首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We present the long-term light curve of the radio source J1603+1105 and results of the study of its variability on timescales from several days to several weeks. From 2007, a flare with the maximum in 2010 was observed for the object that earlier showed no significant variations of flux density. Three flares with a successively decreasing amplitude were detected at an active phase in the long-term light curve. The characteristic time of the first one was 2.5 yrs. In five sets of daily observations of 95 to 120 days, the flux density variability on scales from 9 to 32 days in 2011, 2012, 2015, and 2016 was detected; in 2015 it was detected at three frequencies simultaneously. In 2011, the variability was found at a single frequency of 4.8 GHz; in 2012—at two frequencies, 4.8 and 7.7 GHz; in 2015—at 4.6, 8.2, and 11.2 GHz.We present instant spectra of the source at different flare phases showing that the dynamics of the flare development is consistent with the model, in which the variability is the result of the shock wave evolution in the radio source jet.  相似文献   

2.
We present multifrequency observations of a sample of 15 radio-emitting broad absorption-line quasars (BAL QSOs), covering a spectral range between 74 MHz and 43 GHz. They mostly display convex radio spectra which typically peak at about 1–5 GHz (in the observer's rest frame), flatten at MHz frequencies, probably due to synchrotron self-absorption, and become steeper at high frequencies, i.e. ν≳ 20 GHz. Very Large Array (VLA) 22-GHz maps (HPBW ∼80 mas) show unresolved or very compact sources, with linear projected sizes of ≤1 kpc. About two-thirds of the sample looks unpolarized or weakly polarized at 8.4 GHz, frequency in which reasonable upper limits could be obtained for polarized intensity. Statistical comparisons have been made between the spectral index distributions of samples of BAL and non-BAL QSOs, both in the observed and in the rest frame, finding steeper spectra among non-BAL QSOs. However, constraining this comparison to compact sources results in no significant differences between both distributions. This comparison is consistent with BAL QSOs not being oriented along a particular line of sight. In addition, our analysis of the spectral shape, variability and polarization properties shows that radio BAL QSOs share several properties common to young radio sources like compact steep spectrum or gigahertz peaked spectrum sources.  相似文献   

3.
Using the database of the University of Michigan Radio Astronomy Observatory (UMRAO) at three radio frequencies (4.8, 8 and 14.5 GHz), we determined the short-term variability timescales for 166 radio sources. The timescales are 0.15d (2007+777) to 176.17d (0528-250) with an average timescale of △tobs=17.1±16.5d for the whole sample. The timescales are used to calculate the brightness temperatures, TB. The value of log TB is in the range of log TB = 10.47 to 19.06 K. In addition, we also estimated the boosting factor for the sources. The correlation between the polarization and the Doppler factor is also discussed.  相似文献   

4.
The results of observations of the quasar J0530+1331 (B0528+134) with the radio telescopes RATAN-600 at frequencies of 4.6, 8.2, 11.2, 21.7 GHz and RT-32 at the Zelenchukskaya and Badary observatories of the Quasar network of the Institute of Applied Astronomy, the Russian Academy of Sciences, at frequencies of 4.84 and 8.57 GHz in 2014–2015 are presented. A strong variability on a timescale of 20 days at 4.6–11.2 GHz has been detected over three months of daily RATAN-600 observations; the variability indices are V = dS/〈S〉; = 0.65?0.39. The spectrum of the variable component is falling toward high frequencies with an index α = ?0.76. The structure and autocorrelation functions at 4.6 GHz show an additional process on a timescale of 7 days. No delay of the main process has been detected between 11.2 and 8.2 GHz; the delay between 8.2 and 4.6 GHz does not exceed two days. The most likely cause of the observed variability is the scattering by inhomogeneities of the interstellar medium. The variability has been obtained at theminimum activity phase of the source. The intraday variability (IDV) has been searched for at both RT-32 telescopes since April 2014. Out of 38 successful observing sessions for the source, only three have shown a variability on a timescale of four hours or more at a significance level no higher than 0.1%. This confirms our conclusion drawn from the previous IDV measurements for other sources that the IDV is observed mainly at the maximum phases of long-term variability of the sources.  相似文献   

5.
We report here the results of observations of two BL Lacertae-type objects, J2005+77 and J2022+76, using the RATAN-600 at frequencies 11.2, 7.7, and 4.8 GHz. We found variations of radio emission on timescales of one day and we are the first to discover a variability of this type for J2022+76.We compare our observations with long-term multifrequency radio observations of the same sources performed on RATAN-600 within the framework of other observational programs. We analyze the behaviour of variability of the two sources and provide arguments in favour of the preferred emission generation mechanisms for the objects studied.  相似文献   

6.
We use the database of University of Michigan Radio Astronomy Observatory (UMRAO) at three radio bands (4.8, 8 and 14.5 GHz) to analyse the long-term polarization variation in search of the possible periodicity. Using the power spectral analysis method (PSA), the Jurkevich method and the discrete correlation function (DCF) method, we find that there are 16 sources lying in periodicity. The results show the astrophysically meaningful periodicity covering 2.1 years to 16.2 years at 4.8 GHz, 2.8 years to 16.3 years at 8 GHz, and 1.8 years to 16.6 years at 14.5 GHz.  相似文献   

7.
We present results from observations of H110 α recombination-line emission at 4.874 GHz and the related 4.8-GHz continuum emission towards the Carina nebula using the Australia Telescope Compact Array. These data provide information on the velocity, morphology and excitation parameters of the ionized gas associated with the two bright H  ii regions within the nebula, Car I and Car II. They are consistent with both Car I and Car II being expanding ionization fronts arising from the massive star clusters Trumpler 14 and Trumpler 16, respectively. The overall continuum emission distribution at 4.8 GHz is similar to that at lower frequencies. For Car I, two compact sources are revealed that are likely to be young H  ii regions associated with triggered star formation. These results provide the first evidence of ongoing star formation in the northern region of the nebula. A close association between Car I and the molecular gas is consistent with a scenario in which Car I is currently carving out a cavity within the northern molecular cloud. The complicated kinematics associated with Car II point to expansion from at least two different centres. All that is left of the molecular cloud in this region are clumps of dense gas and dust which are likely to be responsible for shaping the striking morphology of the Car II components.  相似文献   

8.
The Australia Telescope 20-GHz (AT20G) Survey is a blind survey of the whole southern sky at 20 GHz (with follow-up observations at 4.8 and 8.6 GHz) carried out with the Australia Telescope Compact Array from 2004 to 2007.
The Bright Source Sample (BSS) is a complete flux-limited subsample of the AT20G Survey catalogue comprising 320 extragalactic     ) radio sources south of  δ=−15°  with      Jy. Of these, 218 have near simultaneous observations at 8 and 5 GHz.
In this paper we present an analysis of radio spectral properties in total intensity and polarization, size, optical identifications and redshift distribution of the BSS sources. The analysis of the spectral behaviour shows spectral curvature in most sources with spectral steepening that increases at higher frequencies (the median spectral index α, assuming   S ∝να  , decreases from  α8.64.8= 0.11  between 4.8 and 8.6 GHz to  α208.6=−0.16  between 8.6 and 20 GHz), even if the sample is dominated by flat spectra sources (85 per cent of the sample has  α208.6 > −0.5)  . The almost simultaneous spectra in total intensity and polarization allowed us a comparison of the polarized and total intensity spectra: polarized fraction slightly increases with frequency, but the shapes of the spectra have little correlation. Optical identifications provided an estimation of redshift for 186 sources with a median value of 1.20 and 0.13, respectively, for QSO and galaxies.  相似文献   

9.
利用UMRAO数据平台,研究了类星体3C273的射电流量密度与偏振度的关系(包括4.8GHz,8GHz和14.5GHz3个频段),结果发现偏振度与射电流量在3个频段都具有很强的负相关性。这些结果可能表明3C273的射电流量密度和偏振度的变化与聚束效应无关。一般,偏振度与流量密度的强负相关现象可以用喷流成分+激波成分的双成分模型来解释:在喷流成分与激波成分的偏振角相互垂直并且偏振度基本相同的情况下,激波在喷流中的传播产生了这些偏振度与流量密度的强负相关性。  相似文献   

10.
Properties, including the time duration, polarization, quasi-periodical oscillations and so on, of the microwave spike emissions observed at 2.5 GHz and 2.6 GHz during the solar flare of 1991 May 16 are analyzed statistically. The left-handed and right-handed circular polarizations of the spike emissions at 2.5, 2.6 and 3.1 GHz are reported in detail. At these 3 frequencies, most of the spikes are superposed on both the rising (and maximum) and the descending phase of the burst. It is noteworthy that spikes also appeared superposed on the small bursts that appeared after the main burst. The spike emission lasted 17 minutes. Polarization reversals on different timescales appearing in the spike emissions at 2.5 and 2.6 GHZ are described. Our statistical analysis indicates that the polarization reversals at 2.5 and 2.6 GHz differ in characters on average, the polarization reversal at 2.5 GHz is earlier than that of 2.6 GHz by about 1.5 minutes, and polarization reversal of the spike emission is more frequent at 2.5 GHZ.  相似文献   

11.
Imke de Pater  David E Dunn 《Icarus》2003,163(2):449-455
We observed Jupiter’s synchrotron radiation at frequencies of 15 and 22 GHz using the VLA (Very Large Array) in its most compact configuration (D-array) in March 1991. The spatial brightness distribution of the emission at these high frequencies appears to be very similar to that seen at lower frequencies (5 GHz down to 330 MHz). We measured a total nonthermal flux density at 15 and 22 GHz of 1.5 ± 0.15 Jy and 1.5 ± 0.4 Jy, respectively (both normalized to a geocentric distance of 4.04 AU). These numbers agree well with model spectra of Jupiter’s synchrotron radiation that were obtained by fitting the planet’s nonthermal radio emission between 74 MHz and 8 GHz and suggest a maximum cutoff in electron energies at ∼100 MeV. The degree of linear polarization observed with the VLA is 21.5 ± 1.9% at 15 GHz.  相似文献   

12.
《New Astronomy》2002,7(1):35-43
Sets of dual frequency microwave data on selected chromospherically active stars, from the Australia Telescope Compact Array, have been investigated for their auto and cross-correlation effects. Comparison of cross-correlation peak values with theoretical expectation indicates a high degree of real physical connection between the emission at the pairs of frequencies (4.8 and 8.64 GHz) compared. This fact should help constrain models for the emission mechanism.The timescale of observed time-shifts between the emissions at the two frequencies is consistent, in general, with the underlying energization being propagated by magnetohydrodynamic waves in a compact turbulent medium.  相似文献   

13.
We present results from a 3-yr study of the 15-GHz variability of 51 9C sources. 48 of these sources make up a subsample of a larger one complete to 25 mJy in 9C, and as the sources are selected pseudo-randomly the results should be representative of the complete sample. 29 per cent of this subsample are found to be variable above the flux calibration uncertainties of ∼6 per cent. 50 per cent of the flat-spectrum objects are variable whilst none of the steep-spectrum objects or the objects with convex spectra peaking below 5 GHz are variable. Nine of the objects studied have convex spectra and peak frequencies above 5 GHz; eight of these were found to vary at 15 GHz, suggesting that the high-frequency peaking class in this sample is largely populated by objects with jets aligned close to the line of sight whose emission is dominated by beamed components.  相似文献   

14.
The recent discovery of radio variability of a quasar on short time-scales (hours) prompts us to examine what is expected in respect of the interstellar scintillation of very compact, extragalactic radio sources. We find that large-amplitude, rapid, variability is predicted at commonly observed radio frequencies (1–20 GHz) over the vast majority of the extragalactic sky. As a guide to assist observers in understanding their data, we demonstrate simple techniques for predicting the effects of interstellar scintillation on any extragalactic source.  相似文献   

15.
We present a detailed analysis of multi-frequency observations of linear polarization in the intraday variable quasar 0917+624 (z = 1.44). The observations were made in May 1989 at five frequencies (1.4, 2.7, 5.0, 8.3 and 15GHz) with the VLA and the Effelsberg 100 m-telescope and in December 1988 at two frequencies (2.7 and 5.0 GHz) with the latter. It is shown that the relationship between the variations of the polarized and total flux density is highly wavelength dependent, and the multi-frequency polarization behavior may be essential for investigating the mechanisms causing these variations. It is shown that the variations observed at 20 cm can be interpreted in terms of refractive interstellar scintillation. However, after subtracting the variation due to scintillation, three 'features' emerged in the light-curve of the polarized flux density, indicating an additional variable component. Interestingly, these features are shown to be correlated with the variations at 2-6 cm, thus indicating that thes  相似文献   

16.
Using the Very Long Baseline Array of the USA, we have made the double-band full-polarization observations towards the compact steep-spectrum source 1150+497, and obtained the distributions of the polarization flux intensity and polarization vector of this source at the 5 GHz and 8 GHz wave bands. The results show that the polarization of the source is mostly concentrated in the core region. Besides, by fitting the polarization angles at three frequencies, the milliarcsecond-scale rotation measure of the source 1150+497 is derived to be 66 rad/m2 for the first time. After removing the ratation measure, the distribution of intrinsic magnetic fields of the source on milliarcsecond scale is obtained. It demonstrates that the direction of the magnetic vector is consistent with the direction of its jet.  相似文献   

17.
Based on the light curves at 4.8, 8.0 and 14.5 GHz of Quasar 1156+295 from the University of Michigan Radio Astronomy Observatory, we analyze the variability property of total flux at the three radio bands during the time range from 1980 to 2012. With the structure function (SF) analysis we find a similar evolution trend with the characteristic variability timescale of 1.15±0.05 year for all the three radio bands, and a possible quasi-periodic variability period of ~2.3±0.1 year. The Lomb-Scargle periodogram (LSP) analysis implies the existence of multiple periods in the radio light curves, one of them with a period similar to the one found using the SF at around 2.3 year. The structure function analysis of pre- and post-1997 suggests that the characteristic timescales become longer since 1997, confirmed by the result of Lomb-Scargle periodogram and auto-correlation function. In addition, the cross correlation analysis confirms that there is a strong correlation of flux variations at the three radio frequencies with the 14.5 GHz variation leading the other two bands by about 60–120 days.  相似文献   

18.
The multi-wavelength analysis is performed on a flare on September 9, 2002 with data of Owens Valley Solar Arrays (OVSA), Big Bear Solar Observatory (BBSO), Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and Extreme UV Imager Telescope (EIT), and The Michelson Doppler Imager (MDI) on board of the Solar and Heliospheric Observatory (SOHO). The radio sources at 4.8 and 6.2 GHz located in the intersection of two flaring loops at 195 of SOHO/EIT respectively with two dipole magnetic fields of SOHO/MDI, in which one EIT loop was coincident with an X-ray loop of RHESSI at 12–25 keV, and two Hαbright kernels a1 and a2 of BBSO, respectively at the two footpoints of this loop; the second EIT loop connected another two Hαkernels b1 and b2 and radio sources at 7.8 and 8.2 GHz of OVSA. The maximum phase of microwave bursts was evidently later than that of hard X-ray bursts and Hαkernels a1 and a2, but consistent with that of Hαkernels b1 and b2. Moreover, the flare may be triggered by the interaction of the two flaring loops, which is suggested by the cross-correlation of radio, optical, and X-ray light curves of a common quasi-periodic oscillation in the rising phase, as well as two peaks at about 7 and 9 GHz of the microwave spectra at the peak times of the oscillation, while the bi-directional time delays at two reversal frequencies respectively at 7.8 and 9.4 GHz (similar to the peak frequencies of the microwave spectra) may indicate two reconnection sites at different coronal levels. The microwave and hard X-ray footpoint sources located in different EUV and optical loops may be explained by different magnetic field strength and the pitch angle distribution of nonthermal electrons in these two loops.  相似文献   

19.
Based on the light curves at 22 and 37 GHz from the Metsahovi monitoring pro-gram, we investigate the time lags between the two radio bands for 48 radio-loud AGNs. DCF and ZDCF analyses are applied to the data. Our results show that there is a strong correlation between the two radio frequencies for all the sources, with the variations in the light curvesat 37 GHz leading the ones at 22 GHz in general. There is no obvious differences between different sub-class AGNs as regards the time lag. In two sources, it was found that the bursts at the lower frequency lead the ones at the higher frequency. One possible explanation is that electron acceleration dominates the light curve until the radiation reaches the maximum. Some sources, such as 3C 273, 3C 279, 3C 345 and 3C 454.3, have good enough data, so we can calculate their lags burst-by-burst. Our calculations show that different outbursts have dif- ferent lags. Some bursts have positive lags, most of bursts have no clear lags, and a few have negative lags. This result means that different bursts are triggered by different mechanisms, and the interpretation for the result involves both an intrinsic and a geometric mechanism. The positive lags are well consistent with the shock model, and we use these lags to calculate the typical magnetic field strength of the radiating region.  相似文献   

20.
The 266 type III bursts, observed with the 2.6–3.8 GHz high temporal resolution dynamic spectrometer of NAO during the 23rd solar cycle (from April 1998 to January 2003), are statistically analyzed. The parameters of these events, including the frequency drift, duration, polarization, bandwidth, starting and ending frequencies, are analyzed in details. The statistics on the starting and ending frequencies indicate that the starting frequency varies in a very large range from less than 2.6 GHz to greater than 3.8 GHz, while the ending frequency varies in a relatively narrow range from 2.82 GHz to 3.76 GHz. These phenomena imply that the heights where the electrons are accelerated are quite scattered, while the cutoff regions of the type III bursts are relatively restricted. The numbers of the bursts with the positive and negative drift rates are nearly equal, this may suggest that the accelerated electrons propagating upward and those propagating downward are equally proportioned in the observing frequency range. And the statistical results demonstrate that the microwave type III bursts are mainly caused by the plasma radiation and electron gyro-maser radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号