首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sorption parameters of Cu, Zn and Pb are related to the composition of the different genetic horizons of a Luvisol profile in batch sorption experiments. The affinities of metals towards the soil samples from different horizons followed the same sequence, e.g. Pb≥C>>Zn. By far the highest metal retention was found in the Ck horizon due to the alkaline conditions. It is followed by the A horizon with its high organic matter content, while the lowest sorption capacity was found in the Bt horizon. In the horizons free of carbonate, primarily Pb and Cu were immobilized. The studied soil can be characterized by high amount of organic matter, clay accumulation horizon, as well as calcareous subsoil. This kind of profile development makes soils able to immobilize a significant metal pollution.  相似文献   

2.
We measured the adsorption of Cu(II) onto kaolinite from pH 3-7 at constant ionic strength. EXAFS spectra show that Cu(II) adsorbs as (CuO4Hn)n−6 and binuclear (Cu2O6Hn)n−8 inner-sphere complexes on variable-charge ≡AlOH sites and as Cu2+ on ion exchangeable ≡X--H+ sites. Sorption isotherms and EXAFS spectra show that surface precipitates have not formed at least up to pH 6.5. Inner-sphere complexes are bound to the kaolinite surface by corner-sharing with two or three edge-sharing Al(O,OH)6 polyhedra. Our interpretation of the EXAFS data are supported by ab initio (density functional theory) geometries of analog clusters simulating Cu complexes on the {110} and {010} crystal edges and at the ditrigonal cavity sites on the {001}. Having identified the bidentate (≡AlOH)2Cu(OH)20, tridentate (≡Al3O(OH)2)Cu2(OH)30 and ≡X--Cu2+ surface complexes, the experimental copper(II) adsorption data can be fit to the reactions
  相似文献   

3.
Uranium(VI) sorption onto kaolinite was investigated as a function of pH (3–12), sorbate/sorbent ratio (1 × 10?6–1 × 10?4 M U(VI) with 2 g/L kaolinite), ionic strength (0.001–0.1 M NaNO3), and pCO2 (0–5%) in the presence or absence of 1 × 10?2–1 × 10?4 M citric acid, 1 × 10?2–1 × 10?4 M EDTA, and 10 or 20 mg/L fulvic acid. Control experiments without-solids, containing 1 × 10?6–1 × 10?4 M U(VI) in 0.01 M NaNO3 were used to evaluate sorption to the container wall and precipitation of U phases as a function of pH. Control experiments demonstrate significant loss (up to 100%) of U from solution. Although some loss, particularly in 1 × 10?5 and 1 × 10?4 M U experiments, is expected due to precipitation of schoepite, adsorption on the container walls is significant, particularly in 1 × 10?6 M U experiments. In the absence of ligands, U(VI) sorption on kaolinite increases from pH ~3 to 7 and decreases from pH ~7.5 to 12. Increasing ionic strength from 0.001 to 0.1 M produces only a slight decrease in U(VI) sorption at pH < 7, whereas 10% pCO2 greatly diminishes U(VI) sorption between pH ~5.5 and 11. Addition of fulvic acid produces a small increase in U(VI) sorption at pH < 5; in contrast, between pH 5 and 10 fulvic acid, citric acid, and EDTA all decrease U(VI) sorption. This suggests that fulvic acid enhances U(VI) sorption slightly via formation of ternary ligand bridges at low pH, whereas EDTA and citric acid do not form ternary surface complexes with the U(VI), and that all three ligands, as well as carbonate, form aqueous uranyl complexes that keep U(VI) in solution at higher pH.  相似文献   

4.
The uptake of Cd2+ by aragonite and calcite is investigated by combining macroscopic measurements with some qualitative sorption experiments performed in a hydrogel medium. Both biogenic and abiogenic aragonites were studied in order to evaluate the process on materials with different textures. Assuming that sorption occurs by surface precipitation of metal-bearing solids, the gel produces a drastic decrease in the nucleation density, which allows for the precipitation of crystallites that are large enough to be analysed by scanning electron microscopy and characterized by glancing-incidence X-ray techniques. The macroscopic study reveals that aragonite is a powerful sorbent for cadmium in aqueous environments. Microscopic observations indicate that cadmium is sorbed onto aragonite by surface precipitation of (Cd, Ca)CO3 solid solutions with a calcite-type structure. The precipitating individuals grow randomly oriented on the surface to reach sizes in the micrometre range. As a consequence, the concentration of cadmium in the aqueous solution decreases dramatically to values controlled by the low solubility of the cadmium-rich end member. This mechanism involves simultaneous dissolution-crystallization and is the same for both abiogenic and biogenic aragonites, the only difference being a result of the higher specific surface area of the biogenic starting material. Long-term uptake of cadmium by calcite occurs through a similar dissolution-crystallization mechanism, the final outcome being virtually the same, that is, surface precipitation of (Cd,Ca)CO3 solid solutions. In this case, however, substrate and precipitate are isostructural and the process occurs by oriented overgrowth of thin lamellar crystallites, which spread to quickly cover the surface by a layer a few nanometers thick. This epitaxial layer armors the substrate from further dissolution, so that the process stops when only a small amount of cadmium has been removed from the fluid. As a result, the “sorption capacity” of calcite is considerably lower than that of aragonite. The study illustrates reaction pathways and “partial” equilibrium endpoints in surface-precipitation processes involving solid solutions.  相似文献   

5.
Calcareous and smectitic clay samples from the Coniacian–Lower Campanian system, Tunisia, were used as adsorbents for the removal of copper and zinc from aqueous solutions in single and binary systems. Calcareous clay sample was treated with acetic acid to obtain carbonate-free sample that was also used for metals removal. The adsorption of metal ions onto natural clay was tested in a batch method by mixing 1 g/L of each sample with a metal ion solution of zinc (300 μmol/L) and/or copper 600 μmol/L under the operating pH of 6, and agitation speed of 200 rpm within the equilibrium time of 60 min at 25 °C for single and binary systems. Our results showed that natural clay samples were mainly composed of silica, alumina, iron, and magnesium oxides. Adsorption data showed that the studied clay samples removed substantial amounts of heavy metals in single and mixed systems. Initial solution pH and carbonates contents enhanced the removal capacities of the studied clay samples, confirming their strong influencing effects. Thermodynamic parameters indicated an endothermic adsorption for metals removal by calcareous clay, but exothermic process for the smectitic sample. These results suggest that the Late Cretaceous clays, Tunisia, can be effectively used as natural adsorbents for the removal of toxic heavy metals in aqueous systems.  相似文献   

6.
7.
高岭石和硅/铝-氧化物对腐殖酸的吸附实验研究   总被引:10,自引:6,他引:10       下载免费PDF全文
矿物结合的腐殖质可改变矿物的表面性质,矿物对腐殖酸的吸附强度与矿物的吸附位性质、密度、荷电性及比表面积有关.若按比表面积计算,矿物对腐殖酸的吸附强度顺序为氢氧化铝>高岭石>石英;按单位质量计算,吸附强度顺序为高岭石>氢氧化铝>石英.研究表明,矿物表面活性受水溶液pH值的调控,且当pH值在4~7时,上述3种矿物对腐殖酸的吸附机理为石英主要表现为氢键作用;氢氧化铝主要表现为配体交换表面配位作用;高岭石表现为多种形式并存,包括氢键、配体交换表面配位和疏水性作用以及金属离子桥键作用.  相似文献   

8.
《Geochimica et cosmochimica acta》1999,63(19-20):2929-2938
The competitive sorption of Cu(II) and Pb(II) to colloidal hematite was investigated as a function of pH and total metal concentration. Acid–base titrations of the hematite and single-metal sorption experiments for Cu and Pb at low to medium surface coverages were used to calibrate two surface complexation models, the triple layer model, and a 2-pK basic Stern model with ion-pair formation. The surface site density was systematically varied from 2 to 20 sites/nm2. Three different metal surface complexes were considered: (1) an inner-sphere metal complex; (2) an outer-sphere metal complex; and (3) an outer-sphere complex of singly hydrolyzed metal cations. Both models provided excellent fits to acid–base titration and single-metal sorption data, regardless of the surface site density used. With increasing site density, ΔpK of the stability constants for protonation reactions increased and metal surface complexes decreased steadily. The calibrated models based on different site densities were used to predict competitive sorption effects between Cu and Pb and single-metal sorption at higher total metal concentrations. Precipitation of oversaturated solid phases was included in the calculations. Best predictions of competitive sorption effects were obtained with surface site densities between 5 and 10 sites/nm2. The results demonstrate that surface site density is a key parameter if surface complexation models are exposed to more complex, multicomponent environments. We conclude that competitive metal sorption experiments can be used to obtain additional information about the relevant surface site density of oxide mineral surfaces.  相似文献   

9.
The effects of organic matter (80% humic and 15% fulvic acid) and coexistence of heavy metals (Ni, Pb and Zn) on sorption of three polycyclic aromatic hydrocarbons (PAHs)—acenaphthene, fluorene and fluoranthene—were examined for kaolinite, 60% kaolinite?+?40% sand, and 43% kaolinite?+?42% sand?+?15% bentonite. In total 108 batch sorption tests of PAHs were conducted for three types of clay mineral mixtures in six possible combinations of soil organic matter and heavy metal contents from no heavy metals and organic matter added to maximum organic matter added with spiked heavy metals. Results showed that the existence of metals increased the sorption of PAHs onto kaolinite from 4.7% for acenaphthene to 17.9% for fluoranthene. Organic matter in a kaolinite-sand-bentonite matrix could increase PAH sorption by up to 140% for fluoranthene. In all cases, increases were greater for fluoranthene, a larger PAH molecule. Heavy metals coexisting with organic matter led to enhanced sorption of PAHs compared to clay minerals without organic matter. Synergistic effects of organic matter and heavy metals on PAH sorption increments in the mixtures studied were such that the overall sorption could be 10–41% higher than that based on summation of the separate effects of metals and organics.  相似文献   

10.
The mobility of strontium in subsurface is largely influenced by sorption on to clay minerals. In the present study, kaolinite clay samples collected from the Kalpakkam nuclear plant site were employed to understand the sorption characteristics of strontium by batch method. The effect of several parameters such as time, strontium ion concentration, pH, temperature and ionic strength was investigated. The kinetic studies suggested pseudo-second-order mechanism. The experimental sorption data was fitted to Langmuir adsorption model for obtaining the sorption capacity of the sorbent. The maximum sorption capacity was 5.77 mg/g at 298 K and was found to increase with an increase in temperature. It was observed that the distribution coefficient (K d) of strontium on clay increased as the pH of the solution increased. The distribution coefficient was found to decrease with an increase in concentration of Na+ and Ca2+ ions. This variation of K d suggests that cation exchange is the predominant sorption process. It was also observed that sorption process is endothermic. The thermodynamic parameters such as ∆G 0, ∆H 0 and ∆S 0 were calculated. The negative values obtained for ∆G 0 indicated that the sorption of strontium on clay was spontaneous at all studied concentrations. ∆G 0 becomes more negative with an increase in temperature, suggests that the sorption process is more favorable at higher temperatures.  相似文献   

11.
The granite collected from the Yinshan Mountain and kaolinite has been selected for the leaching and adsorption experiment,respectively,aiming to clarify the enrichment processes of Li and Ga during the deposition.Results suggest both Li and Ga could be leached out from granite by using different acid solutions of different p H and kaolinite can adsorb Li and Ga with varying degrees.Lithium and Ga had the highest leaching ratio when p H=1.Special geological events(e.g.volcanic eruptions and wildfires),which could result in very low p H values of water in peatland,may have accelerated the release of Li and Ga from the source rocks.Kaolinite has the highest adsorption fraction was obtained at p H=8.The different characteristics of Li and Ga displayed in the leaching and adsorption experiments probably result from the different occurrences and enrichment processes of Li and Ga in the coals.Lithium was probably enriched before the Li carriers(e.g.kaolinite)had been transported into paleomires because of its high leaching ratio and high adsorption fraction under neutral and alkaline conditions,whereas Ga was more likely concentrated by kaolinite and other carriers after it had been transported into the peat mires.  相似文献   

12.
13.
《Applied Geochemistry》2002,17(4):399-408
The sorption of U(VI) onto the surface of olivine has been experimentally investigated at 25 °C under an air atmosphere as a function of pH, solid surface to volume ratio and total U concentration. Sorption has been observed to decrease as the extent of carbonate complexation of U(VI) in solution increases, which is attributed to the competition between aqueous and solid ligands for the coordination of U. The experimental results have been interpreted by means of two different approaches: (1)a semi-empirical model, exemplified by the application of a Langmuir isotherm and (2) a non-electrostatic thermodynamic surface complexation model which includes the formation of the surface species: >SO–UO2+ and >SO–UO2(OH). The following stability constants for these species have been determined from the thermodynamic analysis: K(>SO–UO2+)=289±71 and K(>SO–UO2(OH))=(3.4±0.4)×10−6. The comparison of the sorption of U onto olivine with granites of different origin indicate that the use of this mineral as additive to the backfill of deep high level nuclear waste repositories could retard the migration of U from the repository to the geosphere.  相似文献   

14.
15.
Ion-exchange fractionation of copper and zinc isotopes   总被引:5,自引:0,他引:5  
Whether transition element isotopes can be fractionated at equilibrium in nature is still uncertain. Standard solutions of Cu and Zn were eluted on an anion-exchange resin, and the isotopic compositions of Cu (with respect to Zn) of the eluted fractions were measured by multiple-collector inductively coupled plasma mass spectrometry. It was found that for pure Cu solutions, the elution curves are consistent with a 63Cu/65Cu mass fractionation coefficient of 0.46‰ in 7 mol/L HCl and 0.67‰ in 3 mol/L HCl between the resin and the solution. Batch fractionation experiments confirm that equilibrium fractionation of Cu between resin and 7 mol/L HCl is ∼0.4‰ and therefore indicates that there is no need to invoke kinetic fractionation during the elution. Zn isotope fractionation is an order of magnitude smaller, with a 66Zn/68Zn fractionation factor of 0.02‰ in 12 mol/L HCl. Cu isotope fractionation results determined from a chalcopyrite solution in 7 mol/L HCl give a fractionation factor of 0.58‰, which indicates that Fe may interfere with Cu fractionation.Comparison of Cu and Zn results suggests that the extent of Cu isotopic fractionation may signal the presence of so far unidentified polynuclear complexes in solution. In contrast, we see no compelling reason to ascribe isotope fractionation to the coexistence of different oxidation states. We further suggest that published evidence for iron isotopic fractionation in nature and in laboratory experiments may indicate the distortion of low-spin Fe tetrahedral complexes.The isotope geochemistry of transition elements may shed new light on their coordination chemistry. Their isotopic fractionation in the natural environment may be interpreted using models of thermodynamic fractionation.  相似文献   

16.
Adsorption of copper and zinc by oil shale   总被引:8,自引:0,他引:8  
 Oil shale is able to remove appreciable amounts of copper and zinc ions from aqueous solutions. It was noted that an increase in the adsorbent concentration with constant copper or zinc concentration resulted in greater metal removal from solution. An increase in the copper or zinc concentration with a constant sorbent concentration resulted in higher metal loading per unit weight of sorbent. For both metals, copper and zinc, equilibrium was attained after 24-h contact time. Increase in the initial pH or temperature of the metal solution resulted in an increase in the metal uptake per unit weight of the sorbent. Freundlich isotherm model was found to be applicable for the experimental data of Cu2+ and Zn2+. The results showed that oil shale could be used for the adsorption of the Cu2+ and Zn2+ with higher affinity toward Zn2+ ions. Addition of sodium salt to the metal solution influenced copper removal positively, but inhibited zinc removal. Received: 3 January 2000 · Accepted: 27 June 2000  相似文献   

17.
The most appropriate method in designing the adsorption systems and assessing the performance of the adsorption systems is to have an idea on adsorption isotherms. Comparison analysis of linear least square method and nonlinear method for estimating the isotherm parameters was made using the experimental equilibrium data of Zn(II) and Cu(II) onto kaolinite. Equilibrium data were fitted to Freundlich, Langmuir, and Redlich–Peterson isotherm equations. In order to confirm the best-fit isotherms for the adsorption system, the data set using the chi-square (χ 2), combined with the values of the determined coefficient (r 2) was analyzed. Nonlinear method was found to be a more appropriate method for estimating the isotherm parameters. The best fitting isotherm was the Langmuir and Redlich–Peterson isotherm. The Redlich–Peterson is a special case of Langmuir when the Redlich–Peterson isotherm constant g was unity. The sorption capacity of kaolinite to uptake metal ions in the increasing order was given by Cu (4.2721 mg/g)?<?Zn (4.6710 mg/g).  相似文献   

18.
胡敏酸对高岭石吸附铜离子的强化作用   总被引:4,自引:2,他引:4       下载免费PDF全文
考察酸性条件特别是在近中性 pH范围内胡敏酸对高岭石吸附铜离子的强化作用。研究表明 ,胡敏酸的加入可以提高高岭石对铜离子的吸附率 ,甚至在pH 5~ 6附近高岭石对铜离子的吸附率也从约 5 0 %提高到约 6 5 %。当 pH <4时 ,由于高岭石表面铝的高溶出或胡敏酸阴离子基团离解程度降低等因素 ,使其表面对胡敏酸的吸附率有所降低 ,但与高岭石样品相比 ,胡敏酸高岭石复合体对铜离子的吸附仍然有明显的增加。胡敏酸对高岭石吸附铜离子的强化机制是 ,高岭石端面形成了Al—HA—Cu三元配合物 (B型 ) ,与传统的诸如pH、离子强度与离子初始浓度等介质条件影响不同。在 pH >7时高岭石端面及腐殖质基团去质子化增强 ,因而静电排斥降低了高岭石对胡敏酸的吸附 ,从而使得胡敏酸对铜离子在高岭石表面上的吸附作用有所减弱 ,此时可能出现胡敏酸铜及氢氧化铜的沉淀 ,铜离子的表观吸附率可能不会有明显变化  相似文献   

19.
The adsorption of cadmium (Cd) and zinc (Zn) with similar chemical properties is examined onto three soil samples: one is alkaline and the others are acidic. The distribution coefficient (K d) and the Freundlich constant (K F) for Zn are slightly higher than those for Cd, implying that the adsorption affinity of Zn is a little greater and less mobile. However, Cd and Zn usually show comparable results in the kinetic, isotherm, and envelope experiments. The adsorption of the heavy metals is relatively rapid and the reaction is almost completed within 15 min. The kinetics for both Cd and Zn are very well explained by the parabolic diffusion model. The maximum adsorption of the heavy metals is obtained at high pH, high temperature, and low ionic strength. The adsorption capacity on the alkaline soil is more significantly affected by the temperature as compared to the acidic soil. It is found that the adsorption affinity of the two heavy metals is mainly affected by the soil properties, such as pH, pHPZC, organic matter, and total carbon. It is also confirmed that the chemical properties of the heavy metals are important factors in their adsorption onto soil. The adsorption isotherms of Cd and Zn are well described in both Freundlich and Langmuir models at the usual pH (soil pH). Under acidic and alkaline pHs, however, only the Freundlich model describes the adsorption of both heavy metals satisfactorily.  相似文献   

20.
Detailed studies on the copper and zinc distribution in metalliferous sediments from the Atlantis II Deep (Red Sea) demonstrate that beside chalcopyrite and sphalerite appreciable amounts of copper and zinc are found in X-ray amorphous copper and zinc sulfides not previously described. Only low contents of copper and zinc are present in nontronites, hydroxides and carbonates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号