首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An axisymmetric model of a cool, dynamo-active accretion disc is applied to protostellar discs. Thermally and magnetically driven outflows develop that are not collimated within 0.1 AU. In the presence of a central magnetic field from the protostar, accretion onto the protostar is highly episodic, which is in agreement with earlier work.  相似文献   

2.
The magnetic field plays a crucial role in star formation. It is involved in rotational braking, collapse braking, outflow formation and jet collimation. Direct observations of the field are difficult. However, the field can be indirectly estimated through the field-cushioned C-shocks which produce strong infrared molecular emission lines. In particular, a high field in the outflows will generate the ‘shock absorber’ signature: very broad H2lines. Such lines are indeed observed. Here we summarise recent progress in C-shock formation and stability. We demonstrate numerically that the Shock Absorbers are evolutionary and stable. The widths of H2lines then limit the magnetic field strength. A field of 6 mG is suggested for HH 212. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The expected lifetimes for molecular clouds has become a topic of considerable debate as numerical simulations have shown that MHD turbulence, the nominal means of support for clouds against self-gravity, will decay on short timescales. Thus it appears that either molecular clouds are transient features or they are resupplied with turbulent energy through some means. Jets and molecular outflows are recognized as a ubiquitous phenomena associated with star formation. Stars however form not isolation but in clusters of different density and composion. The ubiquity and high density of outflows from young stars in clusters make them an intriguing candidate for the source of turbulence energy in molecular clouds. In this contribution we present new studies, both observational and theoretical, which address the issue of jet/outflow interactions and their abilityto drive turbulent flows in molecular clouds. Our studies focus on scales associated with young star forming clusters. In particular we first show that direct collisions between active outflows are not effective at stirring the ambient medium. We then show that fossil cavities from “extinct” outflows may provide the missing link in terms of transferring momentum and energy to the cloud.  相似文献   

4.
The shock waves associated with molecular outflows may be of continuous (C) type or jump (J) type, depending on conditions in the preshock gas, notably the magnetic field strength and the degree of ionisation. Intermediate situations also exist, in which a J-discontinuity terminates or is embedded in a C-type flow. We show that proper allowance for the departure of the chemistry from equilibrium (particularly the dissociation/reformation of H2) and for the inertia of charged dust grains, is crucial for an accurate treatment of the C to J transition. We illustrate the use of H2 population diagrams and H2 line profiles, in conjunction with our detailed shock model, to constrain conditions in shocks propagating in molecular outflows. We show that H2 pure rotational lines yield evidence for C-type precursors in bipolar outflows from young stars, with transverse magnetic field strengths B (μG) ? 1–10 × $\sqrt {n_{H/{\text{cm}}^{ - 3} } } $ similar to those inferred from Zeeman splitting and from the dispersion of dust polarization vectors in dense clouds.  相似文献   

5.
6.
Close links between jet evolution and protostellar evolution are beginning to be understood. Firstly, stellar jets are reviewed here, establishing the accretion-outflow connection. Then, outflows from young stars are reviewed, suggesting a synchronised development in the star and outflow. This yields a unification scheme in which rising molecular jets dominate the early protostellar epoch, followed by a jet-driven outflow stage and, finally, a bow-driven ballistic stage. This scheme is quantified, yielding the systematic changes in the bolometric, mechanical and shock luminosities and the cross-over phase from dense molecular jets to light atomic jets. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Magnetically mediated disk outflows are a leading paradigm to explain winds and jets in a variety of astrophysical sources, but where do the fields come from? Since accretion of mean magnetic flux may be disfavored in a thin turbulent disk, and only fields generated with sufficiently large scale can escape before being shredded by turbulence, in situ field production is desirable. Nonlinear helical inverse dynamo theory can provide the desired fields for coronae and outflows. We discuss the implications for contemporary protostellar disks, where the (magneto-rotational instability (MRI)) can drive turbulence in the inner regions, and primordial protostellar disks, where gravitational instability drives the turbulence. We emphasize that helical dynamos are compatible with the magneto-rotational instability, and clarify the relationship between the two.  相似文献   

8.
9.
Classification of young stellar objects (YSOs) into different evolutionary stages helps us to understand the formation process of new stars and planetary systems. Such classification has traditionally been based on spectral energy distribution (SED) analysis. An alternative approach is provided by supervised machine learning algorithms, which can be trained to classify large samples of YSOs much faster than via SED analysis. We attempt to classify a sample of Orion YSOs (the parent sample size is 330) into different classes, where each source has already been classified using multiwavelength SED analysis. We used eight different learning algorithms to classify the target YSOs, namely a decision tree, random forest, gradient boosting machine (GBM), logistic regression, naïve Bayes classifier, \(k\)-nearest neighbour classifier, support vector machine, and neural network. The classifiers were trained and tested by using a 10-fold cross-validation procedure. As the learning features, we employed ten different continuum flux densities spanning from the near-infrared to submillimetre wavebands (\(\lambda= 3.6\mbox{--}870~\upmu\mbox{m}\)). With a classification accuracy of 82% (with respect to the SED-based classes), a GBM algorithm was found to exhibit the best performance. The lowest accuracy of 47% was obtained with a naïve Bayes classifier. Our analysis suggests that the inclusion of the \(3.6~\upmu\mbox{m}\) and \(24~\upmu\mbox{m}\) flux densities is useful to maximise the YSO classification accuracy. Although machine learning has the potential to provide a rapid and fairly reliable way to classify YSOs, an SED analysis is still needed to derive the physical properties of the sources (e.g. dust temperature and mass), and to create the labelled training data. The machine learning classification accuracies can be improved with respect to the present results by using larger data sets, more detailed missing value imputation, and advanced ensemble methods (e.g. extreme gradient boosting). Overall, the application of machine learning is expected to be very useful in the era of big astronomical data, for example to quickly assemble interesting target source samples for follow-up studies.  相似文献   

10.
Astronomy Letters - Small perturbations of a protostellar disk with vertical and azimuthal magnetic field components are considered in terms of Hall magnetohydrodynamics. The dispersion equation...  相似文献   

11.
We present numerical simulations of the evolution of low-mass, isothermal, molecular cores which are subjected to an increase in external pressure. If the external pressure increases very slowly, the core approaches instability quite quasi-statically. However, for faster compressions, a compression wave is driven into the core (Hennebelle, P., Whitworth, A., Gladwin, P. and André, P.: 2003a MNRAS 340, 870). Quantitative comparisons with observational velocity and density profiles are presented. The consequences of this compression for the fragmentation of the cloud is investigated and discussed.  相似文献   

12.
We discuss the application of meridionally self-similar models to winds and jets from hot coronae, in particular in the central region of accretion disks. A summary of how they may help understanding the evolution of jets from young stars is outlined. Then we discuss their application to the classification of AGN jets and extension to the relativistic regime of these exact axisymmetric solutions. Finally we discuss how it is possible to extend the polytropic equation of state and Parker winds to the relativistic regime to have a simple toy model for understanding thermal acceleration.  相似文献   

13.
The youngest protostars are obscured from direct view by a high column of molecular gas. Nevertheless, their presence is betrayed through spectacular infrared outflows. I demonstrate here that infrared spectroscopy has the potential to reveal a remarkable variety of details concerning the underlying physics. Near-infrared spectroscopic analyses of the OMC-1, DR 21 & Cepheus A outflows are discussed here. Molecular hydrogen is vibrationally excited by collisions in shock waves. In OMC-1, the ortho-para ratio has been mapped. The ratio is close to 3, suggesting efficient shock thermalisation. In DR 21, shocked (up to the first vibrational level) and fluorescent (higher v-levels) components have been successfully separated. In Cepheus A, non-LTE effects imply low densities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The formation and collapse of a protostar involves the simultaneous infall and outflow of material in the presence of magnetic fields, self-gravity and rotation. We use self-similar techniques to self-consistently model the anisotropic collapse and outflow by using a set of angle-separated self-similar equations. The outflow is quite strong in our model, with the velocity increasing in proportion to radius, and material formally escaping to infinity in the finite time is required for the central singularity to develop.
Analytically tractable collapse models have been limited mainly to spherically symmetric collapse, with neither magnetic field nor rotation. Other analyses usually employ extensive numerical simulations, or either perturbative or quasistatic techniques. Our model is unique as an exact solution to the non-stationary equations of self-gravitating magnetohydrodynamics (MHD), which features co-existing regions of infall and outflow.
The velocity and magnetic topology of our model is quadrupolar, although dipolar solutions may also exist. We provide a qualitative model for the origin and subsequent evolution of such a state. However, a central singularity forms at late times, and we expect the late-time behaviour to be dominated by the singularity, rather than depend on the details of its initial state. Our solution may, therefore, have the character of an attractor among a much more general class of self-similarity.  相似文献   

15.
This review focuses on physics of the cooling zones behind radiative shocks and the emission line diagnostics that can be used to infer physical conditions and mass loss rates in jets from young stars. Spatial separations of the cooling zones from the shock fronts, now resolvable with HST, and recent evidence for C-shocks have greatly increased our understanding of how shocks in outflows interact with the surrounding medium and with other material within the flow. By combining multiple epoch HST images, one can create `movies' of flows like those produced from numerical codes, and learn what kinds of instabilities develop within these systems.  相似文献   

16.
王挺贵 《天文学进展》2001,19(2):232-236
活动星系核有两类常见外流,相对论性的射电喷流和非相对论性的物质外流,前者主要在射电强的适动星系核中,以非热辐射为特征,非相对论性外流主要通过紫外吸收线观测到,总结了类星体非对论性外流的一些性质及其X射线观测给出了的问题,指出现有的观测表明非相对论性外流引起的质量损失很重要。  相似文献   

17.
We present in this contribution a revision of the origin, main properties and open issues in the field of winds of massive blue stars, with a particular emphasis in the ultraviolet observations  相似文献   

18.
We present here the optical light curves of the Soft X-ray TransientsXTE J1550-564 and XTEJ1859+226 from outburst to quiescence  相似文献   

19.
20.
I examine the question of purely accreting protostars, and set limits to the breakout time of a protostellar wind within the accretion flow forming the new star. Hypothesizing a wind launched from the protostellar surface, three temporal phases are derived: a crushed wind, a trapped wind, and an escaping wind. In the current model, evolution from one phase to the next is a consequence of the growing anisotropy of the infalling flow, a natural outcome of the collapse of a rotating cloud core. During the crushed wind phase, infall overcomes the wind at all solid angles, and the accretion directly strikes the protostellar surface. The trapped phase consists of a wind sufficiently strong to push material back from the stellar surface, but too weak to carry the heavy, shocked and swept-up infall out of the star's gravitational potential. Unless the wind turns on impulsively, a significant fraction of the pre-breakout life of the protostar may be spent in this trapped wind phase in which gas is launched from the protostar but is pulled back, crashing onto the protostellar and disk surfaces. It may be that some `starless cores' contain as-yet undetected, very young accreting protostars, and that episodic luminosity fluctuations associated with this trapped wind could be observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号