首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
Data are presented on rare-earth elements (REE) in prefiltered (<450 nm) near-surface and deeper groundwaters and in corresponding particulate matter (>450 nm) from the Osamu Utsumi uranium mine and the Morro do Ferro thorium-REE-deposit. Groundwaters from both sites typically contain between 1–50 μg/l of total REE, but can reach values of up to 160 μg/l in the deepest borehole F4 (U-Mine: 150–415 m). Even higher REE concentrations of up to 29 mg/l were measured in acidic, sulfate-rich near-surface waters of the same site. The chondrite-normalized REE patterns in deeper, more reducing groundwaters and in their corresponding suspended particle fractions are similar to those observed in the bedrock (phonolites), indicating that bedrock leaching and secondary mineral sorption occurred without significant fractionation between these elements, in accordance with the only small variations in the stability constants of the expected REE-sulfate complexes in these waters. Groundwaters from the unsaturated zone of both sites show a very characteristic cerium depletion (less pronounced than that observed in the corresponding suspended particulate fractions), which is most probably related to the oxidation of Ce (III) under the prevailing Eh-conditions of these waters (600 to 800 mV), and to sorption/precipitation reactions of the much less soluble Ce(IV) species. Coarse particulate matter (>450 nm), composed mainly of amorphous ferric hydrous oxides, has a strong capacity for sorption of REE. This is shown by its very high REE concentrations, in some boreholes > 8,000 μg/g (total REE), and by the calculated association ratios Ra (ml/g), which are in the order of 105 to 106. The implications of these findings for the migration behavior of REE in both environments are discussed.  相似文献   

2.
Surface and ground waters, collected over a period of three years from the Osamu Utsumi uranium mine and the Morro do Ferro thorium/rare-earth element (Th/REE) deposits, were analyzed and interpreted to identify the major hydrogeochemical processes. These results provided information on the current geochemical evolution of ground waters for two study sites within the Poços de Caldas Natural Analogue Project.The ground waters are a K---Fe---SO4---F type, a highly unusual composition related to intense weathering of a hydrothermally altered and mineralized complex of phonolites. Tritium and stable isotope data indicate that ground waters are of meteoric origin and are not affected significantly by evaporation or water-rock interactions. Recharging ground waters at both study sites demonstrate water of less than about 35 years in age, whereas deeper, more evolved ground waters are below 1 TU but still contain in most cases detectable tritium. These deeper ground waters may be interpreted as being of 35 to 60 or more years in age, resulting mainly from an admixture of younger with older ground waters and/or indicating the influence of subsurface produced tritium.Geochemical processes involving water-rock-gas interactions have been modeled using ground water compositions, mineralogic data, ion plots and computations of speciation, non-thermodynamic mass balance and thermodynamic mass transfer. The geochemical reaction models can reproduce the water chemistry and mineral occurrences and they were validated by comparing the results of thermodynamic mass transfer calculations (using the PHREEQE program, Parkhurst et al., 1980). The results from the geochemical reaction models reveal that the dominant processes are production of CO2 in the soil zone through aerobic decay of organic matter, dissolution of fluorite, calcite, K-feldspar, albite, chlorite and manganese oxides, oxidation of pyrite and sphalerite, and precipitation of ferric oxides, silica and kaolinite. Gibbsite precipitation can be modeled for the shallow (recharge) water chemistry at Morro do Ferro, consistent with known mineralogy. Recharge waters are undersaturated with respect to barite and discharging waters and deeper ground waters are saturated to supersaturated with respect to barite demonstrating a strong solubility control. Strontium isotope data demonstrate that sources other than calcium-bearing minerals are required to account for the dissolved strontium in the ground waters. These may include K-feldspar, smectite-chlorite mixed-layer clays and goyazite [SrAl3(PO4)2(OH)5·H2O].  相似文献   

3.
Concentrations of total and dissolved elements were determined in 35 water samples collected from rivers in Sardinia, a Mediterranean island in Italy. The overall composition did not change for waters sampled in both winter and summer (i.e., January at high-flow condition and June at low-flow condition), but the salinity and concentrations of the major ions increased in summer. Concentrations of elements such as Li, B, Mn, Rb, Sr, Mo, Ba and U were higher in summer with only small differences between total and dissolved (i.e., in the fraction <0.4 μm) concentrations. The fact that these elements are mostly dissolved during low flow periods appears to be related to the intensity of water–rock interaction processes that are enhanced when the contribution of rainwater to the rivers is low, that is during low-flow conditions. In contrast, the concentrations of Al and Fe were higher in winter during high flow with total concentrations significantly higher than dissolved concentrations, indicating that the total amount depends on the amount of suspended matter. In waters filtered through 0.015 μm pore-size filters, the concentrations of Al and Fe were much lower than in waters filtered through 0.4 μm pore-size filters, indicating that the dissolved fraction comprises very fine particles or colloids. Also, Co, Ni, Cu, Zn, Cd and Pb were generally higher in waters collected during the high-flow condition, with much lower concentrations in 0.015 μm pore-size filtered waters; this suggests aqueous transport via adsorption onto very fine particles. The rare earth elements (REE) and Th dissolved in the river waters display a wide range in concentrations (∑REE: 0.1–23 μg/L; Th: <0.005–0.58 μg/L). Higher REE and Th concentrations occurred at high flow. The positive correlation between ∑REE and Fe suggests that the REE are associated with very fine particles (>0.015 and <0.4 μm); the abundance of these particles in the river controls the partitioning of REE between solution and solid phases.Twenty percent of the water samples had dissolved Pb and total Hg concentrations that exceeded the Italian guidelines for drinking water (>10 μg/L Pb and >1 μg/L Hg). The highest concentrations of these heavy metals were observed at high-flow conditions and they were likely due to the weathering of mine wastes and to uncontrolled urban wastes discharged into the rivers.  相似文献   

4.
《Applied Geochemistry》1991,6(5):565-574
Natural colloids (1–450 nm) and suspended particles (>450 nm) were characterized in groundwaters of the Whiteshell Research Area of southern Manitoba to evaluate their potential role in radionuclide transport through fractured granite. Data on particle concentrations, size distributions, compositions and natural radionuclide content were collected to predict radionuclide formation and to provide a database for future colloid migration studies. The concentrations of colloids between 10 and 450 nm ranged between 0.04 and 1 mg/l. The concentrations of suspended particles, which require higher groundwater velocities for transport, varied from 0.04 to 14 mg/l. Colloid (10–450 nm) concentrations as low as these observed in Whiteshell Research Area groundwater would have a minimal effect on radionuclide transport, assuming that radionuclide sorption on colloids is reversible. If radiocolloid formation is not reversible, and radionuclide-containing colloids cannot sorb onto fracture walls, the importance of natural colloids in radionuclide transport will depend upon particle migration properties.  相似文献   

5.
《Applied Geochemistry》1993,8(6):605-616
The Cigar Lake U deposit is located in northern Saskatchewan in the eastern part of the Athabasca Sandstone Basin, and consists of a high-grade ore body (up to 55% U) located at a depth of ∼430 m. As part of a study to evaluate the analog features of this deposit with respect to a disposal vault for waste nuclear fuel, colloids (1–450 nm) and suspended particles (450nm) in groundwater have been investigated to evaluate their effect on element transport through the U deposit. Tangential-flow ultrafiltration was used to concentrate particles from 501 groundwater samples in order to characterize the size distribution, concentration, composition and natural radionuclide content of particles in representative parts of the U deposit. Although Cigar Lake groundwaters contain particles in all sizes ranging from 10 nm to slightly larger than 20 μm, most samples contained a relatively high concentration of colloids in the 100–400 nm size range. Particle compositions are similar to the composition of minerals in the sandstones and ore body, suggesting that particles in groundwater are generated by the erosion of fracture-lining minerals. As a result, particle concentrations in groundwater are affected by the integrity of the host rock. In some piezometers the high initial concentrations of suspended particles, which may have been drilling artifacts, decreased during the collection of the first 350 1. Although colloid concentrations fluctuated during sampling, there are no indications that these concentrations will be permanently reduced by continued groundwater pumping. The observed colloid and suspended particle concentrations in the deep groundwaters are too low to have a significant impact on radionuclide migration, provided that radionuclide sorption is reversible. If radionuclides are irreversibly sorbed to particles they cannot sorb to the host rock and their migration can only be evaluated with an understanding of particle mobility. The data for dissolved and particulate U, Th and Ra were used to calculate field-derived distribution ratios (Rd) between particles and groundwater. The wide range of observed Rd values indicates that these radionuclides in particulate form are not in equilibrium with groundwater. U-series isotope data indicated that most of the U and Ra on particles was derived from groundwater. Some particles could have retained their U for as long as 8000 a. The U and Ra contents of particles in the ore and surrounding clay zones are significantly higher than in particles from sandstone, suggesting that the clay has been an effective barrier to particle migration.  相似文献   

6.
The concentrations of dissolved and suspended particulate rare-earth elements (REE) are reported in acid-sulphate waters from the Odiel and Tinto rivers. Shale normalized patterns are typically convex and high REE concentrations (e.g., Ce=0.43–65 μg.l−1) are present in the waters. The REE content of the suspended load is greater by a factor of up to 3000. In the Odiel river, REE patterns of the particulates are essentially convex and sub-parallel to those of the waters; speciation calculations indicate that SO4 complexes play a dominant role in controlling the REE distributions. In the Tinto river, the REE patterns of the suspended load are slightly fractionated and a negative Ce anomaly is apparent in several samples, reflecting the local influence of phosphogypsum deposits.Contrasting with normal estuaries, REE are not intensely removed in the low chlorinity zone. A remobilization in relation to Fe reduction is observed in the Tinto river.  相似文献   

7.
The chemical, isotopic and mineralogical alteration which occurred during primary uranium ore deposition at the breccia pipe-hosted Osamu Utsumi mine, Poços de Caldas, Brazil was studied as a natural analogue for near field radionuclide migration. Chemical and isotopic alteration models were combined with finite difference models of the convective cooling of caldera intrusives. The modeling indicates that the intense chemical, isotopic, and mineralogical alteration of the Osamu Utsumi breccia pipe requires the circulation of > 105 kg/cm2 of boiling hydrothermal fluid > 200°C through each square centimeter cross-section of the pipe. This circulation could be driven by heat from a 6 km diameter intrusive extending to 10 km depth. Even with this large amount of circulation concentrated in the permeable breccia pipe, uranium solubilities must be orders of magnitude greater than indicated in the most recent experiments (and more in line with previous estimates) to produce the primary uranium mineralization at the Osamu Utsumi mine.The same models applied to a hypothetical high temperature waste repository show that heat from radioactive decay will produce a hydrothermal circulation system remarkably similar to that studied at the natural analogue site at Poços de Caldas. The depth of fluid convection induced by the hypothetical repository would be 5 to 10 km, the maximum temperature would be 300°C, the lifetime of the high temperature phase would be a few thousand years, and boiling would occur and cause most of the alteration within the hypothetical waste repository. This physical analysis emphasizes the importance of permeability on a 10 × 10 × 10 km scale in controlling the potential amount of circulation through the hypothetical repository.Application of the chemical models successfully used to interpret mineralization and alteration at the Poços de Caldas Osamu Utsumi mine to the hypothetical waste repository shows that even in a worst case scenario (waste implaced in a permeable host rock with no measures taken to inhibit flow though the repository) the amount of hydrothermal alteration in the hypothetical repository will be 0.1% of that in the breccia pipe at Osamu Utsumi. Assuming no barriers to uranium mobility, uranium precipitation above the hypothetical repository would be 0.04 ppm (rather than 40 ppm), hydrothermal alteration 0.03 wt% (rather than 30 wt%), etc.Our analysis indicates that modeled mineralogical alteration is sensitive to the thermodynamic data base used. Prediction of mineralogical alteration (which may be necessary to predict the migration of radionuclides other than uranium, for example) probably cannot be based directly on even very carefully collected laboratory thermodynamic data. Mineralogical complexities of the system, as well as data base uncertainties will require calibration of the thermodynamic framework against mineralogical alteration observed in the laboratory or field.  相似文献   

8.
The Mesozoic Poços de Caldas alkaline complex, the largest known in South America, is circular-shaped with a mean diameter of about 33 km, and developed during continental break-up and drift. It comprises a suite of alkaline volcanic and plutonic rocks (mainly phonolites and nepheline syenites) with average amounts of U, Th and rare-earth elements (REEs). The evolutionary history began with major early volcanism involving ankaratrites, phonolite lavas and volcanoclastics, followed by caldera subsidence and nepheline syenite intrusions forming minor ring dykes, various intrusive bodies and circular structures. Finally, the addition or concentration of strongly incompatible elements led to the formation of eudialyte nepheline syenites and phonolites.Magmatic evolution included deuteric processes indicating a volatile-rich parent magma of upper mantle origin, without appreciable crustal contamination. These processes extended over a large temperature range and resulted in the formation of pegmatitic veins and comprised mineral assemblages including rare metal silicates such as giannettite, incipient alkali exchange reactions of feldspars, various zeolites, fluorite and hematite. Geochemically, the resulting rocks are enriched in potassium when compared to global nepheline syenites and phonolites. Mobilization and concentration of U, Th and REEs did not apparently occur at this stage.At one place (Morro do Ferro) the intermediate nephelinic suite was affected by a possible carbonatite intrusion and the formation of a stockwork of magnetite veins.Very intensive hydrothermal K- and S-rich alteration, associated with contemporaneous volcanic breccias, occurred locally. These processes led to the formation of several important radioactive and REE-rich anomalies. Two of these, the Th-REE occurrence of Morro do Ferro and the U-Zr-REE-Th occurrence of the Osamu Utsumi uranium mine, comprise the study sites of the Poços de Caldas Analogue Project.Later major stages in the evolution of the Poços de Caldas complex involved the emplacement of mafic-ultramafic dyke rocks and the onset of lateritic and allitic weathering, resulting (at the uranium mine) in supergene geochemical redistribution and the formation of redox fronts sometimes related to uranium enrichments. The end of the magmatic and hydrothermal-mineralizing events is likely fixed by the Ar-Ar dating of a lamprophyre dyke at the uranium mine (76 Ma).This study was focused towards the major rock types of the regional nephelinic suite relative to those experiencing more local hydrothermal and final weathering-related alteration. In the studied intrusive, subvolcanic and volcanic nepheline syenites and phonolites, very little variation was observed. This lack of differentiation may be seen as an argument for a short emplacement history of these rock bodies. Present radiometric age measurements suggest a time span of about 10 Ma for igneous activity at the caldera.  相似文献   

9.
This work, which was done within the Swedish nuclear waste management program, was carried out in order to increase the understanding of the mobility and fate of rare earth elements (REEs) in natural boreal waters in granitoidic terrain. Two areas were studied, Forsmark and Simpevarp, one of which will be selected as a site for spent nuclear fuel. The highest REE concentrations were found in the overburden groundwaters, in Simpevarp in particular (median ∑REE 52 μg/L), but also in Forsmark (median ∑REE 6.7 μg/L). The fractionation patterns in these waters were characterised by light REE (LREE) enrichment and negative Ce and Eu anomalies. In contrast, the surface waters had relatively low REE concentrations. They were characterised either by an increase in relative concentrations throughout the lanthanide series (Forsmark which has a carbonate-rich till) or flat patterns (Simpevarp with carbonate-poor till), and had negative Ce and Eu anomalies. In the bedrock groundwaters, the concentrations and fractionation patterns of REEs were entirely different from those in the overburden groundwaters. The median La concentrations were low (just above 0.1 μg/L in both areas), only in a few samples were the concentrations of several REEs (and in a couple of rare cases all REEs) above the detection limit, and there was an increase in the relative concentrations throughout the lanthanide series. In contrast to these large spatial variations, the temporal trends were characterised by small (or non existent) variations in REE-fractionation patterns but rather large variations in concentrations. The Visual MINTEQ speciation calculations predicted that all REEs in all waters were closely associated with dissolved organic matter, and not with carbonate. In the hydrochemical data for the overburden groundwater in particular, there was however a strong indication of association with inorganic colloids, which were not included in the speciation model. Overall the results showed that within a typical boreal granitoidic setting, overburden groundwaters are enriched in REEs, organic complexes are much more important than carbonate complexes, there is little evidence of significant mixing of REEs between different water types (surface, overburden, bedrock) and spatial variations are more extensive than temporal ones.  相似文献   

10.
This paper presents and discusses the isotopic data from the hydrothermal studies of the Poços de Caldas Natural Analogue Project. The purpose of these studies was to elucidate the mass transport of relevant elements and isotopes associated with hydrothermal mineralization and alteration at the Osamu Utsumi uranium mine, as applicable to high-temperature radwaste isolation (particularly in the U.S. nuclear waste program). Research efforts were focused on studying the thermal, chemical and hydrologic nature of the palaeohydrothermal regime associated with a breccia pipe at the Osamu Utsumi mine, and related to the geochemical, geochronological and petrological characterization studies of unaltered regional nepheline syenite and phonolite.The regional rocks studies have a vertically elongated δD, δ18O pattern, which possibly indicates meteoric water/rock interaction. Regression of Rb---Sr whole-rock isotopic data for the regional nepheline syenite and phonolite samples did not produce isochrons. An internal, mineral-separate isochron regression from a nepheline syenite sample, considered representative of unaltered nepheline syenite of the Poços de Caldas plateau, yields an age of 78 Ma, and an initial ratio of approximately 0.7051. The initial ratios of the regional nepheline syenites are possibly indicative of a mantle source for the alkaline magmatism, with some incorporation of old, high Rb/Sr crustal material. The greater-than-mantle values of δ18O, if not due solely to surficial processes, also appear to require some assimilation of crustal material. Sm---Nd isotopic data for the regional rocks do not define any isochrons, although the nepheline syenite samples conform very well to a calculated reference isochron for 78 Ma and a fixed initial 143Nd/144Nd of 0.512359. The regional phonolite samples lie markedly off this isochron. This is probably due to the phonolite samples having different initial 143Nd/144Nd values. All regional samples lie within the “Mantle Array” trend. Their location within NdSr space indicates as asthenospheric Mid Ocean Ridge Basalt (MORB)-type source magma also contaminated by continental igneous and metamorphic rocks (e.g. the Precambrian gneiss surrounding the Poços de Caldas plateau).The rocks studied at the Osamu Utsumi mine from the F4 drillcore have experienced varying degrees of hydrothermal mineralization and metasomatism, and deep weathering. The hydrothermally altered rocks have a quite pronounced δD shift, with only a slight δ18O shift. The δD-δ18O trend of the hydrothermally altered F4 samples most likely reflects the variability of temperature, hydrologic flow, mineralogical alteration and, therefore, water/rock interaction and isotopic exchange in the palaeohydrothermal regime.Regression of Rb---Sr whole-rock isotopic data for subsamples from a nepheline syenite xenolith sample yields an age of 76 Ma and an initial ratio of approximately 0.7053. Due to the marked hydrothermal alteration and metasomatism of this sample, the Rb---Sr isotopic system is interpreted as being re-equilibrated and thus the regressed age is the age of the hydrothermal event. Using a versus 1/Sr mixing diagram, distinct trends are seen for hydrothermal alteration, mineralization and weathering. Again, the F4 nepheline syenite samples do not define an Sm---Nd isochron, but conform very well to a calculated model isochron for 78 Ma and an initial 143Nd/144Nd of 0.512365. The Sm---Nd isotopic data also exhibit a possible disturbance by the hydrothermal, metasomatic alteration. A lamproite dyke which crosscuts the hydrothermal alteration in the Osamu Utsumi mine gives an age of 76 Ma, which is essentially the same as the Rb---Sr age of the hydrothermally altered nepheline syenite subsamples.  相似文献   

11.
《Applied Geochemistry》2000,15(6):695-723
Ground and surface waters collected from two undisturbed Zn–Pb massive sulphide deposits (the Halfmile Lake and Restigouche deposits) and active mines in the Bathurst Mining Camp (BMC), NB, Canada were analysed for the rare earth elements (REE). REE contents are highly variable in waters of the BMC, with higher contents typical of waters with higher Fe and lower pH. There are significant differences between ground- and surface waters and between groundwaters from different deposits. The REE contents of surface waters are broadly similar within and between deposit areas, although there are spatial variations reflecting differences in pH and redox conditions. Surface waters are characterised by strong negative Ce anomalies ([Ce/Ce*]NASC as low as 0.08), produced by oxidation of Ce3+ to Ce4+ and preferential removal of Ce4+ from solution upon leaving the shallow groundwater environment. Groundwaters and seeps typically lack significant Ce anomalies reflecting generally more reducing conditions in the subsurface environment and indicating that Ce oxidation is a rapid process in the surface waters. Deeper groundwaters at the Halfmile Lake deposit are characterised by REE patterns that are similar to the host lithologies, whereas most groundwaters at the Restigouche deposit have LREE-depleted patterns compared to NASC. Halfmile Lake deposit groundwaters have generally lower pH values, whereas Restigouche deposit groundwaters show greater heavy REE-complexation by carbonate ions. Shallow waters at the Halfmile Lake and Stratmat Main Zone deposits have unusual patterns which reflect either the adsorption of light REE onto colloids and fracture-zone minerals and/or precipitation of REE–phosphate minerals. Middle REE-enrichment is typical for ground- and surface waters and is highest for neutral pH waters. The labile portion of stream sediments are generally more middle REE-enriched than total sediment and surface waters indicating that the REE are removed from solution by adsorption to Fe- and Mn-oxyhydroxides in the order middle REE≥light REE>heavy REE.  相似文献   

12.
Particle size distributions and the mineralogy of inorganic colloids in waters draining the adit of an abandoned mine (Goesdorf, Luxembourg) were quantified by single particle counting based on light scattering (100 nm–2 μm) combined with transmission electronic microscopy coupled with energy dispersive spectroscopy and selected area electron diffraction. This water system was chosen as a surrogate for groundwaters. The dependence of the colloid number concentration on colloid diameters can be described by a power-law distribution in all cases. Power-law slopes ranged from −3.30 to −4.44, depending on water ionic strength and flow conditions. The same main mineral types were found in the different samples: 2:1 phyllosilicates (illite and mica), chlorite, feldspars (albite and orthoclase), calcite and quartz; with a variable number of Fe oxide particles. The colloid mineralogical composition closely resembles the composition of the parent rock. Spatial variations in the structure and composition of the rock in contact with the waters, i.e. fissured rock versus shear joints, are reflected in the colloid composition. The properties of the study colloids, as well as the processes influencing them, can be considered as representative of the colloids present in groundwaters.  相似文献   

13.
Small, low-grade, granitic pegmatite U–Th–REE deposits are found throughout the Grenville geological province of eastern Canada. Groundwater quality at historical mining properties in the Bancroft area was investigated in order to better understand the mobility of trace elements that may pose health risks if there is renewed development of this class of mineral deposit. Groundwater samples were obtained from diamond drill holes, flowing adits and flooded mine shafts. Uranium occurs almost entirely in the dissolved (<0.45 μm) phase and is found at concentrations reaching 2579 μg/L. The Canadian maximum acceptable concentration for U in drinking water (0.02 mg/L) was exceeded in 70% of samples. Regulatory limits for 226Ra (0.5 Bq/L) and for 210Pb (0.2 Bq/L) were generally exceeded in these samples as well. Speciation modeling indicates that over 98% of dissolved U is in the form of highly mobile uranyl-Ca–carbonate complexes known to inhibit U adsorption. Uranium concentrations in groundwater appear to be correlated with the uranothorite content of the deposits rather than with their U grade. Uranothorite may be more soluble than uraninite, the other ore mineral, because of its non-ideal composition and metamict structure. Thorium, released concomitantly with U during the dissolution of uranothorite and thorian uraninite, exhibits median and maximum total concentrations of only 0.1 and 11 μg/L, respectively. Mass balance and stoichiometric considerations indicate that almost all Th is immobilized very close to its source. The sums of total light REE (La–Gd) concentrations have median and maximum values of 6 and 117 μg/L, respectively. The sums of total heavy REE (Tb–Lu) concentrations have median and maximum values of 0.8 and 21 μg/L, respectively. Light REE are derived mainly from the dissolution of metamict allanite whereas the sources of heavy REE are widely dispersed among accessory minerals. Fractionation patterns of REE in the dissolved phase are flat or concave, with negative Ce anomalies associated with more oxic groundwaters. The data suggest preferential LREE and HREE complexation with organic and carbonate ligands in the dissolved phase, respectively. Fractionation patterns in the suspended particulate phase exhibit decreasing enrichment with atomic number from La to Gd and a flat profile from Tb to Lu. This is explained by preferential sorption of LREE and uniform sorption of HREE. Manganese particulates are the most likely sorbents. Potential health risks from Th or REE in mine waters are unlikely due to the very low mobility of these elements. Uranium, on the other hand, exhibits high mobility in shallow, oxic groundwaters and drainage from some mine adits may require mitigation.  相似文献   

14.
Rare earth element (REE) concentrations in alkaline lakes, circumneutral pH groundwaters, and an acidic freshwater lake were determined along with the free carbonate, free phosphate, and free sulfate ion concentrations. These parameters were used to evaluate the saturation state of these waters with respect to REE phosphate and carbonate precipitates. Our activity product estimates indicate that the alkaline lake waters and groundwaters are approximately saturated with respect to the REE phosphate precipitates but are significantly undersaturated with respect to REE carbonate and sulfate precipitates. On the other hand, the acidic lake waters are undersaturated with respect to REE sulfate, carbonate, and phosphate precipitates. Although carbonate complexes tend to dominate the speciation of the REEs in neutral and alkaline waters, our results indicate that REE phosphate precipitates are also important in controlling REE behavior. More specifically, elevated carbonate ion concentrations in neutral to alkaline natural waters tend to enhance dissolved REE concentrations through the formation of stable REE-carbonate complexes whereas phosphate ions tend to lead to the removal of the REEs from solution in these waters by the formation of REE-phosphate salts. Removal of REEs by precipitation as phosphate phases in the acid lake (pH=3.6) is inconsequential, however, due to extremely low [PO 4 3– ] F concentrations (i.e., 10–23 mol/kg).  相似文献   

15.
The thorium and rare-earth element (Th-REE) deposit at Morro do Ferro formed under supergene lateritic weathering conditions. The ore body consists of shallow NW-SE elongated argillaceous lenses that extend from the top of the hill downwards along its south-eastern slope. The deposit is capped by a network of magnetite layers which protected the underlying highly weathered, argillaceous host rock from excessive erosion. The surrounding country rocks comprise a sequence of subvolcanic phonolite intrusions that have been strongly altered by hydrothermal and supergene processes.From petrological, mineralogical and geochemical studies, and mass balance calculations, it is inferred that the highly weathered host rock was originally carbonatitic in composition, initially enriched in Th and REEs compared to the surrounding silicate rocks. The intrusion of the carbonatite caused fenitic alteration in the surrounding phonolites, consisting of early potassic alteration followed by a vein-type Th-REE mineralization with associated fluorite, carbonate, pyrite and zircon. Subsequent weathering has completely decomposed the carbonatite forming a residual supergene enrichment of Th and REEs.Initial weathering of the carbonatite has created a chemical environment that might have been conductive to carbonate and phosphate complexing of the REEs in groundwaters. This may have appreciably restricted the dissolution of primary REE phases. Strongly oxidic weathering has resulted in a fractionation between Ce and the other light rare earth elements (LREEs). Ce3+ is oxidized to Ce4+ and retained together with Th by secondary mineral formation (cerianite, thorianite), and by adsorption on poorly crystalline iron- and aluminium-hydroxides. In contrast, the trivalent LREEs are retained to a lesser degree and are thus more available for secondary mineral formation (Nd-lanthanite) and adsorption at greater depths down the weathering column. Seasonally controlled fluctuations of recharge waters into the weathering column may help to explain the observed repetition of Th-Ce enriched zones underlain by trivalent LREE enriched zones.  相似文献   

16.
A 7-year monitoring period of rare earth element (REE) concentrations and REE pattern shapes was carried out in well water samples from a 450 m long transect setup in the Kervidy/Coët-Dan experimental catchment, France. The new dataset confirms systematic, topography-related REE signatures and REE concentrations variability but challenges the validity of a groundwater mixing hypothesis. Most likely, this is due to REE preferential adsorption upon mixing. However, the coupled mixing–adsorption mechanism still fails to explain the strong spatial variation in negative Ce anomaly amplitude. A third mechanism—namely, the input into the aquifer of REE-rich, Ce anomaly free, organic colloids—is required to account for this variation. Ultrafiltration results and speciation calculations made using Model VI agree with this interpretation. Indeed, the data reveal that Ce anomaly amplitude downslope decrease corresponds to REE speciation change, downhill groundwaters REE being mainly bound to organic colloids. Water table depth monitoring shows that the colloid source is located in the uppermost, organic-rich soil horizons, and that the colloid input occurs mainly when water table rises in response to rainfall events. It appears that the colloids amount that reaches groundwater increases downhill as the distance between soil organic-rich horizons and water table decreases. Topography is, therefore, the ultimate key factor that controls Ce anomaly spatial variability in these shallow groundwaters. Finally, the <0.2 μm REE fraction ultimately comes from two solid sources in these groundwaters: one located in the deep basement schist; another located in the upper, organic-rich soil horizon.  相似文献   

17.
18.
《Applied Geochemistry》1998,13(7):861-884
Concentrations of the rare earth elements (REE), Th and U have been determined in thermal waters emerging from a number of locations in and around the Idaho Batholith. Previous investigators have suggested that the source of heat for the geothermal systems studied is the radioactive decay of K, Th and U which are enriched in the rocks through which the fluids flow. Thus, knowledge of the behavior of REE, Th and U in these systems may contribute to a better understanding of the potential consequences of the interaction of hydrothermal fluids with deeply buried nuclear waste. Such studies may also lead to the possible use of REE as an exploration tool for geothermal resources. The thermal waters investigated may be characterized as near-neutral to slightly alkaline, dilute, NaHCO3-dominated waters with relatively low temperatures of last equilibration with their reservoir rocks (<200°C). REE, Th and U concentrations were measured using Fe(OH)3 coprecipitation, followed by ICP-MS, which yielded detection limits of 0.01–0.003 μg/l for each element, depending on the volume of fluid sample taken. The concentrations of REE, Th and U measured (from <0.1 up to a few μg/l) are 3–5 orders of magnitude less than chondritic, in agreement with concentrations of these elements measured in other similar continental geothermal systems. The REE exhibit light REE-enriched patterns when normalized to chondrite, but when normalized to NASC or local granites, they exhibit flat or slightly heavy REE-enriched trends. These findings indicate that the REE are either taken up in proportion to their relative concentrations in the source rocks, or that the heavy REE are preferentially mobilized. Concentrations of REE and Th are often higher in unfiltered, compared to filtered samples, indicating an important contribution of suspended particulates, whereas U is apparently truly dissolved. In some of the hot springs the REE concentrations exhibit marked temporal variations, which are greater than the variations observed in major element concentrations, alkalinity and temperature. There are also variations in the fluid concentrations of REE, Th and U related to general location within the study area which may be reflective of variations in the concentrations of these elements in the reservoir rocks at depth. Thermal waters in the southern and central parts of the field area all contain ∑REE concentrations exceeding 0.1 μg/l (up to as high as 3 μg/l), Th exceeding 0.2 μg/l and U generally <0.4 μg/l. In contrast, thermal waters from the northern area contain lower ∑REE (<0.6 μg/l) and Th (<0.1 μg/l), but higher U (>3.0 μg/l). Using experimentally measured and theoretically estimated thermodynamic data, the distribution of species for La, Ce and Nd have been calculated and also the solubility of pure, endmember (La, Ce, Nd) phosphate phases of the monazite structure in selected hot spring fluids. These calculations indicate that, at the emergence temperatures, CO2−3 and OH complexes of the REE are the predominant species in the thermal waters, whereas at the deep-aquifer temperatures, OH complexes predominate. In these thermal waters, monazite solubility is strongly prograde with respect to temperature, with solubility often decreasing several orders of magnitude upon cooling from the deep-aquifer to the emergence temperature. At the surface temperature, calculated monazite solubilities are, within the uncertainty of the thermodynamic data, comparable to the REE concentrations measured in the filtered samples, whereas at the deep-aquifer temperature, monazite solubilities are generally several orders of magnitude higher than the REE concentrations measured in the filtered or unfiltered samples. Therefore, a tentative model is suggested in which the thermal fluids become saturated with respect to a monazite-like phase (or perhaps an amorphous or hydrated phosphate) upon ascent and cooling, followed by subsequent precipitation of that phase. The temporal variations in REE content can then be explained as a result of sampling variable mixtures of particulate matter and fluid and/or variable degrees of attainment of equilibrium between fluid and solid phosphate.  相似文献   

19.
The aquatic chemistry of rare earth elements in rivers and estuaries   总被引:17,自引:0,他引:17  
Laboratory experiments were carried out to determine how pH, colloids and salinity control the fractionation of rare earth elements (REEs) in river and estuarine waters. By using natural waters as the reaction media (river water from the Connecticut, Hudson and Mississippi Rivers) geochemical reactions can be studied in isolation from the large temporal and spatial variability inherent in river and estuarine chemistry. Experiments, field studies and chemical models form a consistent picture whereby REE fractionation is controlled by surface/solution reactions. The concentration and fractionation of REEs dissolved in river waters are highly pH dependent. Higher pH results in lower concentrations and more fractionated composition relative to the crustal abundance. With increasing pH the order of REE adsorption onto river particle surfaces is LREEs > MREEs > HREEs. With decreasing pH, REEs are released from surfaces in the same order. Within the dissolved (<0.22 µm) pool of river waters, Fe-organic colloids are major carriers of REEs. Filtration through filters and ultrafilters with progressively finer pore sizes results in filtrates which are lower in absolute concentrations and more fractionated. The order of fractionation with respect to shale, HREEs > MREEs > LREEs, is most pronounced in the solution pool, defined here as <5K and <50K ultrafiltrates. Colloidal particles have shale-like REE compositions and are highly LREE enriched relative to the REE composition of the dissolved and solution pools. The addition of sea water to river water causes the coagulation of colloidal REEs within the dissolved pool. Fractionation accompanies coagulation with the order of sea water-induced removal being LREEs > MREEs > HREEs. While the large scale removal of dissolved river REEs in estuaries is well established, the release of dissolved REEs off river particles is a less studied process. Laboratory experiments show that there is both release and fractionation of REEs when river particles are leached with seawater. The order of sea water-induced release of dissolved REE(III) (LREEs > MREEs > HREEs) from Connecticut River particles is the same as that associated with lowering the pH and the same as that associated with colloidal particles. River waters, stripped of their colloidal particles by coagulation in estuaries, have highly evolved REE composition. That is, the solution pool of REEs in river waters are strongly HREE-enriched and are fractionated to the same extent as that of Atlantic surface seawater. This strengthens the conclusions of previous studies that the evolved REE composition of sea water is coupled to chemical weathering on the continents and reactions in estuaries. Moreover, the release of dissolved Nd from river particles to sea water may help to reconcile the incompatibility between the long oceanic residence times of Nd (7100 yr) and the inter-ocean variations of the Nd isotopic composition of sea water. Using new data on dissolved and particle phases of the Amazon and Mississippi Rivers, a comparison of field and laboratory experiments highlights key features of REE fractionation in major river systems. The dissolved pool of both rivers is highly fractionated (HREE enriched) with respect to the REE composition of their suspended particles. In addition, the dissolved pool of the Mississippi River has a large negative Ce-anomaly suggesting in-situ oxidation of Ce(III). One intriguing feature is the well developed maximum in the middle REE sector of the shale normalized patterns for the dissolved pool of Amazon River water. This feature might reflect competition between surface adsorption and solution complexation with carbonate and phosphate anions.  相似文献   

20.
This study presents new data on major, trace and REE element concentration of groundwaters in Lastochka spa located in the northern part of Primorye, Far East of Russia. The studied area is characterized by two types of groundwaters issued from a spring and wells: fresh waters with low mineralization (Total Dissolved Solids is up to 400 mg/l) and high pCO2 waters with high mineralization (TDS is up to 4700 mg/l). New data and previous δ13C(TIC), oxygen (δ18O) and hydrogen (δ2H) isotope data indicate that these waters result from meteoric water infiltration in the Sikhote–Alin mountain, circulating at shallow depths in sedimentary rocks. CO2 in groundwater is of mantle origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号