首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present research on karst rocky desertification is mainly focused on qualitative analysis and obviously lack of quantitative and successive mechanism studies. Currently, classification of rocky desertification grades mainly depends on ratio of rocky coverage or ratio of plant and soil coverage. The process of rocky desertification was divided into latent, slight, medium and serious grades without mention of soil degradation. The Cha'eryan catchment in the Huajiang Gorge of Guizhou Province was selected as the research area in this paper. Soil basic physical characteristics, nutrient element contents of soil and plant were studied in the process of rocky desertification. The karst soil characteristics elucidated that the clay content was high, the contents of soil organic matter, nutrient element (except potassium and sodium), available contents of elements (except of potassium) were also high; ashes of plants were rich in calcium and nitrogen, and poor in iron, zinc, potassium and phosphorus. Meanwhile, the contents of plant ashes showed a significant positive relationship with calcium content of plant. There were no clear relations between soil degradation and succession of rocky desertification according to current classification standard. Soil particle size distribution, specific gravity, soil organic matter content, total and available nutrient element contents did not vary with the succession of rocky desertification.  相似文献   

2.
The study area is in the southeastern part of the city of Elaz between 38°17–38°43 latitudes and 38°36–39°07 longitudes. Formations of Paleozoic, Mesozoic and Cenozoic age comprise confined and unconfined aquifers. Unconfined aquifers are represented by Na-Cl and Na-HCO3 type waters while confined aquifers are characterized by Ca-HCO3, Mg-HCO3 and Na-HCO3 type waters. Due to sodium pollution, as a result of irrigation from waters of Hazar lake in the plain, as well as intense use of artificial fertilizer and improper storage of animal fertilizers, NH4-N, NO3-N and total PO4-P pollution are detected in waters of the unconfined aquifer. Organic material contents in waters of well nos. S27, S29 and S32 completed in the unconfined aquifer are above 3.5 mg/l of Turkish Standard Institute (TSE), (266) standard. In confined aquifers, total PO4-P pollution in four wells and NH4-N pollution in three wells were observed to be above the TSE (266) standard.  相似文献   

3.
In the arid sub-Saharan of southern Morocco, groundwater salinization poses a direct threat for agricultural production in six oases’ basins that are irrigated by water imported from the High Atlas Mountains. Here the geospatial distribution of salinity is evaluated in shallow groundwater, springs and surface waters in the Drâa Basin, integrating major and trace element geochemistry and isotopic tracers (O, H, Sr and B). The data show that water discharge from the High Atlas Mountains to the Upper section of the Drâa Basin is characterized by both low and high salinity, a distinctive low δ18O and δ2H composition (as low as −9‰ and −66‰, respectively), typical for meteoric water from high elevation, a 87Sr/86Sr range of 0.7078–0.7094, and δ11B of 12–17‰. The Ca–Mg–HCO3, Na–Cl–SO4, and Ca–SO4 compositions as well as the Br/Cl, 87Sr/86Sr, and δ11B values of the saline water suggest dissolution of Lower Jurassic carbonates and evaporite rocks in the High Atlas Mountain catchment. Storage and evaporation of the imported water in a man-made open reservoir causes an enrichment of the stable isotope ratios with a δ18O/δ2H slope of <8 but no change in the Sr and B isotope fingerprints. Downstream from the reservoir, large salinity variations were documented in the shallow groundwater from the six Drâa oases, with systematically higher salinity in the three southern oases, up to 12,000 mg/L. The increase of the salinity is systematically associated with a decrease of the Br/Cl ratio, indicating that the main mechanism of groundwater salinization in the shallow aquifers in the Drâa oases is via salt dissolution (gypsum, halite) in the unsaturated zone. Investigation of shallow groundwater that flows to the northern Drâa oases revealed lower salinity (TDS of 500–4225) water that is characterized by depleted 18O and 2H (as low as −9‰ and −66‰, respectively) and higher 87Sr/86Sr ratios (∼0.7107–0.7115) relative to irrigation water and groundwater flow from the Upper Drâa Basin. This newly-discovered low-saline groundwater with a different isotopic imprint flows from the northeastern Anti-Atlas Jabel Saghro Mountains to the northern oases of the Lower Drâa Basin. This adjacent subsurface flow results in a wide range of Sr isotope ratios in the shallow oases groundwater (0.7084–0.7131) and appears to mitigate salinization in the three northern Drâa oases. In contrast, in the southern oases, the higher salinity suggests that this mitigation is not as affective and increasing salinization through cycles of water irrigation and salt dissolution appears inevitable.  相似文献   

4.
Electron paramagnetic resonance (EPR) spectra of CO 3 3– molecule-ions stabilized by Sc3+ in natural calcite were identified and studied at X-band frequencies and room temperature. The principal values of the g-tensor (g xx= 1.9997, g yy = 2.0030, g zz = 1.9972) and the direction cosines of the g and A tensors for CO 3 3– -Sc3+ center were found to be close to that for the well-known CO 3 3– -Y3+ center. A quantitative comparison of different impurity contents in calcite samples and analysis of the intensities of forbidden transitions were used to identify Sc3+. An estimation of the unpaired electron spin density on the nuclei of paramagnetic centers confirms that both centers, CO 3 3– -Sc3+ and CO 3 3– -Y3+, have the same nature.  相似文献   

5.
A number of different impurities are located in the open channels of natural beryl crystals. The rare Maxixe beryl contains an unusual amount of NO2. The isoelectronic CO2 radical is found in the irradiated Maxixe-type beryl. The NO2 radicals are distributed in the Be–Al plane of the crystal, with the nitrogen atom close to the oxygens of the beryl cavity wall. These oxygens repel the negative CO2 radical, which is located at the center of the beryl cavity and rotates around its O–O axis, which is parallel to the crystal c-axis. When there is a nearby alkali ion at the center of the beryl channel, it reorients the CO2 radical so that its bisector is parallel to the c-axis and points toward the positive ion. Different signals are analyzed for Li+, Na+, and another counter-ion, which probably is Cs+. The related NO3 and CO3 radicals are the color centers in the investigated deep blue beryls. The slow decay of the color, which makes these beryls useless as gem stones, is related to the decay of the hydrogen atoms which are present in these crystals. Evidence is given that NO3 is created in Maxixe beryl by a natural process, while CO3 in Maxixe-type beryl has been created by irradiation. The temperature dependence of the EPR signals of these two radicals was investigated, but a definitive proof that they rotate at the center of the beryl cavity could not be given. EPR signals from some other radicals in beryl have been observed and described.  相似文献   

6.
《Applied Geochemistry》1995,10(4):391-405
Extensive NO3 contamination of groundwater in the Abbotsford aquifer to levels above drinking water limits is a major problem in the Fraser Lowlands of southwestern British Columbia, Canada. Nitrate concentrations in the aquifer ranged from 0 to 151 mg/l NO3, with a median concentration of 46 mg/l NO3. Of 117 wells sampled, 54% had NO3 concentrations exceeding the drinking water limit of 45 mg/1. Approximately 80% of the study area had groundwater NO3 concentrations exceeding 40 mg/1 NO3. Potential NO3 source materials were poultry manure N and synthetic NH4 based fertilizers. Theδ15N of solid poultry manure samples ranged between + 7.9 and + 8.6‰ (AIR). Four brands of synthetic fertilizers commonly used hadδ15N values between −1.5 and −0.6‰. Ammonia volatilization caused theδ15N of groundwater NO3 produced from poultry manure N to range between +8 and +16‰. Theδ18O values of groundwater NO3, by contrast, mostly ranged between +2 and +5‰ (SMOW). This narrow range ofδ18O values fell within the expected range of NO3 produced by nitrification of reduced N forms such as poultry manure N and NH4 fertilizers, and had a similar range ofδ18O values as NO3 in the upper part of the unsaturated zone below raspberry fields and beneath former manure piles. Theδ15N-NO3 andδ18O-NO3 data confirmed that NO3 in the aquifer was predominantly derived from poultry manure and to a lesser extent from synthetic fertilizers. Theδ18O-NO3 data further suggested the nitrification process occurred mainly in the summer months, with the soil NO3 produced subsequently flushed into the aquifer during fall recharge. Theδ15N-NO3andδ18O-NO3 data conclusively indicated that no significant bacterial denitrification is taking place in the Abbotsford aquifer.  相似文献   

7.
Groundwater with low total dissolved solids (less than 200 mg/L) occurs in the unconfined and confined aquifers near Beihai in southern Guangxi, China. Under natural conditions the groundwater ranges in pH from 3,33 to 7,0 with an average value of 5.12. The pH in the unconfined aquifer varies from 3.67 to 7.0 with an average value of 5.17 and the pH in the confined aquifer is in the range 3.33-6.97 with an average value of 5.07. The pH in the groundwater does not show significantly increasing or decreasing trends with time. Fluctuations in pH exist at some of the monitoring wells and the pH in groundwater is a bit higher in the rainy season than in the dry season, Monitoring data show that the pH in rainwater is higher than in groundwater in the unconfined aquifer, whereas the pH in the latter is a bit higher than in the confined aquifer. A slightly decreasing trend in the pH was also found from the inland area to the coastal zone. The occurrence of weakly acidic groundwater in this area is attributed to the recharge from low pH precipitation and the multi-aquifer and leaky groundwater system.  相似文献   

8.
Rare earth element (REE) concentrations in alkaline lakes, circumneutral pH groundwaters, and an acidic freshwater lake were determined along with the free carbonate, free phosphate, and free sulfate ion concentrations. These parameters were used to evaluate the saturation state of these waters with respect to REE phosphate and carbonate precipitates. Our activity product estimates indicate that the alkaline lake waters and groundwaters are approximately saturated with respect to the REE phosphate precipitates but are significantly undersaturated with respect to REE carbonate and sulfate precipitates. On the other hand, the acidic lake waters are undersaturated with respect to REE sulfate, carbonate, and phosphate precipitates. Although carbonate complexes tend to dominate the speciation of the REEs in neutral and alkaline waters, our results indicate that REE phosphate precipitates are also important in controlling REE behavior. More specifically, elevated carbonate ion concentrations in neutral to alkaline natural waters tend to enhance dissolved REE concentrations through the formation of stable REE-carbonate complexes whereas phosphate ions tend to lead to the removal of the REEs from solution in these waters by the formation of REE-phosphate salts. Removal of REEs by precipitation as phosphate phases in the acid lake (pH=3.6) is inconsequential, however, due to extremely low [PO 4 3– ] F concentrations (i.e., 10–23 mol/kg).  相似文献   

9.
Extensive in-depth research is required for the implementation of natural tracer approaches to hydrogeological investigation to be feasible in mountainous regions. This review considers the application of hydrochemical and biotic parameters in mountain regions over the past few decades with particular reference to the Austrian Alps, as an example for alpine-type mountain belts. A brief introduction to Austria’s hydrogeological arrangement is given to show the significance of fractured hard-rock aquifers for hydrogeological science as well as for water supply purposes. A literature search showed that research concerning fractured hard-rock aquifers in Austria is clearly underrepresented to date, especially when taking the abundance of this aquifer type and the significance of this topic into consideration. The application of abiotic natural tracers (hydrochemical and isotope parameters) is discussed generally and by means of examples from the Austrian Alps. The potential of biotic tracers (microbiota and meiofauna) is elucidated. It is shown that the meiofauna approach to investigating fractured aquifers has not yet been applied in the reviewed region, nor worldwide. Two examples of new approaches in mountainous fractured aquifers are introduced: (1) use of CO2 partial pressure and calcite saturation of spring water to reconstruct catchments and flow dynamics (abiotic approach), and, (2) consideration of hard-rock aquifers as habitats to reconstruct aquifer conditions (biotic approach).  相似文献   

10.
Karst aquifers are known for their wide distribution of water transfer velocities. From this observation, a multiple geochemical tracer approach seems to be particularly well suited to provide a significant assessment of groundwater flows, but the choice of adapted tracers is essential. In this study, several common tracers in karst aquifers such as physicochemical parameters, major ions, stable isotopes, and δ13C to more specific tracers such as dating tracers – 14C, 3H, 3H–3He, CFC-12, SF6 and 85Kr, and 39Ar – were used, in a fractured karstic carbonated aquifer located in Burgundy (France). The information carried by each tracer and the best sampling strategy are compared on the basis of geochemical monitoring done during several recharge events and over longer time periods (months to years).This study’s results demonstrate that at the seasonal and recharge event time scale, the variability of concentrations is low for most tracers due to the broad spectrum of groundwater mixings. The tracers used traditionally for the study of karst aquifers, i.e., physicochemical parameters and major ions, efficiently describe hydrological processes such as the direct and differed recharge, but require being monitored at short time steps during recharge events to be maximized. From stable isotopes, tritium, and Cl contents, the proportion of the fast direct recharge by the largest porosity was estimated using a binary mixing model. The use of tracers such as CFC-12, SF6, and 85Kr in karst aquifers provides additional information, notably an estimation of apparent age, but they require good preliminary knowledge of the karst system to interpret the results suitably. The CFC-12 and SF6 methods efficiently determine the apparent age of baseflow, but it is preferable to sample the groundwater during the recharge event. Furthermore, these methods are based on different assumptions such as regional enrichment in atmospheric SF6, excess air, and flow models among others. 85Kr and 39Ar concentrations can potentially provide a more direct estimation of groundwater residence time. Conversely, the 3H–3He method is inefficient in the karst aquifer for dating due to 3He degassing.  相似文献   

11.
Tides play a significant role in the coastal environment; the mangroves, back waters, creeks, and the coastal groundwater interface. Tidal range has been calculated by using TIDECAL software. This study attempts to find the relation between water table condition and tides in the shallow coastal aquifers. The study was conducted by selecting 12 open wells along the coast of the southern part of Cuddalore to the northern part of Nagapattinam district of Tamilnadu. Observations were made in situ for water table fluctuation, dissolved oxygen (DO), and electrical conductivity (EC) for 24 h during full moon (FM) and new moon (NM) of every 2 h. The present study shows the relationship between tidal variations with respect to water table fluctuations and helps to understand the behavior of DO and EC. An interpolation technique, inverse distance weighted (IDW) method was used to obtain the spatial distribution map. The temporal and the spatial relationships between water table fluctuation, EC, and DO were also used in order to understand the coastal ecosystem in the natural environment.  相似文献   

12.
The purpose of this study was to determine the history of paleosalinity over the past 6000+ years in the Sacramento-San Joaquin Delta (the Delta), which is the innermost part of the San Francisco Estuary. We used a combination of Sr and U concentrations, δ87Sr values, and 234U/238U activity ratios (AR) in peat as proxies for tracking paleosalinity. Peat cores were collected in marshes on Browns Island, Franks Wetland, and Bacon Channel Island in the Delta. Cores were dated using 137Cs, the onset of Pb and Hg contamination from hydraulic gold mining, and 14C. A proof of concept study showed that the dominant emergent macrophyte and major component of peat in the Delta, Schoenoplectus spp., incorporates Sr and U and that the isotopic composition of these elements tracks the ambient water salinity across the Estuary. Concentrations and isotopic compositions of Sr and U in the three main water sources contributing to the Delta (seawater, Sacramento River water, and San Joaquin River water) were used to construct a three-end-member mixing model. Delta paleosalinity was determined by examining variations in the distribution of peat samples through time within the area delineated by the mixing model.The Delta has long been considered a tidal freshwater marsh region, but only peat samples from Franks Wetland and Bacon Channel Island have shown a consistently fresh signal (<0.5 ppt) through time. Therefore, the eastern Delta, which occurs upstream from Bacon Channel Island along the San Joaquin River and its tributaries, has also been fresh for this time period. Over the past 6000+ years, the salinity regime at the western boundary of the Delta (Browns Island) has alternated between fresh and oligohaline (0.5–5 ppt).  相似文献   

13.
Perfluorocarbon compounds (PFCs) have high chemical and thermal stability, low background levels in natural systems, and easy detectability. They are proposed as tracers for monitoring potential CO2 leakage associated with geological carbon sequestration (GCS). The fate of the PFCs in porous media, and in particular, the transport of these compounds relative to CO2 gas in geological formations, has not been thoroughly studied. We conducted column tests to study the transport of perfluoro-methylcyclo-pentane (PMCP), perfluoro-methylcyclo-hexane (PMCH), ortho-perfluoro-dimethylcyclo-hexane (ortho-PDCH), and perfluoro-trimethylcyclo-hexane (PTCH) gas tracers in a variety of porous media. The influence of water content and sediment minerals on the retardation of the tracers was tested. The transport of PFC tracers relative to 13CO2 and the conservative tracer sulfur hexafluoride (SF6) was also investigated. Results show that at high water content, the PFCs and SF6 transported together. In dry and low-water-content sediments, however, the PFCs were retarded relative to SF6 with the degree of retardation increasing with the molecular weight of the PFC. When water was present in the medium, the transport of CO2 was greatly retarded compared to SF6 and the PFC tracers. However, in dry laboratory sediments, the migration of CO2 was slightly faster than all the tracers. The type of minerals in the sediments also had a significant impact on the fate of the tracers. In order to use the PFC tracer data obtained from the ground surface or shallow subsurface in a GCS site to precisely interpret the extent and magnitude of CO2 leakage, the retardation of the tracers and the interaction of CO2 with the reservoir overlying formation water should be carefully quantified.  相似文献   

14.
15.
16.
The potentially dangerous chemical compounds and elements, e.g. selenium and arsenic in relatively high concentrations can cause harmful influence on the environment (irreversible changes). The fate of selenium and arsenic must be followed in the soil-pla…  相似文献   

17.
A great part of the former Yugoslavia has recently been encompassed by warfare. Research on the environmental impact of warfare has shown that many sorts of highly stable organic contaminants have entered the environment. The karstic region and in many ca…  相似文献   

18.
《Applied Geochemistry》2001,16(4):475-488
The usefulness of stable isotopes of dissolved SO434S and δ18O) to study recharge processes and to identify areas of significant inter-aquifer mixing was evaluated in a large, semi-arid groundwater basin in south-eastern Australia (the Murray Basin). The distinct isotopic signatures in the oxidizing unconfined Murray Group Aquifer and the deeper reducing Renmark Group confined aquifer may be more sensitive than conventional chemical tracers in establishing aquifer connections. δ34S values in the unconfined Murray Group Aquifer in the south and central part of the study area decrease along the hydraulic gradient from 20.8 to 0.3‰. The concomitant increasing SO4/Cl ratios, as well as relatively low δ18OSO4 values, suggest that vertical input of biogenically derived SO4 via diffuse recharge is the predominant source of dissolved SO4 to the aquifer. Further along the hydraulic gradient towards the discharge area near the River Murray, δ34S values in the unconfined Murray Group Aquifer increase, and SO4/Cl ratios decrease, due to upward leakage of waters from the confined Renmark Group Aquifer which has a distinctly low SO4/Cl and high δ34S (14.9–56.4‰). Relatively positive δ34S and δ18OSO4 values, and low SO4/Cl in the Renmark Group Aquifer is typical of SO4 removal by bacterial reduction. The S isotope fractionation between SO4 and HS of ∼24‰ estimated for the confined aquifer is similar to the experimentally determined chemical fractionation factor for the reduction process but much lower than the equilibrium fractionation (∼70‰) even though the confined groundwater residence time is >300 Ka years. Mapping the spatial distribution of δ34S and SO4/Cl of the unconfined Murray Group Aquifer provides an indicative tool for identifying the approximate extent of mixing, however the poorly defined end-member isotopic signatures precludes quantitative estimates of mixing fractions.  相似文献   

19.
The present study is the first attempt to determine the suitability of groundwater for drinking and irrigation in the Baga–Calangute stretch of Goa. The suitability of groundwater for potable use was assessed by comparing observed values against standards prescribed by the Bureau of Indian Standards, and the quality was classified based on the Weighted Arithmetic Water Quality Index. Most of the groundwater samples (90%) were found to be suitable for drinking except for hardness, chlorides, and nitrates. The percent sodium (%Na), residual sodium carbonate, soluble sodium percentage, sodium adsorption ratio, Kelly’s ratio, and Permeability Index were found to be within the prescribed limits for irrigation purposes. The major mechanism controlling groundwater chemistry, i.e., rock–water interaction, was also studied, and it was found that silicate weathering plays a major role in the dissolution of minerals. Based on the hydrochemical characterization, the water was observed to be of the Ca–Na–SO4 composition type except for one sample which was of the Na–Cl composition type. Classification of the meteoric genesis suggested that the groundwater in surficial aquifers in the region had a deep meteoric percolation, and its chemistry is regulated by rock–water interaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号