首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sorption of Ni(II) onto chlorite surfaces was studied as a function of pH (5–10), ionic strength (0.01–0.5 M) and Ni concentration (10−8–10−6 M) in an Ar atmosphere using batch sorption with radioactive 63Ni as tracer. Such studies are important since Ni(II) is one of the major activation products in spent nuclear fuel and sorption data on minerals such as chlorite are lacking. The sorption of Ni(II) onto chlorite was dependent on pH but not ionic strength, which indicates that the process primarily comprises sorption by surface complexation. The maximum sorption was at pH ∼ 8 (Kd = ∼10−3 cm3/g). Desorption studies over a period of 1–2 weeks involving replacement of the aqueous solution indicated a low degree of desorption. The acid–base properties of the chlorite mineral were determined by titration and described using a non-electrostatic surface complexation model in FITEQL. A 2-pK NEM model and three surface complexes, Chl_OHNi2+, Chl_OHNi(OH)+ and Chl_OHNi(OH)2, gave the best fit to the sorption results using FITEQL. The high Kd values and low degree of desorption observed indicate that under expected groundwater conditions, a large fraction of Ni(II) that is potentially leachable from spent nuclear fuel may be prevented from migrating by sorption onto chlorite surfaces.  相似文献   

2.
Sorption and desorption behaviour of methane, carbon dioxide, and mixtures of the two gases has been studied on a set of well-characterised coals from the Argonne Premium Coal Programme. The coal samples cover a maturity range from 0.25% to 1.68% vitrinite reflectance. The maceral compositions were dominated by vitrinite (85% to 91%). Inertinite contents ranged from 8% to 11% and liptinite contents around 1% with one exception (Illinois coal, 5%). All sorption experiments were performed on powdered (−100 mesh), dry coal samples.Single component sorption/desorption measurements were carried out at 22 °C up to final pressures around 51 bar (5.1 MPa) for CO2 (subcritical state) and 110 bar (11 MPa) for methane.The ratios of the final sorption capacities for pure CO2 and methane (in molar units) on the five coal samples vary between 1.15 and 3.16. The lowest ratio (1.15) was found for the North Dakota Beulah-Zap lignite (VRr=0.25%) and the highest ratios (2.7 and 3.16) were encountered for the low-rank coals (VRr 0.32% and 0.48%) while the ratio decreases to 1.6–1.7 for the highest rank coals in this series.Desorption isotherms for CH4 and CO2 were measured immediately after the corresponding sorption isotherms. They generally lie above the sorption isotherms. The degree of hysteresis, i.e. deviation of sorption and desorption isotherms, varies and shows no dependence on coal rank.Adsorption tests with CH4/CO2 mixtures were conducted to study the degree of preferential sorption of these two gases on coals of different rank. These experiments were performed on dry coals at 45 °C and pressures up to 180 bar (18 MPa). For the highest rank samples of this sequence preferential sorption behaviour was “as expected”, i.e. preferential adsorption of CO2 and preferential desorption of CH4 were observed. For the low rank samples, however, preferential adsorption of CH4 was found in the low pressure range and preferential desorption of CO2 over the entire pressure range.Follow-up tests for single gas CO2 sorption measurements consistently showed a significant increase in sorption capacity for re-runs on the same sample. This phenomenon could be due to extraction of volatile coal components by CO2 in the first experiment. Reproducibility tests with methane and CO2 using fresh sample material in each experiment did not show this effect.  相似文献   

3.
To assess the competitive sorption and desorption of cadmium (Cd) and lead (Pb), batch equilibrium experiments were performed using single- and binary-metal solutions in surface samples of three paddy soils from eastern China. Sorption isotherms were well fitted with one-metal and competitive Langmuir equation for single- and binary-metal system, respectively. The distribution coefficient (K d) values were K d single (Pb) > K d binary (Pb) > K d single (Cd) > K d binary (Cd), indicating that Pb was stronger sorbed by these soils than Cd in binary metal system. Soils with high pH and clay content had the greatest sorption capacity as estimated by the maximum sorption parameter (Q). The co-existence of both metals reduces their tendency of sorption, whereas Cd sorption was affected to a greater extent than that of Pb. The Langmuir binding strength parameter (b) in binary sorption system was greater than that in single sorption system for all soils (b < b 1), indicating that competition for sorption sites promote the retention of both metals into more specific sorption sites. Sorption of Cd and Pb decreased soil pH by 1.61 U for YRS, 1.39 U for PCS, and 0.91 U for SLS. The decreases of pH in binary metal system were greater than in single-metal system for three soils. Cadmium and Pb desorption increased with increasing Cd and Pb sorption saturation for all soils; however, Cd desorption ratio in binary metal system (d Cd*) was much greater than Pb (d Pb*), indicating that under the competitive sorption conditions, the sorbed Cd was more readily desorbed from the soils than the sorbed Pb.  相似文献   

4.
A 210Pb radiotracer was used to monitor Pb solid-aqueousphase partitioning in sorption experiments at ambient temperature, pH = 8.2, and atmospheric PCO2 in 0.15 M NaNO3 solutions. A 24 h isotherm is linear up to Pb concentrations of 4 × 10-6 M, above which an increase in slope suggests precipitation. The effect of Pb concentration, calcite loading, and ionic strength on Pb sorption with time was monitored. Sorption kinetics are rapid, followed by a slower sorption step.At a constant calcite loading500 mg L-1,fractional sorptiondecreases with increasing initialPb concentration. The reverse isobserved for surface coverage, with0.6, 5.6 and 40.2% of availableCa2+sites occupied at10-8,10-7 and10-6 MPb after 96 h. At a constant Pb concentration of10-6 M,fractional sorption increases with increasing particleloading, however surface coverage decrease with72.5 and 22.1%Ca2+sites occupied at 100 and200 mg L-1calcite after 96 h.The adsorption coefficient (Kd) is approximately 103,increases with initial Pb concentration, but remains unaffected by variable calcite loading. Absence of an ionic strength effect on Pb sorption is interpreted as the dominance of inner-sphere complexation. For desorption experiments conducted over a range of initial sorption times, an average desorption index > 0.8 but < 1 indicates that sorption is largely reversible, but is accompanied by slight incorporation. Solid-solution formation increases with time, as observed by slower initial desorption rates for samples with longer sorption times. These findings indicate that Pb may be effectively sequestered by calcite; however re-release via desorption is likely as Pb does not become significantly incorporated into the mineral structure.  相似文献   

5.
In this study, we conducted electrophoretic mobility, potentiometric titration, and metal sorption experiments to investigate the surface charge characteristics of Bacillus subtilis and the electrostatic interactions between metal cations and the cell surface electric field. Electrophoretic mobility experiments performed as a function of pH and ionic strength show an isoelectric point of pH 2.4, with the magnitude of the electrokinetic potential increasing with increasing pH, and decreasing with increasing ionic strength. Potentiometric titration experiments conducted from pH 2.4 to 9 yield an average surface charge excess of 1.6 μmol/mg (dry mass). Corresponding cell wall charge density values were used to calculate the Donnan potential (ΨDON) as function of pH and ionic strength. Metal sorption experiments conducted with Ca(II), Sr(II), and Ba(II) exhibit strong ionic strength dependence, suggesting that the metal ions are bound to the bacterial cell wall via an outer-sphere complexation mechanism. Intrinsic metal sorption constants for the sorption reactions were determined by correcting the apparent sorption constant with the Boltzmann factor. A 1:2 metal-ligand stoichiometry provides the best fit to the experimental data with log K2int values of 5.9 ± 0.3, 6.0 ± 0.2, 6.2 ± 0.2 for Ca(II), Sr(II), and Ba(II) respectively. Electrophoretic mobility measurements of cells sorbed with Ca(II), Sr(II), and Ba(II) support the 1:2 sorption stoichiometry. These results indicate that electrical potential parameters derived from the Donnan model can be applied to predict metal binding onto bacterial surfaces over a wide range of pH and ionic strength conditions.  相似文献   

6.
Sorption of the 14 rare earth elements (REE) by basaltic rock is investigated as a function of pH, ionic strength and aqueous REE concentrations. The rock sample, originating from a terrestrial basalt flow (Rio Grande do Sul State, Brazil), is composed of plagioclase, pyroxene and cryptocrystalline phases. Small amounts of clay minerals are present, due to rock weathering. Batch sorption experiments are carried out under controlled temperature conditions of 20 °C with the <125 μm fraction of the ground rock in solutions of 0.025 M and 0.5 M NaCl and at pH ranging from 2.7 to 8. All 14 REEs are investigated simultaneously with initial concentrations varying from 10−7 to 10−4 mol/L. Some experiments are repeated with only europium present to evaluate possible competitive effects between REE. Experimental results show the preferential retention of the heavy REEs at high ionic strength and circumneutral pH conditions. Moreover, results show that REE sorption increases strongly with decreasing ionic strength, indicating two types of sorption sites: exchange and specific sites. Sorption data are described by a Generalised Composite (GC) non-electrostatic model: two kinds of surface reactions are treated, i.e. cation exchange at >XNa sites, and surface complexation at >SOH sites. Total site density (>XNa + >SOH) is determined by measuring the cation exchange capacity (CEC = 52 μmol/m2). Specific concentrations of exchange sites and complexation sites are determined by fitting the Langmuir equation to sorption isotherms of REE and phosphate ions. Site densities of 22 ± 5 and 30 ± 5 μmol/m2 are obtained for [>XNa] and [>SOH], respectively. The entire set of REE experimental data is modeled using a single exchange constant (log Kex = 9.7) and a surface complexation constant that progressively increases from log K = −1.15 for La(III) to −0.4 for Lu(III).The model proves to be fairly robust in describing other aluminosilicate systems. Maintaining the same set of sorption constants and only adjusting the site densities, we obtain good agreement with the literature data on REE/kaolinite and REE/smectite sorption. The Generalised Composite non-electrostatic model appears as an easy and efficient tool for describing sorption by complex aluminosilicate mineral assemblages.  相似文献   

7.
The paper reports the results of experiments concerning the sorption/desorption processes, observed under laboratory conditions, in two types of coal extracted from operational coal-mines in Poland, using CH4 and CO2 to observe their relative inter-reaction with the coal samples when introduced in varying proportions and conditions. Numerous studies concerning the sorption/desorption phenomena have described the operational mechanisms and the relationship of mine gases to the organically-created coal-body in mines. The differences in the behaviour of certain gases is twofold: firstly the essentially different characteristics of CO2 and CH4, and secondly the structure of the coal-bed itself: its degree of metamorphism and content of macerals. From the results yielded, it was observed that the divergence of the isotherms of sorption of CH4 and other gases in comparison with the isotherms of sorption of CO2 and a CO2/CH4 mixture differed and that the curve on the sorption isotherm was more clearly distinct after the introduction of CO2 molecules to the system: coal with a higher degree of metamorphism—CH4, which is closely related to the rigidity of the structure according to the level of metamorphism. Since coals with higher carbon content exhibit lower molecular bonding than low-carbonised coals, the characteristic feature of the bonds in the first case is their mobility. Knowledge of the physical and chemical properties of hard coals, as well as their interaction with mining gases, is of great use in solving problems concerned with the extraction of methane from mines or its storage in goafs.  相似文献   

8.
Sorption interactions with montmorillonite and other clay minerals in soils, sediments, and rocks are potentially important mechanisms for attenuating the mobility of U(6+) and other radionuclides through the subsurface environment. Batch experiments were conducted (in equilibrium with atmospheric % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% acbiGaiWiG-bfadaWgaaWcbaacbaGaa43qaiaa+9eadaWgaaqaaiaa% +jdaaWqabaaaleqaaaaa!400D!\[P_{CO_2 } \])to determine the effects of varying pH (2 to 9), solid-mass to solution-volume ratio (M/V = 0.028 to 3.2 g/L), and solution concentration (2 × 10?7 and 2 × 10?6 M 233U) on U(6+) sorption on SAz-1 montmorillonite. The study focused on U(6+) surface complexation on hydroxylated edge sites as the sorption mechanism of interest because it is expected to be the predominant sorption mechanism at pHs typical of natural waters (pH ≈6 to ≈9). Thus, the experiments were conducted with a 0.1 M NaNO3 matrix to suppress ion-exchange between U(6+) in solution and interlayer cations. The results show that U(6+) sorption on montmorillonite is a strong function of pH, reaching a maximum at near-neutral pH (≈6 to ≈6.5) and decreasing sharply towards more acidic or more alkaline conditions. A comparison of the pH-dependence of U(6+) sorption with that of U(6+) aqueous speciation indicates a close correspondence between U(6+) sorption and the predominance field of U(6+)-hydroxy complexes. At high pH, sorption is inhibited due to formation of aqueous U(6+)-carbonate complexes. At low pH, the low sorption values indicate that the 0.1 M NaNO3 matrix was effective in suppressing ion-exchange between the uranyl (UO2 2+) species and interlayer cations in montmorillonite. At pH and carbonate concentrations typical of natural waters, sorption of U(6+) on montmorillonite can vary by four orders of magnitude and can become negligible at high pH. The experimental results were used to develop a thermodynamic model based on a surface complexation approach to permit predictions of U(6+) sorption at differing physicochemical conditions. A Diffuse-Layer model (DLM) assuming aluminol (>AlOH?) and silanol (>SiOH?) edge sites and two U(6+) surface complexation reactions per site effectively simulates the complex sorption behavior observed in the U(6+)-H2O-CO2-montmorillonite system at an ionic strength of 0.1 M and pH > 3.5. A comparison of model predictions with data from this study and from published literature shows good agreement and suggests that surface complexation models based on parameters derived from a limited set of data could be useful in extrapolating radionuclide sorption over a range of geochemical conditions. Such an approach could be used to support transport modeling by providing a better alternative to the use of constant K d s in transport calculations.  相似文献   

9.
Pharmaceuticals have gained significant attention in recent years due to the environmental risks posed by their versatile application and occurrence in the natural aquatic environment. The transportation and distribution of pharmaceuticals in the environmental media mainly depends on their sorption behavior in soils, sediment?Cwater systems and waste water treatment plants, which varies widely across pharmaceuticals. Sorption of ibuprofen, a non-steroidal anti-inflammatory drug, onto various soil minerals, viz., kaolinite, montmorillonite, goethite, and activated carbon, as a function of pH (3?C11), ionic strength (NaCl concentration: 0.001?C0.5?M), and the humic acid concentration (0?C1,000?mg/L) was investigated through batch experiments. Experimental results showed that the sorption of ibuprofen onto all sorbents was highest at pH 3, with highest sorption capacity for activated carbon (28.5?mg/g). Among the minerals, montmorillonite sorbed more ibuprofen than kaolinite and goethite, with sorption capacity increasing in the order goethite (2.2?mg/g)?<?kaolinite (3.1?mg/g)?<?montmorillonite (6.1?mg/g). The sorption capacity of the selected minerals increased with increase in ionic strength of the solution in acidic pH condition indicating that the effect of pH was predominant compared to that of ionic strength. An increase in humic acid concentration from low to high values made the sorption phenomena very complex in the soil minerals. Based on the experimental observations, montmorillonite, among the selected soil minerals, could serve as a good candidate to remove high concentrations of ibuprofen from aqueous solution.  相似文献   

10.
Sorption data were obtained with a Matawan soil and the following chromium (III) organic complexes: chromium (III) ascorbate, chromium (III) glutamate, chromium (III) histidine, chromium (III) mandelate, chromium (III) citrate, chromium (III) cysteine, chromium (III) serine, chromium (III) pyruvate and chromium (III) oxalate. The influence of pH (2–12), ionic strength (0.005–1 M) and concentration of sorbate (1–10 mg/L) on the extent of sorption was evaluated. The pH value did not influence the percent sorption at environmentally relevant pH 7. Ionic strength between 0.005 and 0.01 M KNO3 did not influence the sorption. Sorption and desorption data obtained at pH 7, 0.01 M KNO3 and 1–10 mg/L for each chromium (III) organic complex were analyzed using Freundlich and Langmuir models. The Freundlich model provided good fits for all of the chromium (III) organic complexes. Sorption data for chromium (III) glutamate, chromium (III) pyruvate, chromium (III) oxalate, chromium (III) cysteine, chromium (III) ascorbate and chromium (III) citrate were described well by the Langmuir model. Estimates for the saturated sorption capacities were 141, 70.9, 36.5, 35.5, 28.6 and 4.4 μg/g, respectively. It was not possible to desorb significant amounts of the previously sorbed chromium (III) organic complexes. At the same pH, ionic strength and solid:liquid ratio, the order of the observed sorption to the Matawan soil from highest to lowest was chromium (III) mandelate, chromium (III) glutamate, chromium (III) histidine, chromium (III) cysteine, chromium (III) serine, chromium (III) pyruvate, chromium (III) oxalate, chromium (III) ascorbate and chromium (III) citrate.  相似文献   

11.
《Applied Geochemistry》1998,13(7):893-904
The octanol–water partition coefficients (log Kow) of 2,4,6-trichlorophenol and pentachlorophenol were determined as functions of pH, ionic strength and aqueous metal content. For both chlorophenols, the log Kow exhibits pH dependence in the range pKa−1<pH<pKa+3. At lower and higher pH values, the behaviour of the chlorophenols is independent of pH. The present data, in conjunction with that of pre-existing data, indicate that a linear relationship exists between log Kow and log ionic strength of the aqueous solution for pentachlorophenol, and the data also suggest that aqueous metal–chlorophenolate complexation can significantly alter the partitioning behaviour. The data reported here was used to obtain an empirical model of the partitioning behaviour based on speciation of the aqueous chlorophenol. The model requires knowledge of the low pH partitioning behaviour, as well as the acidity constant for the particular chlorophenol of interest. Although Kow values have been measured as a function of pH and/or ionic strength for only pentachlorophenol, the input parameters for our empirical model are readily accessible in the literature for many chlorophenols. The model greatly expands our ability to quantify the hydrophobicity of chlorophenols, enabling accurate estimations of the pH and ionic strength dependencies of the partitioning behaviour over a wide range of pH and ionic strength values of environmental interest.  相似文献   

12.
The adsorption of phosphate onto calcite was studied in a series of batch experiments. To avoid the precipitation of phosphate-containing minerals the experiments were conducted using a short reaction time (3 h) and low concentrations of phosphate (?50 μM). Sorption of phosphate on calcite was studied in 11 different calcite-equilibrated solutions that varied in pH, PCO2, ionic strength and activity of Ca2+, and . Our results show strong sorption of phosphate onto calcite. The kinetics of phosphate sorption onto calcite are fast; adsorption is complete within 2-3 h while desorption is complete in less than 0.5 h. The reversibility of the sorption process indicates that phosphate is not incorporated into the calcite crystal lattice under our experimental conditions. Precipitation of phosphate-containing phases does not seem to take place in systems with ?50 μM total phosphate, in spite of a high degree of super-saturation with respect to hydroxyapatite (SIHAP ? 7.83). The amount of phosphate adsorbed varied with the solution composition, in particular, adsorption increases as the activity decreases (at constant pH) and as pH increases (at constant activity). The primary effect of ionic strength on phosphate sorption onto calcite is its influence on the activity of the different aqueous phosphate species. The experimental results were modeled satisfactorily using the constant capacitance model with >CaPO4Ca0 and either >CaHPO4Ca+ or > as the adsorbed surface species. Generally the model captures the variation in phosphate adsorption onto calcite as a function of solution composition, though it was necessary to include two types of sorption sites (strong and weak) in the model to reproduce the convex shape of the sorption isotherms.  相似文献   

13.
Complete sorption isotherm characteristics of methane and CO2 were studied on fourteen sub-bituminous to high-volatile bituminous Indian Gondwana coals. The mean vitrinite reflectance values of the coal samples are within the range of 0.64% to 1.30% with varying maceral composition. All isotherms were conducted at 30 °C on dry, powdered coal samples up to a maximum experimental pressure of ~ 7.8 MPa and 5.8 MPa for methane and CO2, respectively.The nature of the isotherms varied widely within the experimental pressure range with some of the samples remained under-saturated while the others attained saturation. The CO2 to methane adsorption ratios decreased with the increase in experimental pressure and the overall variation was between 4:1 and 1.5:1 for most of the coals. For both methane and CO2, the lower-ranked coal samples generally exhibited higher sorption affinity compared to the higher-ranked coals. However, sorption capacity indicates a U-shaped trend with rank. Significant hysteresis was observed between the ad/desorption isotherms for CO2. However, with methane, hysteresis was either absent or insignificant. It was also observed that the coal maceral compositions had a significant impact on the sorption capacities for both methane and CO2. Coals with higher vitrinite contents showed higher capacities while internite content indicated a negative impact on the sorption capacity.  相似文献   

14.
We studied selenite () retention by magnetite () using both surface complexation modeling and X-ray absorption spectroscopy (XAS) to characterize the processes of adsorption, reduction, and dissolution/co-precipitation. The experimental sorption results for magnetite were compared to those of goethite (FeIIIOOH) under similar conditions. Selenite sorption was investigated under both oxic and anoxic conditions and as a function of pH, ionic strength, solid-to-liquid ratio and Se concentration. Sorption onto both oxides was independent of ionic strength and decreased as pH increased, as expected for anion sorption; however, the shape of the sorption edges was different. The goethite sorption data could be modeled assuming the formation of an inner-sphere complex with iron oxide surface sites (SOH). In contrast, the magnetite sorption data at low pH could be modeled only when the dissolution of magnetite, the formation of aqueous iron-selenite species, and the subsequent surface complexation of these species were implemented. The precipitation of ferric selenite was the predominant retention process at higher selenite concentrations (>1 × 10−4 M) and pH < 5, which was in agreement with the XAS results. Sorption behavior onto magnetite was similar under oxic and anoxic conditions. Under anoxic conditions, we did not observe the reduction of selenite. Possible reasons for the absence of reduction are discussed. In conclusion, we show that under acidic reaction conditions, selenite retention by magnetite is largely influenced by dissolution and co-precipitation processes.  相似文献   

15.
The sorption of ferrous iron to a clay mineral, nontronite (NAu-2, a ferruginous smectite), was investigated under strictly anoxic conditions as a function of pH (3-10), Fe2+ concentration (0.01-50 mM), equilibration time (1-35 days), and ionic strength (0.01-0.5 M NaClO4). The surface properties of NAu-2 were independently characterized to determine its fixed charge and amphoteric site density in order to interpret the Fe2+ sorption data. Fe2+ sorption to NAu-2 was strongly dependent on pH and ionic strength, reflecting the coupled effects of Fe2+ sorption through ion exchange and surface complexation reactions. Fe2+ sorption to NAu-2 increased with increasing pH from pH 2.5 to 4.5, remained constant from pH 4.5 to 7.0, increased again with further increase of pH from pH 7.0 to 8.5, and reached a maximum above pH 8.5. The Fe2+ sorption below pH 7.0 increased with decreasing ionic strength. The differences of Fe2+ sorption at different ionic strengths, however, diminished with increasing equilibration time. The Fe2+ sorption from pH 4.5 to 7.0 increased with increasing equilibration time up to 35 days and showed stronger kinetic behavior in higher ionic strength solutions. The kinetic uptake of Fe2+ onto NAu-2 is consistent with a surface precipitation mechanism although our measurements were not able to identify secondary precipitates. An equilibrium model that integrates ion exchange, surface complexation and aqueous speciation reactions reasonably well describes the Fe2+ sorption data as a function of pH, ionic strength, and Fe2+ concentration measured at 24 h of equilibration. Model calculations show that the species Fe(OH)+ was required to describe Fe2+ sorption above pH 8.0 satisfactorily. Overall, this study demonstrated that Fe2+ sorption to NAu-2 is affected by complex equilibrium and kinetic processes, likely caused by surface precipitation reactions.  相似文献   

16.
This paper presents reviews of studies on properties of coal pertinent to carbon dioxide (CO2) sequestration in coal with specific reference to Victorian brown coals. The coal basins in Victoria, Australia have been identified as one of the largest brown coal resources in the world and so far few studies have been conducted on CO2 sequestration in this particular type of coals. The feasibility of CO2 sequestration depends on three main factors: (1) coal mass properties (chemical, physical and microscopic properties), (2) seam permeability, and (3) gas sorption properties of the coal. Firstly, the coal mass properties of Victorian brown coal are presented, and then the general variations of the coal mass properties with rank, for all types of coal, are discussed. Subsequently, coal gas permeability and gas sorption are considered, and the physical factors which affect them are examined. In addition, existing models for coal gas permeability and gas sorption in coal are reviewed and the possibilities of further development of these models are discussed. According to the previous studies, coal mass properties and permeability and gas sorption characteristics of coals are different for different ranks: lignite to medium volatile bituminous coals and medium volatile bituminous to anthracite coals. This is important for the development of mathematical models for gas permeability and sorption behavior. Furthermore, the models have to take into account volume effect which can be significant under high pressure and temperature conditions. Also, the viscosity and density of supercritical CO2 close to the critical point can undergo large and rapid changes. To date, few studies have been conducted on CO2 sequestration in Victorian brown coal, and for all types of coal, very few studies have been conducted on CO2 sequestration under high pressure and temperature conditions.  相似文献   

17.
The sorption of silver by poorly crystallized manganese oxides was studied using synthesized samples of three members of the manganous manganite (birnessite) group, of different chemical composition and crystallinity, and a poorly organized γ-MnO2. All four oxides sorbed significant quantities of silver. The manganous manganites showed the greatest sorption (up to 0.5 moles silver/mole MnOx at pH 7) while the γ-MnO2 showed the least (0.3 moles silver/ mole MnOx at pH 7). Sorption of silver was adequately described by the Langmuir equation over a considerable concentration range. The relationship failed at low pH values and high equilibrium silver concentrations. The sorption capacity showed a direct relationship with pH. However, the rate of increase of sorption capacity decreased at the higher pH values.Silver sorption maxima. were not directly related to surface area but appeared to vary with the amount of occluded sodium and potassium present in the manganese oxide. The important processes involved in the uptake of silver by the four poorly crystallized manganese oxides ara considered to be surface exchange for manganese, potassium and sodium as well as exchange for structural manganese, potassium and sodium.  相似文献   

18.
CBM and CO2-ECBM related sorption processes in coal: A review   总被引:1,自引:0,他引:1  
This article reviews the state of research on sorption of gases (CO2, CH4) and water on coal for primary recovery of coalbed methane (CBM), secondary recovery by an enhancement with carbon dioxide injection (CO2-ECBM), and for permanent storage of CO2 in coal seams.Especially in the last decade a large amount of data has been published characterizing coals from various coal basins world-wide for their gas sorption capacity. This research was either related to commercial CBM production or to the usage of coal seams as a permanent sink for anthropogenic CO2 emissions. Presently, producing methane from coal beds is an attractive option and operations are under way or planned in many coal basins around the globe. Gas-in-place determinations using canister desorption tests and CH4 isotherms are performed routinely and have provided large datasets for correlating gas transport and sorption properties with coal characteristic parameters.Publicly funded research projects have produced large datasets on the interaction of CO2 with coals. The determination of sorption isotherms, sorption capacities and rates has meanwhile become a standard approach.In this study we discuss and compare the manometric, volumetric and gravimetric methods for recording sorption isotherms and provide an uncertainty analysis. Using published datasets and theoretical considerations, water sorption is discussed in detail as an important mechanisms controlling gas sorption on coal. Most sorption isotherms are still recorded for dry coals, which usually do not represent in-seam conditions, and water present in the coal has a significant control on CBM gas contents and CO2 storage potential. This section is followed by considerations of the interdependence of sorption capacity and coal properties like coal rank, maceral composition or ash content. For assessment of the most suitable coal rank for CO2 storage data on the CO2/CH4 sorption ratio data have been collected and compared with coal rank.Finally, we discuss sorption rates and gas diffusion in the coal matrix as well as the different unipore or bidisperse models used for describing these processes.This review does not include information on low-pressure sorption measurements (BET approach) to characterize pore sizes or pore volume since this would be a review of its own. We also do not consider sorption of gas mixtures since the data base is still limited and measurement techniques are associated with large uncertainties.  相似文献   

19.
Numerical modelling of the processes of CO2 storage in coal and enhanced coalbed methane (ECBM) production requires information on the kinetics of adsorption and desorption processes. In order to address this issue, the sorption kinetics of CO2 and CH4 were studied on a high volatile bituminous Pennsylvanian (Upper Carboniferous) coal (VRr=0.68%) from the Upper Silesian Basin of Poland in the dry and moisture-equilibrated states. The experiments were conducted on six different grain size fractions, ranging from <0.063 to 3 mm at temperatures of 45 and 32 °C, using a volumetric experimental setup. CO2 sorption was consistently faster than CH4 sorption under all experimental conditions. For moist coals, sorption rates of both gases were reduced by a factor of more than 2 with respect to dry coals and the sorption rate was found to be positively correlated with temperature. Generally, adsorption rates decreased with increasing grain size for all experimental conditions.Based on the experimental results, simple bidisperse modelling approaches are proposed for the sorption kinetics of CO2 and CH4 that may be readily implemented into reservoir simulators. These approaches consider the combination of two first-order reactions and provide, in contrast to the unipore model, a perfect fit of the experimental pressure decay curves. The results of this modeling approach show that the experimental data can be interpreted in terms of a fast and a slow sorption process. Half-life sorption times as well as the percentage of sorption capacity attributed to each of the two individual steps have been calculated.Further, it was shown that an upscaling of the experimental and modelling results for CO2 and CH4 can be achieved by performing experiments on different grain size fractions under the same experimental conditions.In addition to the sorption kinetics, sorption isotherms of the samples with different grain size fractions have been related to the variations in ash and maceral composition of the different grain size fractions.  相似文献   

20.
Sorption of radionuclides onto stable colloids can significantly enhance their transport in groundwater. Batch adsorption studies were performed to evaluate the influence of various experimental parameters like initial pH, contact time, temperature and concentration of Na+ and Ca2+ ions on the sorption of Cs on clay. The sorption process is dependent on pH of the solution with distribution coefficient (K d) found to increase with increase in pH. The kinetic experiments were carried out at different temperatures, and the results have shown that the sorption process fits well into a pseudo-second-order mechanism with apparent activation energy of 45.7?kJ/mol. The rate constant was found to decrease with increase in temperature. The thermodynamic parameters such as ?G 0, ?H 0 and ?S 0 were calculated. The negative value of ?H 0 indicates that the reaction is exothermic. The negative values obtained for ?G 0 indicated that the sorption of cesium on clay was spontaneous at all studied concentrations. The distribution coefficient was found to decrease with increasing concentration of Na+ and Ca2+ ions. The cesium sorption data were fitted to Freundlich, Langmuir, Temkin and Dubinin–Radushkevich (D–R) isotherms. The values of Langmuir separation factor (R L) indicate a favorable Cs adsorption. The values of mean free energy of sorption (E) at various temperatures ranged from 10.5 to 11.1?kJ/mol, which indicates that the sorption process follows chemisorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号