首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A semi-continuous hierarchy, (i.e., one in which there are galaxies outside clusters, clusters outside superclusters etc.), is examined using an expression of the field equations of general relativity in a form due to Podurets, Misner and Sharp. It is shown (a) that for a sufficiently populous hierarchy, the thinning factor( i+1/ i [r i /r i+1] is approximately equal to the exponentN in a continuous density law (=aR –N) provided (r i /r i+1)3-1; (b) that a hierarchical Universe will not look decidedly asymmetric to an observer like a human being because such salient observers live close to the densest elements of the hierarchy (viz stars), the probability of the Universe looking spherically symmetric (dipole anisotropy0.1 to such an observer being of order unity; (c) the existence of a semi-continuous or continuous hierarchy (Peebles) requires that 2 if galaxies, not presently bound to clusters were once members of such systems; (d) there are now in existence no less than ten arguments for believing 2, though recent number counts by Sandageet al. seem to be in contradiction to such a value; (e) Hubble's law, withH independent of distance, can be proved approximately in a relativistic hierarchy provided (i)N=2, (ii)2GM(R)/c 2 R1; (iii)Rc (iv)M0 in a system of massM, sizeR (f) Hubble's law holds also in a hierarchy with density jumps; (g)H100 km s–1 Mpc–1; (h) objects forming the stellar level of the hierarchy (in a cosmology of the Wilson type) must once have had 2GM/c 2 R1; (i) there is a finite pressurep=2Ga in all astrophysical systems (a=R N ,N2); (j) for the Galaxy, theory predictsp G7×10–12 dyn cm–2, observation givesp G5×10–12 dyn cm–2; (k) if the mass-defect (or excess binding energy) hypothesis is taken as a postulate, all non-collapsed astrophysical systems must be non-static, and any non-static, p0 systems must in any case be losing mass; (1) the predicted mass-loss rate from the Sun is 1012 g s–1, compared to 1011 g s–1 in the observed solar wind; (m) the mass-loss rates known by observation imply timescales of 5×109 years for the Sun and 1010 years for other astrophysical systems; (n) degenerate superdense objects composed of fermions must haveN-2 if they were ever at their Schwarzschild radii and comprised a finite numberN B of baryons; (o)N B1057N for degenerate fermion and boson systems; (p)285-4; (q) the metric coefficients for superdense bodies give equations of motion that imply equal maximum luminosities for all evolving superdense bodies (L max1059 erg s–1); (r) larger bodies have longer time-scales of energy radiation atL max (10–5 s for stars,1 h for QSO's) (s) expansion velocities are c soon after the initial loss of equilibrium in a superdense object; (t) if the density parametera(t) in aR –N isa=a (non-atomic constants of physicsc, G, A), andA, thenN=2; (u) N2 is necessary to giveMM at the stellar level of the hierarchy;(v) systems larger than, and including, galaxies must have formed by clumping of smaller systems and not (as advocated by Wertz and others) in a multiple big bang.  相似文献   

2.
The velocity gradients of the contrastreaming electron beams observed in the Earth's magnetosphere can excite three types of ordinary mode instabilities, namely (i) B-resonance electron instability, (ii) ion cyclotron instability, and (iii) unmagnetized ion instability. The B-resonance electron instability occurs at small values of the shear parameter 10–4<S<10–3, whereS = [(1/e){dU o(x)}/(dx)] (U 0(x) and e being the streaming velocity of the electron beams and the electron cyclotron frequency, respectively). Near the equatorial plane of the bouncing electron beams region, this instability can generate electromagnetic waves having frequenciesf(0.045–0.2) Hz and wavelentghs (0.5–10)km, and the wave magnetic field is polarised in a radial direction. This instability can also occur in the plasma sheet region during the earthwards and tailwards plasma flows events and can generate waves, with wave magnetic field polarised along north-south direction, in the frequency rangef(0.007–0.02) Hz with (10–100)km nearR=–35R E . For 10–3<S<10–2, the ion cyclotron instability is excited and it can generate waves up to 5th harmonic or so of ion cyclotron frequency. ForS>10–2, the unmagnetized ion instability is excited which can generate electromagnetic waves having frequences from 5 to 50 Hz and typical wavelengths (0.5–6)km. The growth rates of all the three velocity shear driven instabilities are reduced in the presence of cold background plasma. The turbulence generated by these instabilities may give rise to enhanced effective electron-electron and electron-ion collisions and broaden the bouncing electron beams.  相似文献   

3.
Two models for superluminal radio sources predict sharp lower bounds for the apparent velocities of separation. The light echo model predicts a minimum velocityv min=2c, and the dipole field model predictsv min=4.446c. Yahil (1979) has suggested that, if either of these models is correct, thenv min provides a standard velocity which can be used to determine the cosmological parametersH andq 0. This is accomplished by estimating a lower envelope for the proper motion vs redshift relation. Yahil also argued that the procedure could easily be generalized to include a nonzero cosmical constant . We derive the formulas relating the proper motion to the redshiftz in a Friedmann universe with a nonzero . We show that the determination of a lower envelope for a given sample of measured points yields an estimate of the angle of inclination i for each source in the sample. We formulate the estimation of the lower envelope as a constrained maximum likelihood problem with the constraints specified by the expected value of the largest order statistic for the estimated i . We solve this problem numerically using an off-the-shelf nonlinearly constrained nonlinear optimization program from the NAg library. Assuming =0, we apply the estimation procedure to a sample of 27 sources with measured values , using both the light echo and the dipole field models. The fits giveH=103 km s–1 Mpc–1 for the light echo model andH=46 km s–1 Mpc–1 for the dipole field model. In both cases the fits giveq 0=0.4, but the uncertainty in this result is too large to rule out the possibility thatq 0>0.5. When is allowed to be a free parameter, we obtainH=105 km s–1 Mpc–1 for the light echo model andH=47 km s–1 Mpc–1 for the dipole field model. In both cases the fits giveq 0=–1 and /H 0 2 =6.7, but no significance can be attached to these results because of the paucity of measured data at hight redshifts. For all of the fits, we compute the corresponding estimates of the i and compare the cumulative distribution of these values with that expected from a sample of randomly oriented sources. In all cases we find a large excess of sources at low-inclination angles (high apparent velocities). The expected selection effect would produce such an excess, but the excess is large enough to suggest a strong contamination of the sample by relativistic beam sources which would only be seen at low inclination angles.Applied Research Corporation  相似文献   

4.
An exact analysis of the effects of mass transfer on the flow of a viscous incompressible fluid past an uniformly accelerated vertical porous and non-porous plate has been presented on taking into account the free convection currents. The results are discussed with the effects of the Grashof number Gr, the modified Grashof number Sc, the Schmidt number Sc, and the suction parametera for Pr (the Prandtl number)=0.71 representating air at 20°C.Nomenclature a suction parameter - C species concentration - C species concentration at the free stream - g acceleration due gravity - Gc modified Grashof number (vg*(C C )/U 0 3 ) - Pr Prandtl number (C p/K) - T temperature of the fluid near the plate - T dimensionless temperature near the plate ((T-T )/(T -T )) - U(t) dimensionless velocity of the plate (U/U 0) - v normal velocity component - v 0 suction/injection velocity - x, y coordinate along and normal to the plate - v kinematic viscosity (/gr) - C p specific heat at constant pressure - C w species concentration at the plate - C non-dimensional species concentration ((C-C )/(C w -C )) - Gr Grashof number (g(T w -T )/U 0 3 ) - D chemical molecular diffusivity - K thermal conductivity - Sc Schmidt number (/D) - T w temperature of the plate - T free stream temperature - t time variable - t dimensionless time (tU 0 2 /) - U 0 reference velocity - u velocity of the fluid near the plate - u non-dimensional velocity (u/U 0) - v dimensionless velocity (v/U 0) - v 0 non-dimensionalv 0 (v 0 /U0)=–at–1/2 - y dimensionless ordinate (yU 0/) - density of the fluid - coefficient of viscosity  相似文献   

5.
The location of H filaments is compared with maps of the photospheric line of sight velocity V and the magnetic field H . It is found that (1) H filaments are associated with regions of ¦V ¦ 300m s–1, (2) always both positive as well as negative velocities are present under H structures, (3) stable (long lasting) portion of filaments frequently occur at the position of H = 0 as well as V = 0 lines, (4) this association remains valid for the longitudes less than 50° from central meridian.  相似文献   

6.
On the basis of observational data for the absolute R and relative R/R amplitudes of variations in radius of galactic classical cepheids (55 stars from Balona and Stobie (1979) and 30 stars from Sollazzoet al. (1981)), four kinds of empirical linear relations are obtained: log(P V)–logR, logP–logR, log(P V)–log(R/R), and logP–log(R/R);P, R, and V are the pulsation periods, the mean stellar radii, and the amplitudes of light variations, respectively. Three groups of stars are considered: short-period cepheids (SPC)-with logP1.1; long-period cepheids (LPC)-with logP>1.1; and s-cepheids (sC). Both the R values and the R/R values increase withP andP V, for a given group of variables. A comparison is performed with our results obtained from data in other sources (Kurochkin, 1966; Gieren, 1982; etc.). The investigated relations can be applied for determining R and R/R of galactic classical cepheids, by using their observedP and V. All studied galactic classical cepheids have R/R<0.35, R<10R for SPC and 10R <R60R for LPC. The sC have smaller R and R/R values than other classical cepheids, at the same periods (the difference is about 2 times for R and 1.4–2.8 times for R/R); the studied sC have R/R in the range 0.025–0.075 and R in the range 1–3R (only Y Oph has R8R ).  相似文献   

7.
Computations of polarization and intensity of radiation from a unit stellar surface area are presented, as well as a study of the numerical characteristics of atmospheres — single-scattering albedo and the initial source function(), which define the polarization behaviour of atmospheres. The radiatively stable models of stellar atmospheres presented by Kuruczet al. (1974) and Kurucz (1979) have been used for calculations. Since the versus optical depth dependence is rather weak, it has been assumed that (=cost. With a fixed effective temperatureT eff maximum values of are characteristic of stars featuring the lowest surface gravity accelerationg. Among stars with radiatively stable atmospheres, maximum values of (=5000 Å) 0.4–0.6 are exhibited by supergiants withT eff=8000–20 000 K. The plot of () is characterized by discontinuities at the boundaries of spectral series for hydrogen and, sometimes, for helium. Maximum are attained in the Lyman region of =912–1200 Å, where can reach the value 0.7–0.9 for supergiants, this value being 0.3 for Main-Sequence stars. For stars withT eff 35 000 K, high values of also are attained for <912 Å. Within the infrared region, is always small because of bremsstrahlung absorption.A rapid growth of the source functionB with < typical for ultraviolet range (within the Wien part of spectrum), together with high values of results in the strong polarization of emission from a unit stellar surface element, sometimes exceeding the values for the case of a pure electron scattering. For longer wavelengths, where the limb-darkening coefficient is smaller, the plane of polarization abruptly turns 90° in the central parts of the visible stellar disk.  相似文献   

8.
The relevant data for the known 147 pulsars are presented in graphical and tabular forms. Various data correlations are discussed, and a detailed analysis of pulsar dispersion measures and distances is given. The range of the electron densities in the diffuse interstellar medium is found to be 0.01 cm–3n e0.1 cm–3, and n e0.03 cm–3. The dispersion scale height for pulsars is found to be 5.9±0.7 pc cm–3 implying a linear scale height of 200 pc, which is much smaller than the electron scale height of our Galaxy.Astrophysics and Space Science Review Paper.  相似文献   

9.
In Table I we present seven digit numerical solutions of the Lane-Emden equation for the plane-parallel, cylindrical, and spherical case for polytropic indices ofn=–10, –5, –4, –3, –2, –1.5, –1.01, –0.9, –0.5, 0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 10, 20, ±, supplemented byn=2.5, 3.5, 4.5, and 4.99 for the spherical case.In Table II some finite boundary values of polytropic slabs, cylinders, and spheres are summarized. For polytropic spheres (N=3) we have also quoted boundary values near the minimum of the dimensionless mass -2 11 occurring atn4.823 (Seidov and Kuzakhmedov, 1978).  相似文献   

10.
On the basis of empirical (D)-dependency at the frequency of 5 GHz constructed using 15 planetary nebulae with the independently measured distances (10–171×10–20 W m–2 Hz–1 ster–1), we evaluated distances of 335 objects. Independent evidence of the correctness of the accepted scale are given. Then(D)-dependency is constructed and it is shown that atD<0.08 pc the mean electron density is higher than the one determined by the Seaton method. We showed that the filling factor diminishes with the increase of the PN diameter (1 atD0.08 pc and 0.2 atD0.4 pc). the ionized mass of 33 PNs is determined. With the diameter increase the ionized mass grows and atD0.4 pc reaches the valueM0.07M . We used the new distance scale when investigating the space distribution of PNs. The mean scale height =130±15 pc and the mean gradient of the change of surface densitym=0.37, which allowed us to estimate the total number of nebulae in the GalaxyN4×104. We divided the PNs according to their velocities (withV LSR>35 km s–1 andV LSR<35 km s–1) and permitted us to confirm that the PN belong to different sub-systems of the Galaxy. The estimated local formation rate of PNs [=(4.6±2.2)×10–12 pc–3 yr–1] is a little higher than the one of the white dwarfs. That can be explained by a large number of PNs having binary cores, which used in our sample. The statistical estimation of PN expansion velocity showed thatV ex increases from 5–7 km s–1 (atD0.03 pc) to 40–50 km s–1 (atD0.8 pc).  相似文献   

11.
Statistical analysis has been carried out of the relations between period and the ageP–t c, and the inclination of magnetic to rotation axis to the age –t cof pulsars have been done.Up to characteristic agest c=3×107 years the period increases as expected for magneto-dipole radiation energy lossesP=P m (1–exp(–t/ B ))1/n–1. Best-fitting parameters of this approximation are the time-scale of the magnetic moment decay B =4×106 years and breaking indexn=3.6. Fort c>3×107 years theP–t cdependence is significantly different.The inclination of magnetic to rotation axis decreases versus age, showing a secular alignment of the axis. But this decrease continues also only up tot c=3×107 years. Thus bothP–t cand –t cdependencies indicate that most of the pulsars of agest c>3×107 years are not evolutionary continuations of more younger ones, but apparently represent another population of pulsars, which differ by their genetic history or physical processes. This population includes all known millisecond pulsars. We suggest, that this population is a so-called recycled pulsar. The list of candidates of recycled pulsars is presented.A new evaluation of the inclination of the magnetic to the rotation axis for 105 pulsars is presented.  相似文献   

12.
I give an interpretation of a result of Simpsonet al. (1988) on the variation with kinetic energyT i of the mean pathlengthX m (T i ) of the galactic cosmic rays (CGRs) in the range 0.1T i 10.0 GeV nucl–1. I argue that the data onX m (T i ) may be interpreted in terms of a model of GCR diffusion on the one-dimensional Alfvén-wave turbulence, having a cutoff in the spectrum at frequencies h , where h is the proton gyrofrequency. The cutoff results in changing of the character of variation of the GCR diffusion coefficientD(T i )T a in the rangeT i 1 GeV nucl–1 towards some more complicated variation at 0.1T i 1.0 GeV nucl–1 due to the peculiarities of the pitch-angle scattering at 900.  相似文献   

13.
In this paper we adopt the method of relativistic fluid dynamics to examine the number density distribution of stars around a massive black hole in the core of stellar clusters. We obtain extensive results,n(r) r –a, 3/2a9/2, which include, respectively, then(r) r –7/4 power law obtained by Bahcall and Wolf and then(r) r –9/4 power law by Peebles. Sincen(r) is not an observable quantity for star clusters, we also consider general relativity effects, i.e., the consequence of the bending of light, in calculating the projected density of stars in such a system. As an example we employ a massive black hole 103 M inlaid in the center of a globular cluster and calculate various projected densities of stars. The results show that cusp construction occurs in all cases unless the central black hole massM=0, and the polytropic index does not affect at all the position of the capture radiusr a. The obvious differences in the surface density is only embodied in the interior of the capture radius. At the outer regions of the core, the surface density of stars declines rapidly with ar –5 power law in all cases. These results can be applied to cases of unequal-mass and non-steady state.  相似文献   

14.
The area preserving mapping x = x + a(yy 3), y = ya(xx3), for 0.3 a 2.0 has been studied to locate approximately the x-axis points bounding almost stable regions. For each value of a, these are fixed points with variational trace just greater than 2.0. Transition to chaos can occur rapidly as a increases (with n/k fixed).  相似文献   

15.
By considering the consecutive effects of synchrotron reabsorption, Compton scattering and other kinds of energy losses of relativistic electrons, it may be possibile to form a universal distribution of electrons in the region of reabsorption (synchrotron reactor). This will be either a power law with a power index of the energy spectrumn r=3–5, or a relativistic Maxwell distribution with an electron temperatureT e=4T b(1+), where is the ratio of Compton (or other losses) to synchrotron losses, andT bis the brightness temperature of the radiation. Since the total energy losses of electrons in the reactor is equal to zero, this ensures the continuous existence and accumulation of relativistic electrons in the region of reabsorption and their associated hard scattered radiation. Multiple Compton scattering produces a specific stepped power distribution of scattered radiation by which we can identify the reactor. In the nuclei of quasars W Hand, therefore,n r=3; hence the spectral index of scattered radiation in the corresponding ranges (optical, UV, X- and -ray) is .Consideration of other kinds of losses and gains of energy by electrons can lead to the dependencen =3–5(E) — where (E) may have either positive or negative values—which, in turn, leads to the frequency dependence of the spectral index of scattered radiation = 1 – (), |()| < 1, |(E)| < 1.Within the framework of the model being considered, the physical parameters of the nucleus of quasar 3C 273 are calculated.  相似文献   

16.
The consequences of a cosmological term varying asS –2 in a spatially isotropic universe with scale factorS and conserved matter tensor are investigated. One finds a perpetually expanding universe with positive and gravitational constantG that increases with time. The hard equation of state 3P>U (U mass-energy density,P scalar pressure) applied to the early universe leads to the expansion lawSt (t cosmic time) which solves the horizon problem with no need of inflation. Also the flatness problem is resolved without inflation. The model does not affect the well known predictions on the cosmic light elements abundance which come from standard big bang cosmology.In the present, matter dominated universe one findsdG/dt=2H/U (H is the Hubble parameter) which is consistent with observations provided <10–57 cm–2. Asymptotically (S) the term equalsGU/2, in agreement with other studies.  相似文献   

17.
Analytic structure of high-density steady isothermal spheres is discussed using the TOV equation of hydrostatic equilibrium which satisfies an equation of state of the kind:P = K g , = g c 2.Approximate analytical solutions to the Tolman-Oppenheimer-Volkoff (TOV) equations of hydrostatic equilibrium in (, ), (,U) and (u, v) phase planes in concise and simple form useful for short computer programmes or on small calculator, have been given. In Figures 1, 2, and 3, respectively, we display the qualitative behaviours of the ratio of gas density g to the central density gc , g / gc ; pressureP to the gc ,P/ gc ; and the metric componente , for three representative general relativistic (GR) isothermal configurations =0.1, 0.2, and 0.3. Figure 4 shows the solution curve (, ) for =0.1, 0.2, and 0.3 (=0 represents the classical (Newtonian) curve). Numerical values of physical quantitiesv (=4r 2 P *(r)), in steps ofu (=M(r)/r)=0.03, and the mass functionU, in steps of =0.2 (dimensionless radial distance), are given, respectively, in Tables I and II. Other interesting features of the configurations, such as ratio of gravitational radius 2GM/c 2 to the coordinate radiusR, mass distributionM(r)/M, pressure (or density) distributionP/P c , binding energy (B.E.), etc., have also been incorporated in the text. It has further been shown that velocity of sound inside the configurations is always less than the velocity of light.Part of the work done at Azerbaijan State University, Baku, U.S.S.R., and Mosul University, Mosul, Iraq, 1985-1986  相似文献   

18.
Wheatland  M.S.  Litvinenko  Y.E. 《Solar physics》2002,211(1-2):255-274
The observed distribution of waiting times t between X-ray solar flares of greater than C1 class listed in the Geostationary Operational Environmental Satellite (GOES) catalog exhibits a power-law tail (t) for large waiting times (t>10hours). It is shown that the power-law index varies with the solar cycle. For the minimum phase of the cycle the index is =–1.4±0.1, and for the maximum phase of the cycle the index is –3.2±0.2. For all years 1975–2001, the index is –2.2±0.1. We present a simple theory to account for the observed waiting-time distributions in terms of a Poisson process with a time-varying rate (t). A common approximation of slow variation of the rate with respect to a waiting time is examined, and found to be valid for the GOES catalog events. Subject to this approximation the observed waiting-time distribution is determined by f(), the time distribution of the rate . If f() has a power-law form for low rates, the waiting time-distribution is predicted to have a power-law tail (t)–(3+) (>–3). Distributions f() are constructed from the GOES data. For the entire catalog a power-law index =–0.9±0.1 is found in the time distribution of rates for low rates (<0.1hours –1). For the maximum and minimum phases power-law indices =–0.1±0.5 and =–1.7±0.2, respectively, are observed. Hence, the Poisson theory together with the observed time distributions of the rate predict power-law tails in the waiting-time distributions with indices –2.2±0.1 (1975–2001), –2.9±0.5 (maximum phase) and –1.3±0.2 (minimum phase), consistent with the observations. These results suggest that the flaring rate varies in an intrinsically different way at solar maximum by comparison with solar minimum. The implications of these results for a recent model for flare statistics (Craig, 2001) and more generally for our understanding of the flare process are discussed.  相似文献   

19.
Intensity, polarization, and cooling rate of the two-photon annihilation radiation are studied in detail in the case of one-dimensional power-law distributions of electrons and positrons, assuming that they occupy the ground Landau level in a strong magnetic fieldB1010–1012 G. Simple analytical expressions for limiting cases are obtained and results of numerical calculations of radiation characteristics are presented. Power-lawe ± distributions ± ± –k are shown to generate power-law spectra of the annihilation radiation atEmc 2 andEmc 2, with indices depending on the direction of radiation. The annihilation spectra at =0 show the largest blue-shifts of their maxima and the hardest high-energy tailsI(Emc 2, =0)E –(k–1). The blue-shifts reduce, and the hard tials steepen, with increasing . At >(2mc 2/E)1/2 the slopes of the high-energy tails rapidly transform to that at =2,I(Emc 2, =/2)E –(2k+3). The direction-integrated spectraS(E) also display the power-law tials at low and high energies,S(Emc 2)E –(k+1). The total annihilation rate and energy losses decrease with decreasingk, being higher than for the isotropice ± power-law distributions at the samek. The radiation is linearly polarized in the plane formed by the magnetic field and wave-vector. The polarization degreeP is maximum atEmc 2:P max0.6 for =/2. Annihilation features and power-law-like hard tails observed in many gamma-ray burst spectra may be associated with the annihilation radiation of the magnetized power-law distributed plasma near neutron stars. Comparison of the observed and theoretical spectra allows one to estimate the power-law index of thee e +-distribution and the gravitational redshift factor in the radiating region.  相似文献   

20.
The24MgH+ (A 1+X 1+) molecular lines have been identified in the photospheric spectrum. The rotational excitation temperature determined from the analysis of molecular line intensities of24MgH+ is found to be of the order of 4850 K which corresponds to the photospheric temperature of the Sun. The CNDO/2 dipole moments of24MgH+ for internuclear distance range: (1.3–2.1) Å in theX 1+ state can be approximated byM(R)=4.92+1.33R. Estimations for the spontaneous emission Einstein coefficients (A v v ) and the absorption oscillator strengths (f v v ) for the (1, 0), (2, 0), and (2, 1) transitions in theX 1+ state of the24MgH+ ion are also made.Work partially supported by the CNPq, Brasilia under contract number 30.4076/77.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号