investigated in the Palughetto intermorainic basin (Venetian Pre‐Alps). The geomorphological and stratigraphical relationships, 14C dates and pollen analyses allow a reconstruction of the environmental history of the basin and provide significant insights into the reforestation and peopling of the Pre‐Alps. The onset of peat accumulation is dated to 14.4–14.1 kyr cal. BP, coinciding with reforestation at middle altitudes that immediately post‐dates the immigration of Larix decidua and Picea abies subsp. europaea. Plant macrofossils point to the expansion of spruce about 14.3 kyr cal. BP, so far one of the earliest directly dated in the late glacial period of southern Europe. The previous hypothesis of an early Holocene spruce immigration in the Southern Alps from Slovenia needs reconsideration. Organic sedimentation stopped at the end of the Younger Dryas and was followed by the evolution of hydromorphic soils containing lithic artefacts, anthropic structures and wood charcoal. The typological features of the flint implements refer human occupation of the site to the end of the recent Epigravettian. Charcoals yielded dates either consistent with, or younger than, the archaeological chronology, in the early and middle Holocene. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号