首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Heavy metals contamination in road dust in Delhi city,India   总被引:1,自引:1,他引:0  
Road dust samples were collected from four different areas having different landuse patterns: industrial, heavy traffic, residential and mixed use in Delhi city of India. The samples were analyzed for Ba, Co, Cr, Cu Fe, Mn, Ni, Pb and Zn by ICP-AES. Results indicate high levels of Co, Cr, Cu, Mn and Ni in samples collected from industrial area. Ba, Pb and Zn showed higher concentration levels in heavy traffic area while Fe did not show any discernible variation between the localities. The concentrations of Fe, Mn, Ba, Zn, Cr, Cu, Pb, Ni and Co showed a decreasing trend. The content of heavy metals was comparable to those in other cities in the world. A multivariate statistical approach which includes Pearson’s correlations and principal component analysis was used to identify the possible sources of metals in the road dust. Enrichment factors were estimated for further confirming the sources of contamination. Significant positively correlations between road dust metals Cu–Mn–Co–Cr–Ni suggest that major common source of origin is industrial activities. A meaningful correlation between Ba and Zn, and a moderate positive correlation between Pb and Ba indicate the influence of traffic activities. Enrichment factors calculation indicated that Pb, Cu, Cr and Zn are moderately enriched whereas Co, Ni and Mn are less enriched while Ba exhibited very low enrichment in the dust samples. The results indicate that industrial and vehicular traffic are the two major sources. Traffic appears to be responsible for the high levels of Zn, Cu and Ba. High concentration of Co, Cr, Cu and Mn may be due to industrial sources.  相似文献   

2.
The concentrations of heavy metals (Cr, Mn, Co, Ni, Cu, Zn, Cd, and Pb) in 16 samples collected from the lower reach (Changsha–Xiangtan–Zhuzhou section) of the Xiangjiang River in southern China were determined by high-resolution inductively coupled plasma mass spectroscopy (HR-ICPMS). Multivariate analysis, such as principal component analysis and cluster analysis, coupled with correlation coefficient analysis, was used to analyze the analytical data and to identify possible pollution sources of heavy metals. The results showed that the eight studied heavy metals accumulated in the sediments from the lower Xiangjiang River, especially Mn, Cu, Zn, Pb and Cd, which were 2.0–2.6, 1.7–2.6, 3.5–3.8, 3.2–3.6 and 189.5–152.8 times the soil trace element background for Hunan Province and UCC background values, respectively. Principal component analysis and cluster analysis, coupled with correlation coefficient analysis, revealed that the sediments from lower Xiangjiang River were mainly influenced by two sources: Cr, Co, Ni, Cu, Zn, Cd and Pb mainly originated from industrial sources, whereas Mn was derived from both industrial and natural sources, but mainly from natural sources due to weathering and erosion.  相似文献   

3.
为了解包头市典型工业企业对其所在地土壤中重金属含量的影响及污染现状,利用相关性系数对其表层土壤中7种重金属(Cu、Zn、Pb、Cr、Cd、Mn、Ni)来源进行研究,并采用内梅罗综合污染指数法和潜在生态危害指数对其污染状况进行评价。结果表明,7种重金属含量平均值均高于内蒙古土壤背景值,其中Cd、Mn、Ni超标率已达100%,而Cu、Pb、Zn的超标率分别为97%、93%和93%,只有Cr超标率较低(53%),污染程度依次为CdPbCuNiZnMnCr,其中Pb和Cd为重度污染,Cu、Zn、Ni为中度污染,Cr、Mn为轻度污染;Cu、Zn、Cr、Mn、Ni可能同时来自工业生产和交通运输两个源,而Pb和Cd除上述来源外,燃煤烟气的排放有较大贡献。潜在生态危害依次为CdPbCuNiCrZnMn,其中Cd的潜在生态风险最大,应予以高度重视,其他金属的风险均为轻微。  相似文献   

4.
Surface sediments of nine islands of Lakshadweep were evaluated for their heavy metal concentration (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn). Sediments of thirteen seagrass and seven non seagrass sites were collected randomly and analysed for heavy metal concentration using Inductively Coupled Plasma Optical Emission Spectrometer. Heavy metals like Cu, Ni and Zn were found in higher concentrations in the seagrass sediments, whereas other heavy metals such as Cd, Co, Cr, Fe, Mn and Pb were higher in non seagrass sediments. Different pollution indices were calculated to evaluate contamination level of all heavy metals in the sediments. Cadmium recorded higher contamination factor (1.733–21.067), enrichment factor (276.10–12,270) and Geo-accumulation Index (0.208–3.811) both in seagrass and nonseagrass sediments. Multivariate statistical analysis such as principal component analysis and cluster analysis coupled together with correlation co-efficient was used to identify the possible sources of heavy metal pollution in the region. Average concentrations of Cd in Lakshadweep islands were slightly higher than effective range, low but still below effective range medium. All other metals were still below these ranges indicating fairly uncontaminated sediment in the region.  相似文献   

5.
An investigation on spatial distribution, possible pollution sources, and affecting factors of heavy metals in the urban–suburban soils of Lishui city (China) was conducted using geographic information system (GIS) technique and multivariate statistics. The results indicated that the topsoils in urban and suburban areas were enriched with metals, such as Cd, Cu, Pb, and Zn. Spatial distribution maps of heavy metal contents, based on geostatistical analysis and GIS mapping, indicated that Cd, Cr, Cu, Mn, Ni, Pb, and Zn had similar patterns of spatial distribution. Their hot-spot areas were mainly concentrated in the densely populated old urban area of the city. Multivariate statistical analysis (correlation analysis, principal component analysis, and clustering analysis) showed distinctly different associations among the studied metals, suggesting that Cr, Cu, Ni, Pb, Cd, and Zn had anthropogenic sources, whereas Co and V were associated with parent materials and therefore had natural sources. The Cd, Cr, Ni, Pb, and Zn contents were positively correlated with soil organic matter, pH, and sand content (p < 0.01). It is concluded that GIS and multivariate statistical methods can be used to identify hot-spot areas and potential sources of heavy metals, and assess soil environment quality in urban–suburban areas.  相似文献   

6.
南京市大气降尘重金属含量特征及来源研究   总被引:19,自引:0,他引:19  
文中对南京市大气降尘重金属含量水平进行了研究,从2006年12月起连续收集一年的大气降尘样品,分析了As、Cd、Cr、Cu、Hg、Mn、Mo、Ni、Pb、Se、Zn等11个元素。结果表明,与土壤背景值相比,南京市大气降尘中除Cr、Fe、Mn外的重金属含量总体明显升高。采用相关分析和主成分分析,对降尘重金属元素来源进行解析,认为有三种主要来源:一是As、Cu、Hg、Pb、Se与燃煤活动、汽车尾气排放有关。二是Cd、Ni、Zn、Mo可能与化学工业有关,但Mo还受工业活动、土壤颗粒物的影响。分析还表明,在化工业园附近的样点,这些元素含量普遍较高。三是Mn、Cr主要与土壤颗粒物有关(自然来源)。以Fe作为参考元素计算重金属的富集因子表明,自然来源的Cr、Mn具有较小的富集因子,而受工业活动影响的Cd、Pb、Se、Zn具有较大的富集因子。  相似文献   

7.
固体聚合膜电解浓集法是浓缩氚含量较低(1 Bq/m~3)的天然水样的常用方法,但因水样自身含有杂质离子或电解装置聚合膜带入杂质进入浓集液,使浓集液偏酸性,在测量过程中易产生化学淬灭效应,导致氚的测量值偏低。本文研究了水样自身存在的杂质离子和聚合膜上残留的杂质离子、样品溶液的pH值及其电导率所产生的化学淬灭效应的影响,实验表明,为减少化学淬灭效应,提高测量低含量氚的准确性,需保证水样溶液呈中性,电导率≤1μS/cm,同时避免杂质沉积在聚合膜上。如果水样溶液的pH值偏酸性、电导率大于1μS/cm,可采用酸碱混合型离子交换树脂去除水样中自身的杂质;对于聚合膜引入的杂质,可在电解后的水样中加入微量氨水将其pH值调节至中性。  相似文献   

8.
Heavy metal contamination in polished rice grains collected from Hunan Province, Southern China, has been investigated in this study. The concentrations of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in rice were determined by microwave-assisted digestion and inductively coupled plasma-mass spectrometry method. In order to evaluate the correlations among heavy metals, statistical analyses including Pearson’s correlation analysis, principal component analysis and hierarchical cluster analysis were performed. Three distinct clusters were classified by the hierarchical cluster analysis approach. In the principal component analysis, three principle components were extracted with the eigenvalue >1.0. The spatial distribution of heavy metals was predicted by the ordinary kriging interpolation. Cu and Ni with similar distribution patterns could be primarily originated from geogenic source. The hot-spot areas in the distribution patterns of Mn, Pb and Zn could be mainly related to mining and smelting activities. Cd and Co might be derived from the combination of natural existence and anthropogenic sources. The chronic non-carcinogenic effect on local rice consumers from exposure to heavy metals was estimated by the target hazard quotient. The average target hazard quotient values of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were 1.754, 0.367, 0.003, 0.544, 0.165, 0.775, 0.228, 0.049 and 0.481, respectively. The target hazard quotient value of Cd exceeded the threshold value suggesting high potential health risk to residents in Hunan Province through rice consumption.  相似文献   

9.
Assessment of heavy metal pollution in surface water   总被引:4,自引:3,他引:1  
A total of 96 surface water samples collected from river Ganga in West Bengal during 2004–05 was analyzed for pH, EC, Fe, Mn, Zn, Cu, Cd, Cr, Pb and Ni. The pH was found in the alkaline range (7.21–8.32), while conductance was obtained in the range of 0.225–0.615 mmhos/cm. Fe, Mn, Zn, Ni, Cr and Pb were detected in more than 92% of the samples in the range of 0.025–5.49, 0.025–2.72, 0.012–0.370, 0.012–0.375, 0.001–0.044 and 0.001–0.250 mg/L, respectively, whereas Cd and Cu were detected only in 20 and 36 samples (0.001–0.003 and 0.003–0.032 mg/L). Overall seasonal variation was significant for Fe, Mn, Cd and Cr. The maximum mean concentration of Fe (1.520 mg/L) was observed in summer, Mn (0.423 mg/L) in monsoon but Cd (0.003 mg/L) and Cr (0.020 mg/L) exhibited their maximum during the winter season. Fe, Mn and Cd concentration also varied with the change of sampling locations. The highest mean concentrations (mg/L) of Fe (1.485), Zn (0.085) and Cu (0.006) were observed at Palta, those for Mn (0.420) and Ni (0.054) at Berhampore, whereas the maximum of Pb (0.024 mg/L) and Cr (0.018 mg/L) was obtained at the downstream station, Uluberia. All in all, the dominance of various heavy metals in the surface water of the river Ganga followed the sequence: Fe > Mn > Ni > Cr > Pb > Zn > Cu > Cd. A significant positive correlation was exhibited for conductivity with Cd and Cr of water but Mn exhibited a negative correlation with conductivity.  相似文献   

10.
The dust samples from 30 gas stations located in Xi’an are analyzed for Mn, Ni, Co, Cr, Cu, Cd, Pb and Zn by using atomic absorption spectrometry. The concentration, spatial distribution, source and the contamination levels provide scientific basis for urban planning and environmental renovation in Xi’an. The results indicate that the mean values of Ni, Cr, Co, Cu, Pb, Zn and Cd in the dust are 1.15, 1.19, 8.13, 3.94, 4.42, 5.09 and 15.62 times higher than the corresponding background values of Shaanxi soil, respectively. The high concentration of heavy metals is located in the inner and second ring road of Xi’an, China. Furthermore, the contents of metals in the south are higher than in the north. In addition, the concentrations of the gas station dust metals in the west are higher than in the east, particularly in the southwest. Three main sources of heavy metals of gas station dusts are identified in Xi’an. Mn and Ni mainly originate from a natural source; Cr, Cu, Pb, Cr and Zn mainly originate from traffic flow; and Co is mainly from industrial sources. The results of the potential ecological risk assessment indicate that the potential ecological risk index (RI) of Co is moderate; Cd is very high ecological risk, and the other analyzed metals belong to low ecological risk. The mean RI value of eight heavy metals in the gas station dusts from Xi’an is considerable ecological risk.  相似文献   

11.
Urban street dust is one of important indicators of the status of urban environmental pollution. There are many studies in capital cities, but little attention has been paid to this kind of study in medium cities, especially in China. The dust samples were collected in the district of traffic crossroads in Xianyang city, Shaanxi Province. Pb, Cd, Cu, Ni, Zn, Cr and Mn concentrations were determined by using atomic absorption spectrometry. The results indicate that street dusts in Xianyang city have elevated metal concentrations as a whole in comparison with Shaanxi Province soil, except for Mn. The content of heavy metals was comparable to those in capital cities. Correlation coefficient analysis, principal component analysis and cluster analysis were used and three main sources were identified; Mn comes mainly from soil sources; Cu, Zn and Ni are mainly derived from industrial sources combined with traffic sources; Pb, Cr and Cd have traffic sources. Heavy metal enrichment factors were calculated, which can reflect human influence degree of street dusts.  相似文献   

12.
The objectives of the current study were to determine the chemical partitioning of Pb, Ni, Zn, Co, Cr, Mn, Fe and Cd using sequential extraction procedure and to assess the environmental risk associated with these metals in the farming soils along Zerqa River. Metal concentrations were measured by atomic absorption spectrophotometer. The study area demonstrated a wide range for pH, organic matter, carbonate contents, and cation exchange capacity, and is polluted with Pb, Cd, Mn, and Cu. The extensive use of fertilizers and pesticides in the agricultural activities, and discharge of treated and untreated wastewater are the major sources of pollution in the study area. Principal component analysis coupled with Pearson’s correlation analysis between the heavy metals revealed strong and positive correlation between these metals in the study area. According to the Risk Assessment Code (RAC), major portions of Cd and Mn are contained in exchangeable and carbonates fractions and therefore can easily enter the food chain. These metals pose a high to very high risk to the environment. Cu, Ni, Pb, and Zn pose medium risk, while Cr poses a low environment risk.  相似文献   

13.
A total of 42 samples of road dust were collected along ring road, city centre, city side, and freeway in Urumqi, China. Total concentrations of Cd, Cr, Cu, Ni, Pb, Mn, Be, Co, Zn, and U were determined by using the inductively coupled plasma-mass spectrometry in order to assess and to compare road dust contamination levels of metals among the four roads. The results show that, among the four categories of roads, mean concentrations of Co and U vary little. City centre locations show strong enrichments of Cd, Cu, Pb, and Be. Along the ring road, the highest mean concentrations were found for Cr, Ni, Mn, and Co. However, the highest concentrations of Zn and U were found along the freeway. The cluster analysis shows that three main groups can be distinguished. Every group may be associated with different main sources and concentrations of the metals. The results of contamination assessment reveal that, among all of the potential toxic metals, Cd, Cu, and Zn pollution were obviously heavier with moderate or high contamination indices for most road dust samples, while Cr, Ni, and Pb contamination were lower along the four categories of roads. Compared with the city side, Cd, Cu, Pb, Ni, and Zn contamination were heavier along the ring road, the city centre, and the freeway with high traffic density. Low Pb contamination or no contamination in all the road dust samples may be related to the increasing usage of lead-free petrol.  相似文献   

14.
Based on ten heavy metals collected twice annually at 59 sites from 1998 to 2004, enrichment factors (EFs), principal component analysis (PCA) and multivariate linear regression of absolute principal component scores (MLR-APCS) were used in identification and source apportionment of the anthropogenic heavy metals in marine sediment. EFs with Fe as a normalizer and local background as reference values was properly tested and suitable in Hong Kong, and Zn, Ni, Pb, Cu, Cd, Hg and Cr mainly originated from anthropogenic sources, while Al, Mn and Fe were derived from rocks weathering. Rotated PCA and GIS mapping further identified two types of anthropogenic sources and their impacted regions: (1) electronic industrial pollution, riparian runoff and vehicle exhaust impacted the entire Victoria Harbour, inner Tolo Harbour, Eastern Buffer, inner Deep Bay and Cheung Chau; and (2) discharges from textile factories and paint, influenced Tsuen Wan Bay and Kwun Tong typhoon shelter and Rambler Channel. In addition, MLR-APCS was successfully introduced to quantitatively determine the source contributions with uncertainties almost less than 8%: the first anthropogenic sources were responsible for 50.0, 45.1, 86.6, 78.9 and 87.5% of the Zn, Pb, Cu, Cd and Hg, respectively, whereas 49.9% of the Ni and 58.4% of the Cr came from the second anthropogenic sources.  相似文献   

15.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

16.
Multivariate statistical techniques, i.e., correlation coefficient analysis, principal components analysis (PCA), and hierarchical cluster analysis (CA), were applied to the total and water-soluble concentrations of potentially hazardous metals in sediments associated with the Sarcheshmeh mine, one of the largest Oligo-Miocene porphyry copper deposits in the world. The samples were analyzed for hazardous metal concentration levels by inductively coupled plasma mass spectrometry method. Results indicate that the contaminant metals As, Cd, Cu, Mo, S, Sb, Sn, Se, Pb, and Zn were positively correlated with the total concentrations. These hazardous metals also have strong association in the PCA and CA results. Different anthropic versus natural sources of contaminant metals were distinguished by using CA method. Water-soluble fraction of hazardous metals showed that the hydro-geochemical behavior of these metals in sediments is different considerably. Elements such as Cd, Co, Cr, Cu, Fe, Mn, Ni, S, and Zn are readily water soluble from contaminated samples, especially from evaporative mineral phases, while the release of As, Mo, Sb, and Pb into the water is limited by adsorption processes. Results obtained from the application of multivariate techniques on the water-soluble fraction data set show that the hazardous metals are categorized into three groups including (1) Ni, S, Co, Cu, Cr, and Fe; (2) Se, Mn, Cd, and Zn; and (3) Sb, As, Mo, and Sn. This classification describes the hydro-geochemical behavior of hazardous metals in water–sediment environments of the Sarcheshmeh porphyry copper mine and can be used as a basis in remedial and treatment strategies.  相似文献   

17.
The Gulf of Mannar along the Tuticorin coast is a coral base of the southeast coast of India. To obtain a preliminary view of its environmental conditions, geochemical distribution of major elements (Si, Al, Fe, Ca, Mg, Na, K, P), trace elements (Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd) and acid leachable elements (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd) were analyzed in surface sediment samples from two seasons. Geochemical fractionation confirmed the lithogenic origin of metals, which were mainly associated with the detrital phase. The sediments in the gulf are sandy with abundant calcareous debris, which controls the distribution of total and acid leachable elements. Enrichment factors relative to crust vary by a magnitude of two to three and the presence of trace metals indicates the input of Cr, Pb, Cd, Cu and Zn in both forms through industrial activities. Factor analysis supports the above observation with higher loadings on acid leachable elements and its association with CaCO3. The increase in concentration of trace metals (Cr, Pb, Cd, Cu, Co, Ni, Zn) along the Gulf of Mannar indicates that the area has been contaminated by the input from riverine sources and the industries nearby. The present study indicates that other sources should be evaluated in the long-term monitoring program.  相似文献   

18.
为了解大亚湾表层沉积物中重金属的污染状况,对大亚湾海域23个点位表层沉积物中7种重金属元素(Cr、Ni、Cu、Pb、Zn、Cd、As)的质量分数、形态特征、来源控制因素以及潜在生态风险进行了研究。采用优化BCR提取法分析重金属元素赋存形态,并依据各种重金属元素的形态特征与沉积物基质属性进行了相关因子分析,了解其分布的控制因素。结果表明:大亚湾沉积物重金属元素呈现环带状分布特征,从岸向湾内逐渐减小;重金属元素质量分数的高值区主要分布于大鹏澳、哑铃湾及范和港附近;重金属元素赋存形态中Cr、Ni、Cu、Zn、As主要以残渣态存在,Pb主要以可还原态存在,Cd主要以酸提取态存在;7种重金属元素各自非残渣态所占比率从大到小为Pb(78.83%)、Cd(78.65%)、Cu(48.54%)、Zn(48.10%)、Ni(38.31%)、Cr(28.43%)、As(27.76%),即Pb最高,As最低,表明Pb的迁移性最强;通过因子分析,大亚湾重金属主要为沿岸自然风化产物的输入,其次为工业废水及养殖污水。运用酸提取态风险评估法对重金属元素潜在生态风险进行评价,发现研究区所选重金属元素综合风险评价Cd为高风险,其余重金属为中-低风险等级。  相似文献   

19.
This article presents the results on distribution and enrichment pattern of acid-leachable trace metals (ALTMs) from roadside soil of Miri city, Sarawak, East Malaysia. The city is one of the fastest developing in the Malaysian region with huge petroleum resources. ALTMs Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd along with organic carbon and carbonates (CaCO3) were analyzed in 37 soil sediments collected from roadside. The enrichment of ALTMs [especially Cu (0.4–13.1 μg g?1), Zn (9.3–70.7 μg g?1), Pb (13.8–99.1 μg g?1)] in the roadside soils indicate that these metals are mainly derived from sources related to traffic exhausts, forest fires and oil refineries. The comparative study and enrichment pattern of elements indicates that Mn, Cu, Zn and Pb are enriched multi-fold than the unpolluted soil and Ni, Pb, Cd in some samples compared to Sediment Quality Guidelines like Lowest Effect Level (LEL) and Effects Range Low (ERL) in the region which is mainly due to the recent industrial developments in the region.  相似文献   

20.
In the present study we examined the Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn contamination levels of the soils of Berehove, a small city in West-Ukraine. As a first step we determined the spatial distribution of the heavy metal contents of the urban soils; then, by studying the land use structure of the city and by statistical analysis we identified the major sources of contamination; we established a matrix of correlations between the heavy metal contents of the soils and the different types of land use; and finally, we drew a conclusion regarding the possible origin(s) of these heavy metals. By means of multivariate statistical analysis we established that of the investigated metals, Ba, Cd, Cu, Pb and Zn accumulated in the city’s soils primarily as a result of anthropogenic activity. In the most polluted urban areas (i.e. in the industrial zones and along the roads and highways with heavy traffic), in the case of several metals (Ba, Cd, Cu, Pb, Zn) we measured concentration levels even two or three times higher than the threshold limit values. Furthermore, Cr, Fe and Ni are primarily of lithogenic origin; therefore, the soil concentrations of these heavy metals depend mainly on the chemical composition of the soil-forming rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号