首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
固体聚合膜电解浓集法是浓缩氚含量较低(1 Bq/m~3)的天然水样的常用方法,但因水样自身含有杂质离子或电解装置聚合膜带入杂质进入浓集液,使浓集液偏酸性,在测量过程中易产生化学淬灭效应,导致氚的测量值偏低。本文研究了水样自身存在的杂质离子和聚合膜上残留的杂质离子、样品溶液的pH值及其电导率所产生的化学淬灭效应的影响,实验表明,为减少化学淬灭效应,提高测量低含量氚的准确性,需保证水样溶液呈中性,电导率≤1μS/cm,同时避免杂质沉积在聚合膜上。如果水样溶液的pH值偏酸性、电导率大于1μS/cm,可采用酸碱混合型离子交换树脂去除水样中自身的杂质;对于聚合膜引入的杂质,可在电解后的水样中加入微量氨水将其pH值调节至中性。  相似文献   

2.
The contents of Co, Cr, Cu, Mn, Ni, Pb and Zn in the dust samples collected from Changqing industrial park of Baoji city, NW China, were measured by XRF, while As and Hg in the dust samples were analyzed by AFS. Geo-accumulation index (I geo), pollution index (PI) and integrated pollution index (IPI) were calculated to evaluate the heavy metal contamination level of dust. The health risk due to exposure to heavy metals in dust was analyzed by the Health Risk Assessment Model of US EPA. The results show that the arithmetic means of As, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn are 23.3, 16.4, 1591.8, 178.2, 0.243, 346.5, 40.2, 1,586.2 and 1,918.8 mg kg?1, respectively, which are higher than the background values of Shaanxi soil, especially for Cr, Cu, Hg, Pb, and Zn. The mean values of I geo reveal the order of Pb > Zn > Cr > Hg > Cu > As > Co > Ni > Mn. The high I geo of Cr, Cu, Hg, Pb and Zn in dust indicates that there is considerable pollution from Cr, Cu, Hg, Pb and Zn, while the low I geo of As, Co, Mn and Ni presents no pollution in dust. The assessment results of PI support the results of I geo, and IPI indicates heavy metals in dust polluted seriously. The health risk assessment shows that ingestion of dust particles is the route for exposure to heavy metals from dust, followed by dermal adsorption. Exposure to As, Cr and Pb from dust may pose a potential health threat to children and adults. The risk of cancer from As, Co, Cr and Ni due to dust exposure is low.  相似文献   

3.
为了解包头市典型工业企业对其所在地土壤中重金属含量的影响及污染现状,利用相关性系数对其表层土壤中7种重金属(Cu、Zn、Pb、Cr、Cd、Mn、Ni)来源进行研究,并采用内梅罗综合污染指数法和潜在生态危害指数对其污染状况进行评价。结果表明,7种重金属含量平均值均高于内蒙古土壤背景值,其中Cd、Mn、Ni超标率已达100%,而Cu、Pb、Zn的超标率分别为97%、93%和93%,只有Cr超标率较低(53%),污染程度依次为CdPbCuNiZnMnCr,其中Pb和Cd为重度污染,Cu、Zn、Ni为中度污染,Cr、Mn为轻度污染;Cu、Zn、Cr、Mn、Ni可能同时来自工业生产和交通运输两个源,而Pb和Cd除上述来源外,燃煤烟气的排放有较大贡献。潜在生态危害依次为CdPbCuNiCrZnMn,其中Cd的潜在生态风险最大,应予以高度重视,其他金属的风险均为轻微。  相似文献   

4.
In this study, total heavy metal content of soil and their spatial distribution in Sar?seki-Dörtyol district were analyzed and mapped. Variable distance grids (0.5, 1.0 and 2.0 km) were established, with a total of 102 soil samples collected from two different soil depths (0–5 and 5–20 cm) at intersections of the grids (51 sampling point). Soil samples were analyzed for heavy metals (Cd, Co, Cr, Cu, Pb, Zn, Mn, Fe, and Ni). The most proper variogram models for the contents of all heavy metal were spherical and exponential ones. The ranges of semivariograms were between 1.9 and 31.1 km. According to the calculated geoaccumulation (I geo) values, samples from both soil depths were classified as partly to highly polluted with Cd and Ni and partly polluted with Cr and as partly polluted-to-not polluted with Pb and not polluted with Cu, Fe and Mn. Similar results were also obtained when evaluated by the enrichment factor. The contamination levels of the heavy metals were Ni > Cd > Cr > Pb > Zn > Cu > Co > Fe > Mn in decreasing order. The soils in the study area are contaminated predominantly by Cd and Ni, which may give rise to various health hazards or diseases. Cadmium pollution results primarily from industrial activities and, to a lesser extent, from vehicular traffic, whereas Ni contents in the study area result from parent material, phosphorus fertilizer, industries, and vehicles.  相似文献   

5.
Urbanisation and industrial development lead to contamination of estuaries and streams with dispersed loadings of heavy metals and metalloids. Contributions of these elements also occur from natural sources. This study provides baseline geochemical data on the respective natural and anthropogenic inputs of Cu, Pb, Zn, Cd, As, Sb, Cr, Ni, Mn and S to estuarine, fluvial and wetland sediments, and adjacent soils, in the Kooloonbung Creek catchment that drains the Port Macquarie urban area in north coastal New South Wales. There have been anthropogenic additions of Cu, Pb, Zn and As from dispersed urban sources at Port Macquarie, but they are restricted to the local catchment and do not impact on the adjacent Hastings River estuary. The most contaminated sediments display enrichment factors up to 20 × for Cu and Pb, 9 × for Zn and 5 × for As relative to local background values. However, only one value (for Pb) exceeds National Water Quality Management Strategy interim sediment quality guideline (high) values. On the other hand, sediments and local soils are commonly strongly enriched in Cr, Ni and Mn, reflecting adjacent ultramafic and mafic rock substrate and lateritic regolith. Concentrations of Cr and Ni are commonly well above interim sediment quality guideline (high) values for sediments, but are in mineralogical forms that are not readily bioavailable. Sediment and soil quality guideline values consequently need to recognise natural enrichments and the mineralogical siting of heavy metals. Although dissolved concentrations of heavy metals in stream waters are commonly low, there is evidence for mobility of Cu, Zn, Fe and Al. Parts of the Kooloonbung Creek wetland area lie on sulfidic estuarine sediments (potential acid sulfate soils). Experimental oxidation of uncontaminated and contaminated sulfidic sediments leads to substantial dissolution of heavy metals under acid conditions, with subsequent aquatic mobility. The results warn about disturbance and oxidation of potential acid sulfate soils that have been contaminated by urban and natural heavy-metal sources.  相似文献   

6.
New data are presented on the contents of Fe, Mn, Zn, Cu, Pb, Cd, and Ni in dissolved and particulate modes of occurrence in unpolluted or anthropogenically contaminated major rivers of Primorye. The background contents of dissolved metals are as follows: 0.1–0.5 μg/l for Zn and Ni, 0.3–0.7 μg/l for Cu, 0.01–0.04 μg/l for Pb and Cd, and 2–20 μg/l for Fe and Mn. Common anthropogenic loading (communal wastewaters) notably increases the dissolved Fe and Mn concentrations Industrial wastes lead to a local increase in the contents of dissolved metals in river waters by one to three orders of magnitude. The effect of hydrological regime is expressed most clearly in the areas of anthropogenic impact. The metal contents in the particulate matter are controlled mainly by its granulometric composition. Original Russian Text ? V.M. Shulkin, N.N. Bogdanov, V.I. Kiselev, 2007, published in Geokhimiya, 2007, No. 1, pp. 79–88.  相似文献   

7.
The technique of diffusive gradients in thin films (DGT) was applied to obtain high-resolution vertical profiles of trace metals in sediment porewater of a eutrophic lake, Lake Chaohu. All sampling sediments were under anaerobic conditions with Eh values below 0, the redox potential profile in M4 was relatively stable, and higher Eh values in M4 than that in M1 were observed due to hydrodynamic effects. Fe, Mn and As exhibited closely corresponding profiles due to the co-release of Fe and Mn oxides and the reduction of As. Higher Fe and Mn concentrations and lower As concentrations were observed in M1 of the western half-lake than those in M4 of the eastern half-lake due to different sources and metal contamination levels in the two regions. Cu and Zn showed increasing concentrations similar to Mn and Fe at 1–2 cm depth of sediments, while DGT measured Co, Ni, Cd and Pb concentrations decreased down to 3–4 cm in the profiles. Co, Ni, Cu, Zn, Cd and Pb showed insignificant regional concentration variances in the western and eastern half-lakes. According to the R(C DGT/C centrifugation) values, the rank order of metal labilities decrease as follows: Fe (>1) > Cu, Pb, Zn (>0.9) > Co, Ni, Cd (>0.3) > Mn, As (>0.1).  相似文献   

8.
Heavy metals are known to pose a potential threat to terrestrial and aquatic flora and fauna. Due to increasing human influence, heavy metal concentrations are rising in many mangrove ecosystems. Therefore, an assessment of heavy metal (Cd, Cr, Cu, Ni, Pb, Fe, Mn, and Zn) concentrations was conducted within the bulk soil and rhizosphere soil of Avicennia marina at the Pichavaram Mangrove Forest in India. The rhizosphere soil showed higher concentrations of metals than the bulk soil. Compared to the bulk soil, the metals Cd, Fe, Mn, and Zn were 6.0–16.7% higher, whereas Cr, Cu, Ni, and Pb were 1.7–2.8% higher concentration. Among the three selected sampling sites (dense mangrove forest, estuarine region, and sea region), the sea region had the highest concentration of all heavy metals except Zn. The trend of the mean metal concentration was Fe > Mn > Cr > Ni > Cu > Pb > Zn > Cd. Heavy metals concentrations elevated by the 2004 tsunami were persistent even after 4 years, due to sedimentary soil processes, the rhizosphere effect of mangroves, and anthropogenic deposition. Analysis of the heavy metal-resistant bacteria showed highest bacterial count for Cr-resistant bacteria and rhizosphere soil. The maximum level of heavy metal-resistant bacteria was observed at the site with the highest heavy metal contamination. The heavy metal-resistant bacteria can be used as indicator of heavy metal pollution and furthermore in bioremediation.  相似文献   

9.
The concentrations of metals (Pb, Cu, Zn, Co, Ni, Fe and Mn) in the <2.5 μm fraction of surface soils (0–5 cm) from highly industrialized areas in Xuzhou (China) were determined. All analyzed metals with the exception of Mn and Co in the present study showed elevated concentrations in the <2.5 μm fraction of soils compared to background concentrations, particularly for Zn. Metal enrichment was positively correlated with carbonate complexation constants (but not bulk solubility products) as well as the first stability constants of metal-citrate, likely suggesting that both metal–organic complexation and/or precipitation of carbonate surfaces that subsequently adsorb metals are likely responsible for these metal enrichment on these samples. Sequential extraction analysis shows the metals Pb, Cu, Zn, Co and Mn were largely associated with the reducible fraction, whereas Ni was largely associated with the oxidisable fraction. Manganese is the only metal showing significant association with the exchangeable fraction (up to 33 %), suggesting that it may be the most susceptible metal to mobilization. Mineral magnetic analysis indicates that ferrimagnetic SSD + SP (stable single domain + superparamagnetic) minerals dominated the <2.5 μm fraction of Xuzhou surface soils. Lead, Cu and Zn were found to show significant correlations with χlf (p < 0.01), suggesting that magnetic technique might be beneficially used as a rapid and inexpensive method to estimate these metal contaminations in the <2.5 μm fraction of surface soils.  相似文献   

10.
The concentrations of metals (Cd, Pb, Ni, Cr, Cu, Fe, Mn and Zn) were determined in soils under different land use types in an urban environment in order to study the impact of land uses on the concentrations of metals in the soils. The mean concentration range of metals for all land use types were 42.1 to 410, 11.2 to 118.2, 4388.2 to 31891.1, 9.7 to 65.4, 0.1 to 1.8, 4.7 to 35.2, 2.0 to 16.8 and 77.9 to 881.7 mg/kg, for Mn, Pb, Fe, Cu, Cd, Cr, Ni and Zn, respectively. The computed multiple pollution index (MPI) indicated that 67 % of the examined sites had MPI values between 1 and 20 i.e. at the pollution range, while 33 % of sites had MPI values of zero which indicated that these sites were not polluted with the studied metals. Zinc had the highest impact on the multiple pollution index values. Three main principal components were identified from the principal component analysis which include (i) Cu, Zn, Pb, Cr and Ni originating from both industrial and agricultural sources, and as well as automobile exhausts; (ii) Fe and Mn which originated from both natural and anthropogenic sources; (iii) Cd which its anthropogenic origin is different from components I and II. This study provided information on the sources of metals in the urban environment and extent of contamination associated with each land use, which are useful in the ranking of contaminated sites, environmental quality management, environmental forensic studies and guidance for remediation/redevelopment of contaminated land.  相似文献   

11.
The concentrations of metals (Pb, Cr, Ba, Zn, V, Mn, Co, Cu, Ni and As) in 38 soil samples collected from the industrial district in Weinan (NW China) were determined by wavelength dispersive X-ray fluorescence spectrometry. The magnetic parameters of soil including low-/high-frequency susceptibility and frequency-dependent susceptibility were measured. The modified three-step BCR sequential extraction procedure was used to evaluate mobility, availability and persistence of trace elements in urban soil samples. Multivariate (principal component analysis, clustering analysis and correlation analysis) and geostatistical analysis (ArcGIS tools) were applied to the obtained data to evaluate the analytical results and to identify the possible pollution sources of metals as well as geo-spatial distributions. The results revealed that the sampling area was mainly influenced by two main sources: (1) Ba, Cu, Pb, Cr and Zn were mainly derived from industrial sources, which combined with coal combustion as well as traffic factor. The mobility sequence based on the sum of the BCR sequential extraction stages was: Pb (53.79 %) > Zn (51.78 %) > Cu (50.96 %) > Ba (42.59 %) > Cr (18.47 %). Pb was the metal predominantly associated (~46.86 %) with the form bound to Fe/Mn oxides, and the highest percentage of Zn was exchangeable and carbonate-bound fraction. Cu was present mainly in organic fraction, while the residual fraction was the most dominant solid phase pool of Cr (~81.53 %) and Ba (~57.41 %). (2) Mn, V, Co, As and Ni in the study area were consistently from natural sources. The analysis of enrichment factors indicated that urban soils in Weinan City were classified as having significant enrichment by Ba, Cu, Pb, Cr and Zn. The overall results proposed the future tactics for Weinan environment quality control on a local scale that concerned not only the levels of risky, but also the industrial emission abatement techniques as well as urban setting.  相似文献   

12.
The present study to find seasonal (September 2010–June 2011) heavy metal (Cd, Pb, Cr, Co, Ni, Zn, Cu, Fe, As) contamination and the origins thereof in surface sediments of Gökçekaya Dam Lake, as constructed on Sakarya River, the third-longest river in Turkey and the largest river of the Northwestern Anatolia. Upon analyses for the purpose thereof, heavy metal contamination in annual average concentrations in the lake sediment varied, respectively, as Fe > Zn > Cr > Ni > Cu > Pb > Co > As > Cd. Statistical assessments performed in order to see whether the average values of the heavy metal contamination as measured at stations placed in the lake changed by seasonal periods. There found statistically significant differences especially in Cd, Zn, and Pb between seasonal periods. In accordance with the Sediment Quality Index, Gökçekaya Dam Lake sediment was classified as “highly polluted” in terms of the amount of anthropogenic contaminants of As, Cr, Cu, Ni, Pb, and Zn. Enrichment factor and geoaccumulation index values (I geo) were calculated in order to geochemically interpret the source of contamination due to heavy metal concentration in the lake sediment and the level of pollution. The As, Co, Cr, Cu, Ni Pb, and Zn values demonstrated that the sediment was rich for anthropogenic contaminants. The lake was found especially rich for arsenic (14.97–34.70 mg/kg) and lead (68.75–98.65 mg/kg) in accordance with annual average values. In general the lake was geochemically characterized as “moderately contaminated” in terms of As, Co, Cr, Cu, Ni, Pb, and Zn content.  相似文献   

13.
In the present study, bulk contents of Ni, Zn, Cu, Pb and Mn in urban area of Tehran city are determined. Subsequently, the chemical bonds of metals with various soil fractions are brought out. Chemical partitioning studies revealed that various percentile of Ni, Zn, Cu, Pb and Mn is found in anthropogenic portion of soils. Zinc, Ni, Cu, Pb and Mn fall within “low pollution” class in accordance with index of pollution (I POLL). The trend of anthropogenic share of studied metals in soils of Tehran is Zn (55 %) > Cu (31 %) > Ni and Pb (30 %) > Mn (12 %). The overall potential of studied plants in metal removal from soil is Salvia > Viola > Portulaca. It should be pointed out that roots have higher potential in metal removal from soil when compared with leaf and stem. Lithogenic portion of metals remains intact before and after pot analysis. Thus, phytoremediation is highly dependent on the chemical bonds of metals. Present study showed that metal contents of loosely bonded ions, sulfide bonds and organometallic bonds are reduced after 90 days of plant cultivation. The overall removal trend of studied metals is Zn (16 %) > Cu (14 %) > Ni (11 %) > Pb (7 %) > Mn (6 %). The obtained results show that the anthropogenic portion of metals is reduced after the phytoremediation practice. For instance, the initial anthropogenic portion of Zn (55 %) is changed to 39 % showing an overall reduction of about 16 %. The anthropogenic portions of Cu, Ni, Pb and Mn are also reduced by 14, 11, 7 and 6 %, respectively.  相似文献   

14.
The flocculation process of metals can play an effective and important role in self-purification of metals during the mixing of freshwater with seawater in estuary. Such processes are of highly ecological and biological importance. The present study deals with the effect of pH and salinity on the flocculation process of dissolved Cu, Mn, Ni, Zn and Pb on a series of mixtures with salinities ranging from 0.5 to 2.5 ‰ with various pHs values (pH 7, 7.5 and 8) during the mixing of the Aras River water with the Caspian Sea water. The flocculation trend of Pb (100 %) > Ni (62.5 %) > Zn (30.43 %) > Mn (25 %) > Cu (18.18 %) at different salinity regimes (0.5–2.5 ‰) at pH 7, indicates well that Pb, Ni, Zn and Mn have non-conservative behavior and Cu has relatively conservative behavior. At various salinity ranges (0.5–2.5 ‰) and pH 7.5, the flocculation trend of Pb (100 %) > Ni (62.5 %) > Mn (37.5 %) > Cu (24.24 %) > Zn (17.39 %) indicates that Pb, Ni, Mn and Cu have non-conservative behavior and Zn has relatively conservative behavior. Also, the flocculation trend of Pb (100 %) > Zn (78.26 %) > Ni (62.5 %) > Mn (37.5 %) > Cu (15.15 %) at different salinities (0.5–2.5 ‰) and pH 8, indicates that Pb, Zn, Ni and Mn have non-conservative behavior and Cu has relatively conservative behavior. Cluster analysis indicates Mn and Ni are mainly governed by salinity. According to the mean annual discharge of the Aras River (5,323 × 106 m3/year), the annual discharge of dissolved Cu, Mn, Ni, Zn and Pb into the Caspian Sea would reduce from 175.66, 85.17, 85.17, 1,224.29 and 53.23 to 149.04, 53.23, 31.94, 266.15 and 0.00 ton/year, respectively.  相似文献   

15.
Heavy metal accumulation due to industrial activities has become a very sensitive issue for the survival of the aquatic life. Therefore, distributions of several heavy metals have been studied in the surface sediments of Tapti–Hazira estuary, Surat, to assess the impact of anthropogenic and industrial activities near estuary. Totally 60 sediment samples were collected from four different sites at Tapti–Hazira estuary, Surat from January 2011 to May 2011 and examined for metal contents. The average heavy metal load in the study area are found to be 43.28–77.74 mg/kg for Pb, 48.26–72.40 mg/kg for Cr, 117.47–178.80 mg/kg for Zn, 71.13–107.82 mg/kg for Ni, 123.17–170.52 mg/kg for Cu, 0.74–1.25 mg/kg for Cd, 14.73–21.69 mg/kg for Co. Calculated enrichment factors (EF) reveal that enrichment of Pb and Cd is moderate at all sites, whereas other metals Cr, Ni, Zn, Co, and Cu show significant to very high enrichment. Geo-accumulation index (I geo) results revealed that the study area is nil to moderately contaminated with respect to Cd, moderately to highly polluted with respect to Pb, Zn, and Cu and high to very highly polluted with respect to Co and Cr.  相似文献   

16.
This article presents the results on distribution and enrichment pattern of acid-leachable trace metals (ALTMs) from roadside soil of Miri city, Sarawak, East Malaysia. The city is one of the fastest developing in the Malaysian region with huge petroleum resources. ALTMs Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd along with organic carbon and carbonates (CaCO3) were analyzed in 37 soil sediments collected from roadside. The enrichment of ALTMs [especially Cu (0.4–13.1 μg g?1), Zn (9.3–70.7 μg g?1), Pb (13.8–99.1 μg g?1)] in the roadside soils indicate that these metals are mainly derived from sources related to traffic exhausts, forest fires and oil refineries. The comparative study and enrichment pattern of elements indicates that Mn, Cu, Zn and Pb are enriched multi-fold than the unpolluted soil and Ni, Pb, Cd in some samples compared to Sediment Quality Guidelines like Lowest Effect Level (LEL) and Effects Range Low (ERL) in the region which is mainly due to the recent industrial developments in the region.  相似文献   

17.
The concentrations of Cd, Cu, Mn, Ni, Pb, Fe and Zn were determined in superficial sediments extracted from nine zones of Budi Lagoon, located in the Araucanía Region (Chile). The concentrations of these metals were determined by flame atomic absorption spectroscopy and the method was validated using certified reference material (marine sediment). The concentration ranges found for the trace elements were: Pb < 0.5; Cd < 0.2–3.9; Cu 21.8–61.9; Ni 31.2–59.4; Zn 54.5–94.8 mgkg?1 (dry weight). The elements that registered the highest concentrations were Mn 285.4–989.8 mgkg?1 and Fe 4.8–10.6 %. The lagoon cluster analysis of the stations was divided into three groups (Temo station with high Cu and low Mn concentrations, Bolleco, Comué, Allipén and Deume 3 stations presented highest Cd concentration, and another group Botapulli, Río Budi, Deume 2 and Deume 1 stations presented low levels of Cd). The textural characteristics of the sediment were determined (gravel, sand and mud) and the results were correlated with the concentrations of the metals in the various study zones. The sediments of Budi Lagoon presented high levels of Fe and Mn, which are of natural origin and exceed the maximum values recorded by many authors. With respect to the recorded concentrations for Cd, Cu, Ni and Zn, are within the ranges published by other authors in similar works. The Pb element was not detected. The results were subjected to statistical analysis to evaluate the correlations between the content of the elements and obtain the site of sediment.  相似文献   

18.
The impact of waste disposal on trace metal contamination was investigated in eleven wetlands in the Lake Victoria Basin. Samples of soil, water and plants were analysed for total Zn, Cu, Pb and Ni concentrations using flame atomic absorption spectrophotometry. The trace metal concentrations in soil were the highest in Katanga wetland with the highest mean concentrations of 387.5±86.5 mg/kg Zn, 171.5±36.2 mg/kg Pb, 51.20±6.69 mg/kg Cu and 21.33±2.23 mg/kg Ni compared to the lowest levels observed at Butabika (30.7±3.2 mg/kg Zn, 15.3±1.7 mg/kg Pb, 12.77±1.35 mg/kg Cu and 6.97±1.49 mg/kg Ni). Katanga receives waste from multiple industrial sources including a major referral city hospital while Butabika is a former solid waste dumpsite. Wetland soil near a copper smelter had a Cu concentration of 5936.3±56.2 mg/kg. Trace metal concentrations in industrial effluents were above international limits for irrigation water with the highest concentrations of 357,000 μg/L Cu and 1480 μg/L Zn at a Cu smelter and 5600 μg/L Pb at a battery assembling facility compared to the lowest of 50 μg/L Cu and 50 μg/L Zn in water discharged from Wakaliga dumpsite. Uptake of trace metals from soil differed from plant to plant and site to site. Higher levels of trace metals accumulated in the root rather than in the rhizome and the least amount was in the leaf. The study identifies industry as a potential source of trace metal contamination of water and the environment pent-up need for policy intervention in industrial waste management.  相似文献   

19.
Eleven surface soil samples from calcareous soils of industrial areas in Hamadan Province, western Iran were analyzed for total concentrations of Zn, Cd, Ni, Cu and Pb and were sequentially extracted into six fractions to determine the bioavailability of various heavy metal forms. Total Zn, Cd, Ni, Cu and Pb concentrations of the contaminated soils were 658 (57–5,803), 125.8 (1.18–1,361), 45.6 (30.7–64.4), 29.7 (11.7–83.5) and 2,419 (66–24,850) mg kg−1, respectively. The soils were polluted with Zn, Pb, and Cu to some extent and heavily polluted with Cd. Nickel values were not above regulatory limits. Copper existed in soil mainly in residual (RES) and organic (OM) fractions (about 42 and 33%, respectively), whereas Zn occurred essentially as RES fraction (about 69%). The considerable presence of Cd (30.8%) and Pb (39%) in the CARB fraction suggests these elements have high potential biavailability and leachability in soils from contaminated soils. The mobile and bioavailable (EXCH and CARB) fractions of Zn, Cd, Ni, Cu, and Pb in contaminated soils averaged (7.3, 40.4, 16, 12.9 and 40.8%), respectively, which suggests that the mobility and bioavailability of the five metals probably decline in the following order: Cd = Pb > Ni > Cu > Zn.  相似文献   

20.
The development of industrial activity in recent years has promoted the pollution in this environment causing health problems to workers and the neighbourhood nearby. In order to determine the influence of different industrial activities in metals concentration and behaviour in soil and road dust, samples from three different industrial areas (service industry; refinery, fertilizer and power industry; and tannery industry) and a natural area were collected. Physical–chemical properties, metal content (Pb, Zn, Cu, Cr, Co, Ni) and the chemical distribution of metals were carried out. Results show largest accumulation of metals in road dusts samples for all industrial areas, being Zn, Pb, Cr and Cu the metals with highest concentrations. Each industrial activity contributes differently to the concentration of metals in soil and dust, and the highest concentrations of Cr were found from tannery industries, while Pb and Zn showed the highest concentration from refinery and fertilizer industry. It has been showed that industrial activity has influence on the physicochemical properties of soil and road dust and on the bioavailability of all metals. Chemical partitioning indicates that Pb, Zn, Cu and Cr distribution in the different solid phases is affected by industrial activity, while Co and Ni distribution is not affected by the industrial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号