首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zircon SHRIMP dating of granites from Dulan,east segment of North Qaidam UHP belt shows that they are 406.6±3.5 Ma for Yematan-E,407.3±4.3 and 397±6 Ma for Balijiehatan-W,404.5±4.0 and 397.0±3.7 Ma for Shuiwenzhan-N,380.5±5.0 Ma for Shuiwenzhan-S,382.5±3.6 and 372.5±2.8 Ma for Chachagongma.These granites from Dulan represent the products of the third and fourth periods of Paleozoic magmatism in North Qaidam.Geochemically,the granitoids with metalumious to weak peratuminous are quartz diorite,granodiorite,and granite in composition and mainly belong to calc-alkaline series,a few samples to calc or alkali-calc series.The third period of granites is a rock association of granodiorite+granite,with initial 87Sr/86Sr ratios from 0.7082 to 0.7110 and T2DM model ages from 1.41–1.90 Ga;and the fourth period of granites is a rock association of quartz diorite+granodiorite+granite,with initial 87Sr/86Sr ratios from 0.7072 to 0.7091 and T2DM model ages from 1.07–1.38 Ga.Therefore,the third period of granites has higher initial 87Sr/86Sr ratios and T2DM model ages.On the contrary,the fourth period of granites has Nd(t)values from 0.6 to-3.0,higher than that of the third granite with Nd(t)values-3.2 to-9.3.Thus,the data comparison indicates that the third granites may derive from Paleo-proterzoic continental crust with mantle material whereas the fourth granites may derive from the Meso-proterzoic basalt crust with continental material.Combined with regional geology,we thought that the third granites were formed relative to plate exhumation and the fourth granites to delamination of the lithospheric mantle.  相似文献   

2.
小墨山岩体侵位于中元古代冷家溪群中,由两期侵人体组成,早期为粗中粒-中粒斑状黑云母二长花岗岩;末期为细粒黑(二)云母二长花岗岩。通过锆石SHRIMPU—Pb法测得岩体侵位年龄为122.5±2.1Ma(20),MSWD=1.9,成岩时代为早白垩世。主元素中,SiO2变化于67.20%~75.16%,K20含量高,且K2O〉Na2O,K2O/Na2O为1.16~1.72;ASI值变化于0.96~1.10之间,平均1.02,属准铝质-微过铝质、高钾钙碱性系列。岩石明显富集大离子亲石元素,亏损高场强元素,Rb/Sr=0.27~15.13;Nb/Ta=15.9~17.1,为锶和铌亏损型。EREE总体较高,重稀土含量相对较高,轻重稀土分馏稍弱,∑Ce/∑Y为0.49~6.18,(La/Yb)。为0.66~15.54。有较高的εNd(t),为-6.8~-8.7;T2DM相对较小(1.47~1.62Ga)。综合研究表明,小墨山花岗岩石为壳源型富黑云母过铝花岗岩类(CPG),其成因应为下地壳物质和上地壳物质混合而成,与花岗岩底侵作用或注入地壳中的幔源岩浆有关,形成的构造背景为陆内挤压造山向非造山转换的后造山拉张环境,是在紧随侏罗纪挤压造山运动之后的构造松驰和拉张减薄条件下所形成。  相似文献   

3.
Northern Xinjiang has been an idea and focus re-gion for post-collisional tectonic-metallogenic re-search. The time span of post-collisional stage, as well as the time span of extrusion and extension gyration of a post-collisional stage, and the process and dynamicssetting of Paleozoic continental growth are the key problems[1-7]. According to the definition by Liegeois[8], Wang et al. (in press)1) proposed that the taphrogeosyncline sedimentary formation that unconformably overliesthe main c…  相似文献   

4.
The SHRIMP zircon U-Pb geochronology of three typical samples, including two monzonitic granites from the Lincang batholith and a rhyolite from the Manghuai Formation are presented in the southern Lancangjiang, western Yunnan Province. The analyses of zircons for the biotite monzonitic granites from the northern (02DX-137) and southern (20JH-10) Lincang batholith show the single and tight clusters on the concordia, and yield the weighted mean 206Pb/238U ages of 229.4 ± 3.0 Ma and 230.4 ± 3.6 Ma, respectively, representing the crystallized ages of these granites. The zircons for the rhyolitic sample (02DX-95) from the Manghuai Formation give a weighted mean 206Pb/238U age of 231.0 ± 5.0 Ma. These data suggest that the igneous rocks from the Lincang granitic batholith and Manghuai Formation have a similar crystallized age. In combination with other data, it is inferred that both were generated at a narrow age span (∼230 Ma) and were originated from the postcollisional tectonic regime. An early Proterozoic 206Pb/238U apparent age of 1977±44 Ma is additionally obtained from one zircon from the biotite monzonitic granite (southern Lincang batholith), indicative of development of the early Proterozoic Yangtze basement in the region. These precisely geochronological data provide important constraints on better understanding the Paleozoic tectonic evolution of the Tethys, western Yunnan Province.  相似文献   

5.
The Cretaceous granitoids in the middle and northern Gangdese, Tibet are generally interpreted as the products of anatexis of thickened deep crust genetically associated with the Lhasa-Qiangtang collision. This paper reports bulk-rock major element, trace element and Sr-Nd isotopic data, zircon U-Pb age data, and zircon Hf isotopic data on the Zayu pluton in eastern Gangdese, Tibet. These data shed new light on the petrogenesis of the pluton. Our SHRIMP zircon U-Pb age dates, along with LA-ICPMS zircon U-Pb...  相似文献   

6.
A geochronological study of zircon U-Pb on the volcanic rocks from the stratotype section of the Qingshan Group within the Jiaozhou Basin, eastern Shandong Province, is presented. The zircons were analyzed using the method of in situ ablation of a 193 nm excimer laser system coupled with an up to date ICP-MS system. Among the three formations of the Qingshan Group, zircons recovered from the lowest part of the Houkuang Fm. were dated at 106±2 Ma (95% confidence, the same below), whereas those from the lower and upper parts of the Shiqianzhuang Fm. were given ages of 105±4 Ma and 98±1 Ma, respectively. A spatially decreasing trend for the Mesozoic magmatic timing from west to east in the province is observed through comparing the data of this study with those by previous works on the Qingshan volcanic lavas occurring at western Shandong and within the Yishu fault zone. The Qingshan volcanic rocks are constituent of the 'Shoshonite Province' in East China. Exposed at most provinces of central East China along the Tan-Lu fault and the Yangtze fault zones, these volcanic suites are characterized by shoshonite and high-K calcalkalic rocks in lithology and thought to be correlated with the partial melting of continental mantle in genesis. It is also shown that the Qingshan potassic volcanic suite from eastern Shandong basins is distinctly younger than those from other ar-eas of the shoshonite province. By contrary, ages of the Mesozoic to Cenozoic alkaline basalts, sourced by asthenospheric mantle, from both northern Huaiyan basin and northern Dabie belt along the Tan-Lu fault zone and from the Ningwu, Lishui and Luzong basins along the Yangtze fault zone are observably older than those occurring within eastern Shandong. The revealed temporal and spatial patterns in magmatism for the two types of volcanic suites make an important geochronological con-straint on the Mesozoic to Cenozoic dynamic evolution model of the subcontinental lithosphere in East China.  相似文献   

7.
The SHRIMP zircon U-Pb geochronology of three typical samples, including two monzo nitic granites from the Lincang batholith and a rhyolite from the Manghuai Formation are presented in the southern Lancangjiang, western Yunnan Province. The analyses of zircons for the biotite monzonitic granites from the northern (02DX-137) and southern (20JH-10) Lincang batholith show the single and tight clusters on the concordia, and yield the weighted mean 206Pb/238U ages of 229.4 ± 3.0 Ma and 230.4 ± 3.6 Ma, respectively, representing the crystallized ages of these granites. The zircons for the rhyolitic sample (02DX-95) from the Manghuai Formation give a weighted mean 206Pb/238U age of 231.0 ± 5.0 Ma. These data suggest that the igneous rocks from the Lincang granitic batholith and Manghuai Formation have a similar crystallized age. In combination with other data, it is inferred that both were generated at a narrow age span (~230 Ma) and were originated from the postcollisional tectonic regime. An early Proterozoic 206Pb/238U apparent age of 1977±44 Ma is additionally obtained from one zircon from the biotite monzonitic granite (southern Lincang batholith), indicative of devel- opment of the early Proterozoic Yangtze basement in the region. These precisely geochronological data provide important constraints on better understanding the Paleozoic tectonic evolution of the Tethys, western Yunnan Province.  相似文献   

8.
1 Geological setting Hainan Island is situated in the conjunction region between the Euro-Asian plate, the Indian-Australian plate and the Pacific plate, its tectonic setting and evolution is implicated in understanding the continen-tal margin accretion and evolution of East Asia and the formation of the South China sea. The Jiusuo-Lingshui fault zone divides Hainan Island into the Yaxian Pa-leozoic massif in the south and the Qiongzhong Pa-leozoic massif in the north (Fig. 1), they con…  相似文献   

9.
The Sanchazi mafic-ultramafic complex in Mianlue tectonic zone, South Qinling can be subdivided into two blocks, i.e. Sanchazi paleo-magmatic arc and Zhuangkegou paleo-oceanic crust fragment (ophiolite). The Sanchazi paleo-magmatic arc is mainly composed of andesite, basaltic and basalt-andesitic gabbro (or diorite), andesitic dyke, plagiogranite and minor ultramafic rocks, which have typical geochemical features of island arc volcanic rocks, such as high field strength element (e.g. Nb, Ti) depletions and lower Cr, Ni contents. The Light rare earth element (LREE) and K enrichments of these rocks and zircon xenocrystals of 900 Ma from plagiogranite suggest that this magmatic arc was developed on the South active continental margin of the South Qinling micro-continent. The U-Pb age of (300 ± 61)Ma for zircons from plagiogranite indicates that the Mianlue paleo-oceanic crust was probably subducted underneath the South Qinling micro-continent in Carboniferous. This is consistent with the formation time (309Ma) of the Huwan eclogite originating from oceanic subduction in Dabie Mountains, suggesting that the Mianlue paleo-ocean probably extended eastward to the Dabie Mountains in Carboniferous. The high-Mg adakitic rocks in Sanchazi paleo-magmatic arc suggest that the subducted oceanic crust was relatively young (<25Ma) and hot.  相似文献   

10.
The Dabieshan Orogenic belt is well known for the exhumation of early Mesozoic ultrahigh-pressure (UHP) metamorphic rocks and Jurassic–Cretaceous emplacement of voluminous granitoids. However, the tectonic evolution in the orogen during the Paleozoic, especially its magmatic response to tectonism has not received much attention. As indicated by published data, the Dabieshan orogenic belt contains different records of Paleozoic magmatic-tectonic association in different tectonic units. Occ…  相似文献   

11.
The strongly peraluminous granites (SPGs) of Eastern Nanling Range (ENR) are a characteristic of all bearing highly aluminous minerals, such as muscovite±AI-rich biotite±tourmaline±garnet, and lack of cordierite. In respect of petrography, geochemistry, Nd isotope, and single grain zircon U-Pb dating, the representative granite bodies of them are studied. The research shows that these granites were emplaced in two stages, namely 228-225 Ma BP and J2-3 159-156 Ma BP, belonging to Indosinian and early Yanshanian periods, respectively, and they have low εNd(t) values (-10.6--11.1), high A/CNK, Rb/Sr ratios and tDM values (1887-1817 Ma), and REE's tetrad effect (TE1,3=1.13-1.34). In comparison with related geology, petrology and chronology of granites in adjacent regions, it is suggested that Indosinian SPGs of ENR formed in the circumstance of post-collisional extension 20 Ma after the major collision of Indosinian Movement (258-243 Ma BP) in Indo-China Peninsula, and early Yanshanian SPGs formed in the  相似文献   

12.
SHRIMP U-Pb zircon age, geochemical and Nd isotopic data are reported for the Neoproterozoic Guandaoshan pluton in the Yanbian region, SW Sichuan. This pluton is of typical I-type granite and emplaced at (857±13) Ma. Geochemical and Nd isotopic characters suggest that the pluton was generated by partial melting of pre-existing, young (late Mesoproterozoic to early Neoproterozoic) low-K tholeiitic protolith within an intraplate anorogenic setting. The Guandaoshan pluton probably records the earliest magmatism induced by the proposed ca. 860-750 Ma mantle superplume beneath the supercontinent Rodinia.  相似文献   

13.
新疆阿尔泰成矿带花岗岩发育,其中很多花岗岩与成矿作用有着密切的联系,特别是400Ma左右的岩浆活动是阿尔泰地区一次重要的岩浆成矿活动,阿尔泰许多金属矿床与这一时期的岩浆构造作用有关。本次研究的出露于可可塔勒铅锌矿区的黑云母花岗岩体,其锆石LA-ICPMSU-Pb年龄为(401.8士1.5)Ma,表明可可塔勒花岗岩是阿尔泰成矿带400Ma左右发生的一次重要岩浆构造作用的产物,该黑云母花岗岩体侵入于矿区下泥盆统康布铁堡组火山岩地层中,岩体与围岩接触带附近的围岩蚀变明显,该黑云母花岗岩的侵入以及其后期的岩浆热液活动可能对区内成矿物质的活化、迁移、富集、成矿具有一定的贡献。  相似文献   

14.
Zircon is an accessory mineral occurring in many types of rocks. For the rich content of U and low content of common Pb, it is the principal mineral used for U-Th-Pb dating. It can be sur-vived during weathering, transiting, high-grade metamorphism and ev…  相似文献   

15.
Single zircons from two trondhjemitic gneisses and two clastic metasedimentary rocks without Eu anomaly of the Kongling high-grade metamorphic terrain are dated by thein situSHRIMP U-Pb method. The results show that the trondhjemitic magma emplaced at 2947-2903 Ma. Concordant age of as old as 3.3 Ga is present in the detrital zircons from the clastic metasedimentary rocks. Together with the depleted mantle Nd model age (TDM =3.2-3.3 Ga) of the clastic metasedimentary rocks, this documents the presence of Paleoarchean continental crust in the Yangtze craton.  相似文献   

16.
Single zircons from two trondhjemitic gneisses and two clastic metasedimentary rocks without Eu anomaly of the Kongling high-grade metamorphic terrain are dated by the in situ SHRIMP U-Pb method. The results show that the trondhjemitic magma emplaced at 2947-2903 Ma. Concordant age of as old as 3.3 Ga is present in the detrital zircons from the clastic metasedimentary rocks. Together with the depleted mantle Nd model age (TDM =3.2-3.3 Ga) of the clastic metasedimentary rocks, this documents the presence of Paleoarchean continental crust in the Yangtze craton.  相似文献   

17.
Seon-Gyu  Choi  V. J. Rajesh  Jieun  Seo  Jung-Woo  Park  Chang-Whan  Oh  Sang-Joon  Pak  Sung-Won  Kim 《Island Arc》2009,18(2):266-281
Collision between the North and South China continental blocks began in the Korean peninsula during the Permian (290–260 Ma). The Haemi area in the Hongseong collision belt (proposed as the eastern extension in South Korea of the Dabie–Sulu collision zone of China) within the Gyeonggi Massif comprises post-collisional high Ba–Sr granite with intermediate enclaves that intruded into the Precambrian rocks. The intermediate enclaves have a shoshonitic affinity whereas the granite is a high-K calc-alkaline variety. The chondrite-normalized rare earth element (REE) pattern with relative enrichment of LREE over HREE and absence of a significant negative Eu anomaly typifies both enclaves and granite. Geochemical similarities of enclaves and granite are attributed to the involvement of enriched mantle sources in their genesis. However, dominant crustal components were involved in the formation of high Ba–Sr granites. A granite crystallization age of 233 ± 2 Ma was obtained from SHRIMP U–Pb zircon dating. This age is slightly younger than the Triassic collision event in the Hongseong Belt. Geochemical data, U–Pb zircon age, and regional tectonics indicate that the Haemi high Ba–Sr granite formed in a post-collisional tectonic environment. A Mesozoic post-collisional lithospheric delamination model can account for the genesis of high Ba–Sr granite in the Haemi area.  相似文献   

18.
Guo-Can  Wang  Robert P.  Wintsch  John I.  Garver  Mary  Roden-Tice  She-Fa  Chen  Ke-Xin  Zhang  Qi-Xiang  Lin  Yun-Hai  Zhu  Shu-Yuan  Xiang  De-Wei  Li 《Island Arc》2009,18(3):444-466
Triassic turbidites dominate the Songpan–Ganzi–Bayan Har (SGBH) terrane of the northern Tibetan Plateau. U‐Pb dating on single detrital zircon grains from the Triassic Bayan Har Group turbidites yield peaks at 400–500 m.y., 900–1000 m.y., 1800–1900 m.y., and 2400–2500 m.y., These results are consistent with recently published U‐Pb zircon ages of pre‐Triassic bedrock in the East Kunlun, Altyn, Qaidam, Qilian and Alaxa areas to the north, suggesting that provenance of the Bayan Har Group may include these rocks. The similarities in the compositions of the lithic arkosic sandstones of the Bayan Har Group with the sandstones of the Lower‐Middle Triassic formations in the East Kunlun terrane to the north also suggests a common northern provenance for both. A well exposed angular unconformity between the Carboniferous–Middle Permian mélange sequences and the overlying Upper Permian or Triassic strata indicates that regional deformation occurred between the Middle and Late Permian. This deformation may have been the result of a soft collision between the Qiangtang terrane and the North China Plate and the closure of the Paleo‐Tethyan oceanic basin. The Bayan Har Group turbidites were then deposited in a re‐opened marine basin on a shelf environment. Fission‐track dating of detrital zircons from the Bayan Har Group sandstones revealed pre‐ and post‐depositional age components, suggesting that the temperatures did not reach the temperatures necessary to anneal retentive zircon fission tracks (250–300°C). A 282–292 m.y. peak age defined by low U concentration, retentive zircons likely reflects a northern granitic source. Euhedral zircons from two lithic arkoses with abundant volcanic fragments in the southern area yielded a ~237 m.y. zircon fission track (ZFT) peak age, likely recording the maximum age of deposition. A dominant post‐depositional 170–185 m.y. ZFT peak age suggests peak temperatures were reached in the Early Jurassic. Some samples appear to record a younger thermal event at ~140 m.y., a short lived event that apparently affected only the least retentive zircons.  相似文献   

19.
Zircons from two samples of the Sukeng pluton in the southwest Fujian Province, China, were analyzed by LA–ICP–MS with the aim of determining the timing of formation. The zircons from the two samples yield similar U–Pb ages of 100.47 ± 0.42 and 102.46 ± 0.69 Ma, indicating that the Sufeng pluton is contemporaneous with the Sifang and Luoboling plutons, all of which are also related to Cu–Au–Pb–Zn–Mo mineralization within the study area. All three plutons have geochemical features of I‐type granites, are high‐ to mid‐K calc‐alkaline metaluminous rocks, and have average molar Al2O3/ (CaO+Na2O+K2O) values of 0.95, initial 87Sr/86Sr ratios of 0.70465–0.70841, εNd(t) values at 101 Ma from –1.72 to –7.26, and two‐stage Nd model ages (T2DM) from 1.16 to 1.60 Ga. Zircons within these plutons have εHf(t) values at 101 Ma from –3.5 to 6.25 and T2DM ages from 0.74 to 1.46 Ga, suggesting these I‐type granites formed from magmas generated by partial melting of Mesoproterozoic to Neoproterozoic continental crust that mixed with mantle‐derived magmas. The magmatism was associated with thickening of the lower crust caused by collisions between microcontinents in the Cathaysian Block, which were driven by Early Cretaceous subduction of the Pacific Plate.  相似文献   

20.
The Phan Si Pan zone in northwest Vietnam is an important tectonic unit for understanding the geological evolution of the southeast Asian Block. Numerous late Permian A‐type granites outcrop in this zone. In this study, new geochemical and geochronological data derived from the Muong Hum alkaline granitic pluton in the Phan Si Pan zone were investigated for its petrogenesis and tectonic setting. Zircon U–Pb analyses of three samples yielded 206Pb/238U ages of (251.1 ±3.5) Ma, (251.2 ±3.8) Ma, and (253.9 ±1.5) Ma, respectively, coinciding with the ages of the acid member of magma from Emeishan large igneous province, southwest China. The Muong Hum granite has 10 000 × Ga/Al and A/CNK values of 4.70–4.93 and 0.87–0.90, respectively, as well as negative Eu anomalies. It shows significant depletion of Ba, Sr, Ti, and P, similar to features of A‐type granite. Zircons have positive εHf(t) values (+1.9 to +8.6) and Hf model ages (TDM1) of 595–846 Ma, originating a mantle source. Compared with the Panzhihua A‐type granite of the southwest China domain and other A‐type plutons of the Phan Si Pan zone, including Ye Yen Sun, Phu Sa Phin, Nam Xe, Tam Duong Phan Si Pan, and Taihe, the geochemical characteristics and zircon Hf isotopic compositions of the Muong Hum granite demonstrate an affinity of mantle magma. It is believed that the Phan Si Pan zone is an important part of Emeishan large igneous province. It was reworked by the Cenozoic Aillaoshan‐Red River shear fault to its present location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号