首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lunar physical libration, which is true oscillation of lunar equator in the space, alters the lunar gravitational field in the space coordinate system and affects the orbiting motion of lunar orbiters (hereafter called as lunar satellites) correspondingly. The effect is very similar to that of the precession and nutation on the earth satellites, and a similar treatment can be used. The variations in the gravitational force and in the orbit perturbation solution are clearly given in this paper together with numerical illustrations.  相似文献   

2.
The application of modern computing techniques in the study of the physical libration of the Moon in longitude brings into a new perspective this problem that has been debated so much in the past.  相似文献   

3.
4.
An analytical theory of lunar physical librations based on its two-layer model consisting of a non-spherical solid mantle and ellipsoidal liquid core is developed. The Moon moves on a high-precision orbit in the gravitational field of the Earth and other celestial bodies. The defined fourth mode of a free libration is caused by the influence of the liquid core, with a long period of 205.7 yr, with amplitude S = 0″0395 and with an initial phase Π0 = ?134° (for the initial epoch 2000.0). Estimates of dynamic (meridional) oblatenesses of a liquid core of the Moon have been estimated: ?D = 4.42 × 10?4, μD = 2.83 × 10?4 (?D + μD = 7.24 × 10?4). These results have been obtained as a result of comparison of the developed analytical theory of physical librations of the Moon with the empirical theory of librations of the Moon constructed on the basis of laser observations.  相似文献   

5.
A flexible and informative vector approach to the problem of physical libration of the rigid Moon has been developed in which three Euler differential equations are supplemented by 12 kinematic ones. A linearized system of equations can be split into an even and odd systems with respect to the reflection in the plane of the lunar equator, and rotational oscillations of the Moon are presented by superposition of librations in longitude and latitude. The former is described by three equations and consists of unrestricted oscillations with a period of T 1 = 2.878 Julian years (amplitude of 1.855″) and forced oscillations with periods of T 2 = 27.201 days (15.304″), one stellar year (0.008″), half a year (0.115″), and the third of a year (0.0003″) (five harmonics altogether). A zero frequency solution has also been obtained. The effect of the Sun on these oscillations is two orders of magnitude less than that of the Earth. The libration in latitude is presented by five equations and, at pertrubations from the Earth, is described by two harmonics of unrestricted oscillations (T 5 ≈ 74.180 Julian years, T 6 ≈ 27.347 days) and one harmonic of forced oscillations (T 3 = 27.212 days). The motion of the true pole is presented by the same harmonics, with the maximum deviation from the Cassini pole being 45.3″. The fifth (zero) frequency yields a stationary solution with a conic precession of the rotation axis (previously unknown). The third Cassini law has been proved. The amplitudes of unrestricted oscillations have been determined from comparison with observations. For the ratio $ \frac{{\sin I}} {{\sin \left( {I + i} \right)}} \approx 0.2311 $ \frac{{\sin I}} {{\sin \left( {I + i} \right)}} \approx 0.2311 , the theory gives 0.2319, which confirms the adequacy of the approach. Some statements of the previous theory are revised. Poinsot’s method is shown to be irrelevant in describing librations of the Moon. The Moon does not have free (Euler) oscillations; it has oscillations with a period of T 5 ≈ 74.180 Julian years rather than T ≈ 148.167 Julian years.  相似文献   

6.
Martin Veasey 《Icarus》2011,214(1):265-274
As Mercury orbits the Sun, gravitational torques on its equatorial elliptical shape give rise to a planetary libration. The amplitude of Mercury’s libration, as determined from Earth-based radar speckle pattern observations, suggests that only the mantle participates in the motion. This indicates a decoupling between the core and the mantle, and therefore that the outermost part of the core must be fluid. If a solid inner core is present at the center of Mercury, the equatorial elliptical shape of the latter may become misaligned with that of Mercury’s mantle, leading to an internal gravitational torque between the two. If this torque is large, it may participate in the dynamics of Mercury’s libration. The goal of this work is to determine whether Mercury’s observed librations can be used to place constraints on the properties of its inner core. We present a comparison between predicted and observed librations for a range of interior models of Mercury, with various inner core sizes and fluid core densities. We show that a marginally better fit to observations can be achieved for interior models that have an inner core radius larger than 400 km. However, the improvement in fit is small, and it is not possible to draw robust conclusions on the size of Mercury’s inner core on the basis of existing libration data. Nevertheless, our study demonstrates that the influence of the inner core on the libration of Mercury could be detected with a decade worth of accurate observations.  相似文献   

7.
By the new vector method in a nonlinear setting, a physical libration of the Moon is studied. Using the decomposition method on small parameters we derive the closed system of nine differential equations with terms of the first and second order of smallness. The conclusion is drawn that in the nonlinear case a connection between the librations in a longitude and latitude, though feeble, nevertheless exists; therefore, the physical libration already is impossible to subdivide into independent from each other forms of oscillations, as usually can be done. In the linear approach, ten characteristic frequencies and two special invariants of the problem are found. It is proved that, taking into account nonlinear terms, the invariants are periodic functions of time. Therefore, the stationary solution with zero frequency, formally supposing in the linear theory a resonance, in the nonlinear approach gains only small (proportional to e) periodic oscillations. Near to zero frequency of a resonance there is no, and solution of the nonlinear equations of physical libration is stable. The given nonlinear solution slightly modifies the previously unknown conical precession of the Moon’s spin axis. The character of nonlinear solutions near the basic forcing frequency Ω1, where in the linear approach there are beats, is carefully studied. The average method on fast variables is obtained by the linear system of differential equations with almost periodic coefficients, which describe the evolution of these coefficients in a nonlinear problem. From this follows that the nonlinear components only slightly modify the specified beats; the interior period T ≈ 16.53 days appears 411 times less than the exterior one T ≈ 18.61 Julian years. In particular, with such a period the angle between ecliptic plane and Moon orbit plane also varies. Resonances, on which other researches earlier insisted, are not discovered. As a whole, the nonlinear analysis essentially improves and supplements a linear picture of the physical libration.  相似文献   

8.
The Euler equations for the forced physical librations of the Moon have already been solved by using a digital computer to perform the semi-literal mathematical manipulations. Very near resonance, the computer solution for the physical libration in longitude is complemented by the solution of the appropriate Duffing equation with a dissipation term. Because of its apparent proximity to a resonant frequency, the term whose argument is 2 - twice the mean angular distance of the Moon's perigee from the ascending node of its orbit - is especially important. Its phase, which soon should be measurable, is related to the Moon's anelasticity. The term's frequency, in units of the sidereal month, increases as the semi-major axis of the Moon's orbit about the Earth increases. Using the Moon's mechanical ellipticity of Koziel and the rate of increase of the semi-major axis of MacDonald, it is estimated that the 2 term will cross the resonant frequency in 130 million years and, if the rate of energy dissipation is sufficiently low, a transient libration will be induced.  相似文献   

9.
The existence of the three-parametric family of the collinear-libration points in the photo-gravitational three-body problem (differing from the classical one by the addition to the gravitational field the light repulsion force-field) is proved. The number and situation of these points are determined with respect to the system parameters. Their stability to a first approximation is investigated. It is shown that oppositly to the classical problem the internal collinear libration-points may be stable in some domain of parameter-space.  相似文献   

10.
11.
Nonlinear stability of the triangular libration point in the photogravitational restricted three body problem was investigated in the whole range of the parameters. Some results obtained earlier are corrected. The method for proper determination of cases when stability cannot be determined by four order terms of the hamiltonian was proposed.  相似文献   

12.
A number of criteria for linear stability of libration points in the perturbed restricted three-body problem are presented. The criteria involve only the coefficients of the characteristic equation of the tangent map of the libration points and can be easily applied. With these criteria the effect of drag on the linear stability of the triangular libration points in the classical restricted three-body problem is investigated. Some of Murray et al.'s results are improved.  相似文献   

13.
The stability of the triangular libration points in the case when the first and the second order resonances appear was investigated. It was proved that the first order resonances do not cause instability. The second order resonances may lead to instability. Domains of the instability in the two-dimensional parameter space were determined.  相似文献   

14.
15.
In this paper we have proved the existence of libration points for the generalised photogravitational restricted problem of three bodies. We have assumed the infinitesimal mass of the shape of an oblate spheroid and both of the finite masses to be radiating bodies and the effect of their radiation pressure on the motion of the infinitesimal mass has also been taken into account. It is seen that there is a possibility of nine libration points for small values of oblateness, three collinear, four coplanar and two triangular.  相似文献   

16.
Moore (1983) presented a theory of resonance with two degrees of freedom based on the Bohlin-von Zeipel procedure. This procedure is now applied to librational motion with all constants re-evaluated in terms of values of the momenta given either by the initial conditions, or, in the case of the momentumy 1 conjugate to the critical argument x1, by its value at the libration centre. Numerical results are presented for a resonant satellite in a near 12 hr orbit and for a geosynchronous satellite. The theory is further developed to include near-circular orbits by recasting the problem in terms of the Poincaré eccentric variables.  相似文献   

17.
In this paper we consider the circular restricted problem of three oblate spheroids. The collinear equilibrium solutions are obtained. Finally a numerical study of the influence of the non-sphericity in the location of the libration points is made.  相似文献   

18.
First derivatives of the ELP 2000 solution of the main problem have been obtained. They are used for computation of the lunar motion perturbations due to the Earth's oblateness and to secular terms in the solar eccentricity and perigee.Proceedings of the Conference on Analytical Methods and Ephemerides: Theory and Observations of the Moon and Planets. Facultés universitaires Notre Dame de la Paix, Namur, Belgium, 28–31 July, 1980.  相似文献   

19.
The location and the stability in the linear sense of the libration points in the restricted problem have been studied when there are perturbations in the potentials between the bodies. It is seen that if the perturbing functions satisfy certain conditions, there are five libration points, two triangular and three collinear. It is further observed that the collinear points are unstable and for the triangular points, the range of stability increases or decreases depending upon whetherP> or <0 wherep depends upon the perturbing functions. The theory is verified in the following four cases:
  1. There are no perturbations in the potentials (classical problem).
  2. Only the bigger primary is an oblate spheroid whose axis of symmetry is perpendicular to the plane of relative motion (circular) of the primaries.
  3. Both the primaries are oblate spheroids whose axes of symmetry are perpendicular to the plane of relative motion (circular) of the primaries.
  4. The primaries are spherical in shape and the bigger is a source of radiation.
  相似文献   

20.
The possibility of stabilizing the collinear libration points of the circular restricted three-body problem by using an additional jet acceleration (constant in magnitude) is investigated. Three stabilization laws are considered when the jet acceleration is either directed continuously to one of the primariesm 1,m 2 or is parallel to the line joining them. The solution of the problem formulated is based on the method of the driving forces structure analysis created by W. Thomson and P. Tait. It is shown that none of the stabilization laws mentioned ensures the existence of the isolated minimum of changed potential energy, and therefore the secular stability of the collinear libration points is impossible. In the 3rd and 4th paragraphs the possibility of a gyroscopic stabilization of these points is considered. It is shown that the gyroscopic stabilization of the external libration points is possible only when jet acceleration is either directed to the distant mass or is parallel to the line joining the primaries. The necessary and sufficient conditions of the gyroscopic stabilization are given. It is also shown that the internal libration points cannot be stabilized by any of the laws considered. For the Earth-Moon system the numerical data of time-existence of the satellite in the vicinity of the libration point situated near the Moon are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号