首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Nonlinear kinetic analysis of phenol adsorption onto peat soil   总被引:1,自引:0,他引:1  
Phenolic compounds are considered as a serious organic pollutant containing in many industrial effluents particularly vulnerable when the plant discharge is disposed on land. In the present study, the phenol removal potential of peat soil as adsorption media was investigated as the adsorption process are gaining popular for polishing treatment of toxic materials in industrial wastewater. Batch experiments were performed in the laboratory to determine the adsorption isotherms of initial concentrations for 5, 8, 10, 15, and 20 mg/L and predetermined quantity of peat soil with size ranges between 425 and 200 μm poured into different containers. The effects of various parameters like initial phenol concentration, adsorbent quantity, pH, and contact time were also investigated. From experimental results, it was found that 42 % of phenol removal took place with optimized initial phenol concentration of 10 mg/L, adsorbent dose of 200 g/L, solution pH 6.0 for the equilibrium contact time of 6 h. The result exhibits that pseudo-first-order (R 2 = 0.99) and Langmuir isotherm models are fitted reasonably (R 2 = 0.91). Adams–Bohart, Thomas, Yoon–Nelson, and Wolborska models were also investigated to the column experimental data of different bed heights to predict the breakthrough curves and to determine the kinetic coefficient of the models using nonlinear regression analysis. It was found that the Thomas model is the best fitted model to predict the experimental breakthrough curves with the highest coefficient of determination, R 2 = 0.99 and lowest root mean square error and mean absolute performance error values.  相似文献   

2.
Recently, microalgae are considered as lipid sources for biodiesel production. A photobioreactor was designed and fabricated for Scenedesmus sp. microalgae cultivation. The effect of several nitrogen sources, light intensity, iron ions, silicon, magnesium sulfate and ethanol concentrations on Scenedesmus sp. microalgae growth were investigated. For incubation period of 8 days, sodium nitrate and ammonium carbonate were the best nitrogen sources with biomass concentrations of 2.373 and 2.254 g L?1, respectively. Microalgae growth was reduced using nitrogen concentrations above 0.7 g L?1. In the first 10 days of incubation, maximum cell dry weight (0.7 g L?1) was obtained with light intensity of 10,000 lx, whiles after that, the results were desired (1 g L?1) using interior lighting at 7500 lx. Magnesium sulfate had a positive effect on cell growth. The biomass concentration of 1.65 g L?1 was obtained using 0.06 g L?1 magnesium sulfate. Maximum obtained biomass with silicon (0.7 Mm), ethanol (1.8 mL L?1) and ferric ammonium citrate (0.02 g L?1) was 1.7 and 1.3 and 2.16 g L?1, respectively. Logistic model was found to be a suitable model for cell growth forecast. Fatty acid analysis showed that composition of the most dominant synthesized fatty acids, palmitic and oleic acids, was 21.16 and 33.58%, respectively. Oil produced by Scenedesmus sp. microalgae composed of 49.08% saturated and 43.53% unsaturated fatty acids has a suitable composition for a desired biodiesel.  相似文献   

3.
Phytoremediation is a proven low-cost and sustainable method for the removal of toxic pollutants from water. This green technology has been practiced for the past several years all over the world. In the present study, the interaction of fluoride on the surface of the floating aquatic plant water lettuce (Pistia stratiotes) during fluoride removal was investigated. Batch kinetic studies were performed to examine the fluoride uptake capacity of the plant with different initial fluoride concentrations such as 3, 5, 10, and 20 mg/L. The effects of various process parameters on fluoride uptake dynamics such as pH, plant biomass, initial fluoride concentration, and time were examined. Freundlich’s isotherm model was found to (R 2 = 0.957) fit well to the experimental data. The nature of reaction order followed pseudo-first-order kinetics, when the initial fluoride level in the solution was 5 mg/L. The experimental findings showed that the removal mechanism was driven by biosorption phenomenon. High fluoride concentration in the solution reduced the growth ratio of P. stratiotes. The lowest growth ratio of this aquatic macrophyte was found to be 76.80 ± 3.73% at 20 mg/L fluoride concentration. At lower fluoride concentrations such as 3 and 5 mg/L, the growth ratio of the plant was not reduced significantly.  相似文献   

4.
A batch nitrification process was studied using synthetic wastewater as substrate and Chilean natural zeolite as biomass carrier at ambient temperatures (20 °C). Three groups of experiments were carried out: a first experimental set (I) with and without added zeolite using initial biomass concentrations of 1,000 and 2,000 mg VSS/L; a second set of experiments (II) with added zeolite and at the same initial biomass concentrations. In these two experimental sets, biomass from an activated sludge process located in an urban wastewater treatment plant at La Farfana, Santiago de Chile, was used as inoculum (1). Finally, a third set of experiments (III) was carried out with zeolite at an initial biomass concentration of 1,000 mg VSS/L using an inoculum derived from an activated sludge process treating wastewater from a paper mill (inoculum 2). Nitrifying biomass concentration values in the range of 13,000–18,800 mg VSS/L were achieved when initial biomass concentrations varied between 1,000 and 2,000 mg VSS/L. Inoculum (1) generated higher biomass concentrations than inoculum (2). Ammonium N removals higher than 70 % were obtained in experimental sets II and III when zeolite was used. For both initial biomass concentrations tested, an exponential biomass growth was observed up to the second day of operation, and a slight decrease was evident afterwards, achieving stationary values after 10–12 days of operation. The third experimental set (III) revealed that the highest N consumption took place between days 11 and 16 of digestion.  相似文献   

5.
The aim of this work was to evaluate the usefulness of Lemna minuta Kunth for the simultaneous removal of Cr(VI) and phenol. The impact of these contaminants on plant growth and some biochemical processes have also been discussed for a better understanding and utilization of this species in the field of phytoremediation. The optimal growth conditions and plant tolerance to Cr(VI) and/or phenol as well as removal were determined. Plants exposed to Cr(VI) and phenol were able to efficiently grow and remove both contaminants at high concentrations (up to 2.5 and 250 mg/L, respectively) after 21 days, indicating that they were resistant to mixed contamination. There were no significant differences between chlorophyll, carotene and malondialdehyde content of treated plants with respect to the controls, which would be due to an efficient antioxidant response. L. minuta showed a higher biomass than control without contaminant when was exposed to low concentrations of Cr(VI), suggesting an hormesis effect. The main removal process involved in chromium phytoremediation would be sorption or accumulation in the biomass. Moreover, our results suggest that phenol could be used as a donor of carbon and energy by these plants. These findings demonstrated that Lemna minuta Kunth might be suitable for treatment of different solutions contaminated with Cr(VI) and phenol, showing a high potential to be used in the treatment of effluents containing mixed contamination.  相似文献   

6.
The biosorption of ammoniacal nitrogen (N-NH4 +) from aqueous solutions by dead biomass of brown seaweed Cystoseira indica and Jatropha oil cake (JOC), which is generated in the process of biodiesel recovery from its seeds, was studied under diverse experimental conditions. The N-NH4 + biosorption was strictly pH dependent, and maximum uptake capacity of C. indica (15.21 mg/g) and JOC (13.59 mg/g) was observed at initial pH 7 and 3, respectively. For each biosorbent–N-NH4 + system, kinetic models were applied to the experimental data to examine the mechanisms of sorption and potential rate-controlling steps. The generalized rate model and pseudo-second-order kinetic models described the biosorption kinetics accurately, and the sorption process was found to be controlled by pore and surface diffusion for these biosorbents. Results of four-stage batch biosorber design analysis revealed that the required time for the 99 % efficiency removal of 40 mg/L N-NH4 + from 500 L of aqueous solution were 76 and 96 min for C. indica and JOC, respectively. The Fourier transform infrared spectroscopy analysis before and after biosorption of ammonium onto C. indica and JOC revealed involvement of carboxylic and hydroxyl functional groups.  相似文献   

7.
The Pb(II) and Ni(II) biosorption of a fungal biomass isolated from mine drainage of metal-processing industries in Balya (Bal?kesir province, Turkey) was optimized using a response surface methodology by altering parameters such as pH, initial metal concentration, contact time and biosorbent dosage. This strain was shown to be highly similar to Penicillium sp. Furthermore, zeta potential measurements and Fourier transform infrared spectroscopy were performed to understand the adsorption mechanism. A Box–Behnken design with 29 experiments was used to evaluate the interactions between independent variables. The results showed that the fungal biomass isolated from the metal mine drainage could have a significant environmental impact through the biosorption of Pb(II) and Ni(II) in waters polluted with heavy metals, particularly in the drainage from metal mines. The maximum removal values were 76 and 47 % at pH 4.5 for both Pb(II) and Ni(II), with 123 and 33 mg/L initial metal concentrations, 65 and 89 min contact times and 0.2 and 1.6 g/L biosorbent, respectively.  相似文献   

8.
Kraft lignin (KL) is the chief contaminant which is responsible for dark coloration, toxicity and high chemical oxygen demand (COD) of paper pulp mill effluent. The present study investigated the diverse potentials of Planococcus sp. TRC1 in the biodegradation of KL. Preliminary evaluation indicated that the strain was able to grow on broad spectrum of lignin-derived compounds, decolorize lignin-mimicking dyes and catabolize substrates of ligninolytic enzymes. Response surface methodology (RSM) was executed to perform the optimization of different process parameters. The results displayed that Planococcus sp. TRC1 could completely utilize 100 mg L?1 of KL and 78% of 200 mg L?1 of KL as sole source of carbon with concurrent reduction in COD and color. The biokinetic details of KL biodegradation showed that the values of \(\mu^{*}\), µ max, \(q^{*}\) and q max were 0.018 h?1, 0.01 h?1, 0.023 g g?1 h?1 and 0.05 g g?1 h?1, respectively. UV–visible spectrophotometry, SEM and FTIR indicated the significant alterations in the surface morphology, functional groups and chromophores during the course of biodegradation. XRD revealed the emergence of peak signifying the formation of low molecular weight intermediates after bacterial treatment. Considering the environmental impact, bacterial-treated KL illustrated less phytotoxicity using Vigna radiata seed bioassay. These results suggested that Planococcus sp. TRC1 could be a promising strain for the degradation of KL in an ecofriendly way.  相似文献   

9.
The present research work was intended to find out the useful information on identification, separation and photocatalytic degradation of organic compounds present in leather industry wastewater. The separation of organic compounds present in leather industry wastewater was carried out by solvent extraction. The separated crude extracted products were purified through column chromatography and characterized by UV–vis spectrophotometer, gas chromatography–mass spectrophotometer, liquid chromatography–mass spectrophotometer, 1H and 13C Fourier-transform nuclear magnetic resonance spectroscopy. The elemental analysis of wastewater and solid residue was carried out by inductively coupled plasma-optical emission and X-ray fluorescence spectroscopy. The organic compounds such as nonadec-1-ene, 2-phenylethanol, 2,4-di-tert-butylphenol and other organic compounds in the leather industry wastewater were identified. Out of these organic compounds, 2-phenylethanol was photocatalytically degraded using standard Degussa P-25 TiO2 (100 mg) photocatalyst under the irradiation of UV light. Result has been shown that 2-phenylethanol was transformed into 2-tert-butyl-4,6-dimethylphenol, 2,6-di-tert-butyl-4-methylphenol then the prolonged time (30 h) irradiation leads to 100 % degradation of 2-phenylethanol. Further possible degradation mechanism of 2-phenylethanol was proposed based on the electrospray ionization mass spectrometry analysis of degraded samples. The degradation of 2-phenylethanol was confirmed by chemical oxygen demand analysis of degraded samples. The physicochemical parameters such as pH, color, chemical oxygen demand, total dissolved solids, electrical conductivity and ionic chromatography analysis of the leather industry wastewater were also measured.  相似文献   

10.
Bioregeneration is a process of restoring the adsorptive capacity of the spent adsorbents through microbial action. In this study, the effects of acclimated biomass concentration, biomass acclimation concentration, dosage of granular activated carbon (GAC) and type of GAC on the bioregeneration efficiency (BE) of GAC loaded with phenol and p-nitrophenol (PNP), respectively, were investigated. The quantification was conducted by monitoring the time courses of adsorbed substrate amount during bioregeneration under the sequential adsorption and biodegradation approach. The mean BEs of phenol- and PNP-loaded GAC were found to be 78 ± 2 and 77 ± 1%, respectively. The results revealed that increasing acclimated biomass concentration and adsorbent dosage did not have an observable effect on the BEs of phenol- and PNP-loaded GAC. Additionally, the BEs were found to be almost the same for the bioregeneration of phenol-loaded GAC using biomass acclimated to 350 and 600 mg/L of phenol, respectively. The BEs of phenol-loaded GAC 830 (thermal-activated) and GAC 1240+ (thermal- and acid-activated) did not show any observable difference, but the BE of PNP-loaded GAC 1240+ was found to be greater than that of PNP-loaded GAC 830 indicating that the improvement of BE of spent GAC through further chemical activation was dependent on the type of adsorbate.  相似文献   

11.
The purpose of this study was to investigate the effect of phytoremediation on soils contaminated with heavy crude oil using plants infected by mycorrhizal fungi. Five plant species, Vetiveria zizanioides, Bidens pilosa, Chloris barbata, Eleusine indica, and Imperata cylindrica, infected with the species of mycorrhizal fungi Glomus mosseae, were selected for this study. The degradation of total petroleum hydrocarbons in soils and several physiological parameters of plants such as shoot length and biomass were analyzed. Out of the 5 plant species tested, only V. zizanioides, B. pilosa, and E. indica could take up the G. mosseae. Out of these three, V. zizanioides showed the greatest growth (biomass) in soils with 100,000 mg kg?1 total petroleum hydrocarbons. In addition, B. pilosa infected with G. mosseae was found to be able to increase degradation by 9 % under an initial total petroleum hydrocarbons concentration of 30,000 mg kg?1 in soils after 64 days. We conclude that plants infected with mycorrhizal fungi can enhance the phytoremediation efficiency of soils contaminated with high concentrations of heavy oil.  相似文献   

12.
The aim of this research was to evaluate the efficiency of electrocoagulation (EC) for the removal of natural organic matter (NOM) by using iron (Fe) and aluminum (Al) electrodes. The effects of several operational parameters such as initial pH (3–10), time of electrolysis (5–30 min), initial concentration of organic matter (10–50 mg NOM/L), current density (0.25–1.25 mA/cm2), type of electrode material (n = 4, 2 sides × 11 cm × 10 cm, wall thickness = 2 mm, distance between each electrode = 5 mm), and type of connection of electrodes (bipolar and monopolar configurations) were explored for the removal of NOM from synthetic humic acid solution in a 2 L laboratory-scale EC cells (A s/V = 0.110 cm?1). The optimum conditions for the process were identified as pH = 3 and 7, electrolysis time = 20 and 10 min for Fe and Al electrodes, respectively. Using both electrodes at current density = 0.25 mA/cm2 and initial concentration of organic matter = 50 mg/L, a NOM removal efficiency of almost 100% could be achieved in the bipolar mode. Based on the optimum conditions, specific reactor electrical energy consumptions were 14.90 kWh/kg Al (or 0.092 kWh/m3) and 2.88 kWh/kg Fe (or 0.11 kWh/m3). Specific electrode consumptions were obtained to be 0.0062 and 0.0382 kg/m3, and operating costs of the EC system were preliminary estimated at 0.057 and 0.119 $/m3 for Al and Fe electrodes, respectively.  相似文献   

13.
Biotreatment of methylparathion (O,O-dimethyl-O-4-nitrophenyl phosphorothioate) was studied in aqueous mineral salts medium containing fungal culture to demonstrate the potential of the pure culture (monoculture) of Fusarium sp in degrading high concentration of methylparathion. A statistical Box–Behnken design of experiments was performed to evaluate the effects of individual operating variables and their interactions on the methylparathion removal with initial concentration of 1,000 mg/L as fixed input parameter. A full factorial Box–Behnken design of experiments was used to construct response surfaces with the removal, the extent of methylparathion biodegradation, removal of chemical oxygen demand and total organic carbon, and the specific growth rate as responses. The temperature (X 1), pH (X 2), reaction time (X 3) and agitation (X 4) were used as design variables. The result was shown that experimental data fitted with the polynomial model. Analysis of variance showed a high coefficient of determination value of 0.99. The maximum biodegradation of methylparathion in terms of the methylparathion removal (Y 1), chemical oxygen demand removal (Y 2) and total organic carbon removal (Y 3) were found to be 92, 79.2 and 57.2 % respectively. The maximum growth in terms of dry biomass (Y 4) was 150 mg/L. The maximum biodegradation corresponds to the combination of following factors of middle level of temperature (X 1 = 30 °C), pH (X 2 = 6.5), agitation (X 4 = 120 rpm) and the highest level of reaction time (X 3 = 144 h). The removal efficiency of methylparathion biodegradation was achieved 92 %. It was observed that optimum biotreatment of methylparathion can be successfully predicted by response surface methodology.  相似文献   

14.
The present study investigated the phenol utilization kinetics of a pure culture of an indigenous Pseudomonas fluorescence under steady state and non-steady state (washout) conditions. Steady states of a continuous culture with an inhibitory substrate was used to estimate kinetic parameters under substrate limitation (chemo stat operation) Pure cultures of an indigenous Pseudomonas fluorescence were grown in continuous culture on phenol as the sole source of carbon and energy at dilution rates of 0.010 - 0.20/h. Using different dilution rates, several steady states were investigated and the specific phenol consumption rates were calculated. In addition, phenol degradation was investigated by increasing the dilution rate above the critical dilution rate (washout cultivation). The results showed that the specific phenol consumption rate increased with increased dilution rate at steady state and phenol degradation by Pseudomonas fluorescence can be described by simple substrate inhibition kinetics under substrate limitation but cannot be described by simple substrate inhibition kinetics under washout cultivation. Fitting of the steady state data from continuous cultivation to various inhibition models resulted in the best fit for Haldane, Yano and Koga (2), Aiba and Teissier kinetic inhibition models. The rsmax value of 0.229 mg/mg/h obtained from the inhibition model equations was comparable to the experimentally calculated rsmax value of 0.246 mg/mg/h obtained under washout cultivation. Therefore, the biokinetic constants evaluated using these models showed good tolerance and growth of the indigenous organism.  相似文献   

15.
Water quality and hydrochemistry of Shariatpur district were evaluated in terms of hydrochemical composition and some important physico-chemical parameters. The groundwater of the study area is good for drinking, domestic as well as for irrigation purposes. Among the major ions, shallow tube well waters give higher concentration of Ca2+ which ranges from 24 to 260 mg/L. The deep tubewell waters show higher concentration of Na+ which varies from 74 to 582 mg/L during dry season. Among the trace elements most of the shallow aquifer samples show higher concentration of Fe2+, Mn2+ and As. Concentration of Fe2+ varies from 0.655 to 18.8 mg/L, and Mn2+ from trace to 0.868 mg/L during dry period. Hydrochemical analyses reveal significant seasonal variation in water quality of shallow aquifer. Both the shallow aquifer and the surface water of the study area are predominantly of Ca–Mg–HCO3 type, while the deep aquifer water is mainly of Na–K–Cl–SO4 type with slight inclination to Ca–Mg–HCO3 type. The study area is suitable for groundwater development if comprehensive and holistic approaches towards water resource management are taken into consideration.  相似文献   

16.
In the present study the removal of nitrates from wastewater using Pseudomonas stutzeri microorganism in a Gas–Liquid–Solid bioreactor at the concentration of 200 ppm was studied for a period of 12 h. The response surface methodology with the help of central composite design and genetic algorithm were employed to optimize the process parameters such as airflow rate, biofilm carrier, carbon source, temperature and pH which are responsible for the removal of nitrates. The optimized values of parameters found from RSM are airflow rate 2.41 lpm, biofilm carrier 15.15 g/L, carbon source 85.0 mg/L, temperature 29.74 °C, pH 7.47 and nitrate removal 193.16. The optimized parameters obtained from genetic algorithm are airflow rate 2.42 lpm, biofilm carrier 15.25 g/L, carbon source 84.98 mg/L, temperature 29.61 °C, pH 7.51 and nitrate removal is 194.14. The value of R2 > 0.9831 obtained for the present mathematical model indicates the high correlation between observed and predicted values. The optimal values for nitrate removal at 200 ppm are suggested according to genetic algorithm and at these optimized parameters more than 96 % of nitrate removal was estimated, which meets the standards for drinking water.  相似文献   

17.
Perchlorate and iodide concentrations were determined in brown (Undaria pinnatifida and Laminaria japonica) and red (Porphyra sp.) edible seaweeds, which are commonly consumed by Korean people, with the use of ion chromatography, coupled with a tandem mass spectrometer. Seaweeds (i.e., good sources of iodine) are among the most important plant life in the ocean and commonly consumed as food and nutritional supplement in South Korea. All seaweed samples were purchased from different regions in South Korea. The detected concentrations of perchlorate were as follows: 19.7–620.7 μg kg?1 dry weight (n = 11, mean concentration = 149.2 μg kg?1 dry weight) for L. japonica and 7.3–21.7 μg kg?1 dry weight (mean concentration = 10.6 μg kg?1 dry weight) for U. pinnatifida. Of the 11 samples of Porphyra sp., only 1 sample showed 6.7 μg kg?1 dry weight perchlorate. The concentrations of iodide in all seaweed samples varied from 0.44 to 6,800 mg kg?1 dry weight. L. japonica samples (n = 11) had significantly higher iodide concentrations, with a mean of 5,261 mg kg?1 dry weight. The bioconcentration factor values for perchlorate and iodide in the three different seaweeds varied widely and showed similar variation trends. The trend for perchlorate and iodide was Porphyra sp. < U. pinnatifida < L. japonica. The results have provided growing evidence that perchlorate frequently occurs in food products.  相似文献   

18.
In this study, sepiolite-nano zero valent iron composite was synthesized and applied for its potential adsorption to remove phosphates from aqueous solution. This composite was characterized by different techniques. For optimization of independent parameters (pH = 3–9; initial phosphate concentration = 5–100 mg/L; adsorbent dosage = 0.2–1 g/L; and contact time = 5–100 min), response surface methodology based on central composite design was used. Adsorption isotherms and kinetic models were done under optimum conditions. The results indicated that maximum adsorption efficiency of 99.43 and 92% for synthetic solution and real surface water sample, respectively, were achieved at optimum conditions of pH 4.5, initial phosphate concentration of 25 mg/L, adsorbent dosage of 0.8 g/L, and 46.26 min contact time. The interaction between adsorbent and adsorbate is better described with the Freundlich isotherm (R 2 = 0.9537), and the kinetic of adsorption process followed pseudo-second-order model. Electrostatic interaction was the major mechanisms of the removal of phosphates from aqueous solution. The findings of this study showed that there is an effective adsorbent for removal of phosphates from aqueous solutions.  相似文献   

19.
Asexual spores of the filamentous fungus Rhizopus arrhizus were used as the resting biomass as they tolerate chitosan gelling for mycelia growing in chitosan beads. Biosorption of lead using the dead detergent pre-treated chitosan-immobilised and grown fungal beads was performed with initial lead (II) nitrate concentrations ranging from 9.02 to 281.65 mg/L. The adsorption data were best correlated with equilibrium adsorption isotherms in the order Redlich–Peterson, Langmuir, Freundlich and Fritz–Schlünder by non-linear regression. The biosorption kinetic model of pseudo second-order (R 2 > 0.99) fitted better than pseudo first-order and modified pseudo first-order models. Among the four pseudo second-order kinetic models, the Blanchard model was the best fit for the experimental biosorption data. The rate-limiting step of biosorption of lead was shown to be intraparticle diffusion controlled according to Weber and Morris model fitting. The beads could be regenerated using 1 M nitric acid solution. This illustrated the good performance of the beads for regenerated sorption/desorption at least five cycles.  相似文献   

20.
Binary mixture of Variovorax sp. BS1 and Achromobacter denitrificans degraded >99 % of 300 mg l?1 of ortho-dimethyl phthalate (DMP) within 24 h of incubation at 30 °C. Rate of degradation of DMP followed the order: A. denitrificans > binary mixture > Variovorax sp. BS1. Transient intermediate metabolites were not detected using HPLC analyses at any time points using Variovorax sp. BS1 and binary mixture. However, using pure culture of A. denitrificans, monomethyl phthalate was accumulated during the course of DMP biodegradation which disappeared with time of incubation. Binary mixture of Variovorax sp. BS1 and A. denitrificans exhibited better efficiency in terms of biodegradation of DMP as compared to either individual bacterial strain. In addition, fluorescence in situ hybridization technique was used to estimate the population dynamics of Variovorax sp. BS1 in binary mixture. A. denitrificans in mixed culture were estimated by subtracting total number of cells of Variovorax sp. BS1 from the total counts of microbial cells using an epifluorescence microscope after staining with 4′,6-diamidino-2-phenylindole. Results obtained at mid-exponential growth phase suggested the abundance of both bacterial strains as primary degraders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号