首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
We measure the     B -band optical luminosity function (LF) for galaxies selected in a blind H  i survey. The total LF of the H  i selected sample is flat, with Schechter parameters     and     , in good agreement with LFs of optically selected late-type galaxies. Bivariate distribution functions of several galaxy parameters show that the H  i density in the local Universe is more widely spread over galaxies of different size, central surface brightness and luminosity than the optical luminosity density is. The number density of very low surface brightness (LSB ) (>24.0 mag arcsec−2) gas-rich galaxies is considerably lower than that found in optical surveys designed to detect dim galaxies. This suggests that only a part of the population of LSB galaxies is gas-rich and that the rest must be gas-poor. However, we show that this gas-poor population must be cosmologically insignificant in baryon content. The contribution of gas-rich LSB galaxies (>23.0 mag arcsec−2) to the local cosmological gas and luminosity density is modest     and     per cent respectively); their contribution to Ωmatter is not well-determined, but probably <11 per cent. These values are in excellent agreement with the low redshift results from the Hubble Deep Field.  相似文献   

9.
We analyse a   z < 0.1  galaxy sample from the Sloan Digital Sky Survey focusing on the variation in the galaxy colour bimodality with stellar mass     and projected neighbour density Σ, and on measurements of the galaxy stellar mass functions. The characteristic mass increases with environmental density from about  1010.6  to     (Kroupa initial mass function,   H 0= 70  ) for Σ in the range  0.1–10 Mpc−2  . The galaxy population naturally divides into a red and blue sequence with the locus of the sequences in colour–mass and colour–concentration indices not varying strongly with environment. The fraction of galaxies on the red sequence is determined in bins of 0.2 in  log Σ  and     bins). The red fraction   f r   generally increases continuously in both Σ and     such that there is a unified relation:     . Two simple functions are proposed which provide good fits to the data. These data are compared with analogous quantities in semi-analytical models based on the Millennium N -body simulation: the Bower et al. and Croton et al. models that incorporate active galactic nucleus feedback. Both models predict a strong dependence of the red fraction on stellar mass and environment that is qualitatively similar to the observations. However, a quantitative comparison shows that the Bower et al. model is a significantly better match; this appears to be due to the different treatment of feedback in central galaxies.  相似文献   

10.
11.
12.
13.
We have carried out a study of known clusters within the 2dF Galaxy Redshift Survey (2dFGRS) observed areas and have identified 431 Abell, 173 APM and 343 EDCC clusters. Precise redshifts, velocity dispersions and new centroids have been measured for the majority of these objects, and this information is used to study the completeness of these catalogues, the level of contamination from foreground and background structures along the cluster's line of sight, the space density of the clusters as a function of redshift, and their velocity dispersion distributions. We find that the Abell and EDCC catalogues are contaminated at the level of about 10 per cent, whereas the APM catalogue suffers only 5 per cent contamination. If we use the original catalogue centroids, the level of contamination rises to approximately 15 per cent for the Abell and EDCC catalogues, showing that the presence of foreground and background groups may alter the richness of clusters in these catalogues. There is a deficiency of clusters at     that may correspond to a large underdensity in the Southern hemisphere. From the cumulative distribution of velocity dispersions for these clusters, we derive a space density of     clusters of     This result is used to constrain models for structure formation; our data favour low-density cosmologies, subject to the usual assumptions concerning the shape and normalization of the power spectrum.  相似文献   

14.
The Millennium Galaxy Catalogue (MGC) is a 37.5 deg2, medium-deep, B -band imaging survey along the celestial equator, taken with the Wide Field Camera on the Isaac Newton Telescope. The survey region is contained within the regions of both the Two Degree Field Galaxy Redshift Survey (2dFGRS) and the Sloan Digital Sky Survey Early Data Release (SDSS-EDR). The survey has a uniform isophotal detection limit of 26 mag arcsec−2 and it provides a robust, well-defined catalogue of stars and galaxies in the range  16 ≤ B MGC < 24 mag  .
Here we describe the survey strategy, the photometric and astrometric calibration, source detection and analysis, and present the galaxy number counts that connect the bright and faint galaxy populations within a single survey. We argue that these counts represent the state of the art and use them to constrain the normalizations (φ*) of a number of recent estimates of the local galaxy luminosity function. We find that the 2dFGRS, SDSS Commissioning Data (CD), ESO Slice Project, Century Survey, Durham/UKST, Mt Stromlo/APM, SSRS2 and NOG luminosity functions require a revision of their published φ* values by factors of  1.05 ± 0.05, 0.76 ± 0.10, 1.02 ± 0.22, 1.02 ± 0.16, 1.16 ± 0.28, 1.75 ± 0.37, 1.40 ± 0.26  and  1.01 ± 0.39  , respectively. After renormalizing the galaxy luminosity functions we find a mean local b J luminosity density of     . 1  相似文献   

15.
16.
The luminosity function of galaxies is derived from a cosmological hydrodynamic simulation of a Λ cold dark matter universe with the aid of a stellar population synthesis model. At     , the resulting B -band luminosity function has a flat faint-end slope of     with the characteristic luminosity and the normalization in fair agreement with observations, while the dark matter halo mass function is steep with a slope of     . The colour distribution of galaxies also agrees well with local observations. We also discuss the evolution of the luminosity function, and the colour distribution of galaxies from     to 5. A large evolution of the characteristic mass in the stellar mass function as a result of number evolution is compensated by luminosity evolution; the characteristic luminosity increases only by 0.8 mag from     to 2, and then declines towards higher redshift, while the B -band luminosity density continues to increase from     to 5 (but only slowly at     .  相似文献   

17.
The evolution of number density, size and intrinsic colour is determined for a volume-limited sample of visually classified early-type galaxies selected from the Hubble Space Telescope /Advanced Camera for Surveys images of the Great Observatories Origins Deep Survey (GOODS) North and South fields (version 2). The sample comprises 457 galaxies over 320 arcmin2 with stellar masses above  3 × 1010 M  in the redshift range  0.4 < z < 1.2  . Our data allow a simultaneous study of number density, intrinsic colour distribution and size. We find that the most massive systems  (≳3 × 1011 M)  do not show any appreciable change in comoving number density or size in our data. Furthermore, when including the results from 2dF galaxy redshift survey, we find that the number density of massive early-type galaxies is consistent with no evolution between   z = 1.2  and 0, i.e. over an epoch spanning more than half of the current age of the Universe. We find large discrepancies between the predictions of semi-analytic models. Massive galaxies show very homogeneous intrinsic colour distributions, with nearly flat radial colour gradients, but with a significant negative correlation between stellar mass and colour gradient, such that red cores appear predominantly in massive galaxies. The distribution of half-light radii – when compared to   z ∼ 0  and   z > 1  samples – is compatible with the predictions of semi-analytic models relating size evolution to the amount of dissipation during major mergers.  相似文献   

18.
We present luminosity and surface-brightness distributions of 40 111 galaxies with K -band photometry from the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Data Release 3 and optical photometry from Data Release 5 of the Sloan Digital Sky Survey (SDSS). Various features and limitations of the new UKIDSS data are examined, such as a problem affecting Petrosian magnitudes of extended sources. Selection limits in K - and r -band magnitude, K -band surface brightness and K -band radius are included explicitly in the  1/ V max  estimate of the space density and luminosity function. The bivariate brightness distribution in K -band absolute magnitude and surface brightness is presented and found to display a clear luminosity–surface brightness correlation that flattens at high luminosity and broadens at low luminosity, consistent with similar analyses at optical wavelengths. Best-fitting Schechter function parameters for the K -band luminosity function are found to be   M *− 5 log  h =−23.19 ± 0.04, α=−0.81 ± 0.04  and  φ*= (0.0166 ± 0.0008)  h 3 Mpc−3  , although the Schechter function provides a poor fit to the data at high and low luminosity, while the luminosity density in the K band is found to be   j = (6.305 ± 0.067) × 108 L  h  Mpc−3  . However, we caution that there are various known sources of incompleteness and uncertainty in our results. Using mass-to-light ratios determined from the optical colours, we estimate the stellar mass function, finding good agreement with previous results. Possible improvements are discussed that could be implemented when extending this analysis to the full LAS.  相似文献   

19.
20.
We present a new determination of the optical luminosity function (OLF) of active galactic nuclei (AGN) at low redshifts ( z <0.15) based on Hubble Space Telescope ( HST ) observations of X-ray-selected AGN. The HST observations have allowed us to derive a true nuclear luminosity function for these AGN. The resulting OLF illustrates a two power-law form similar to that derived for quasi‐stellar objects (QSOs) at higher redshifts. At bright magnitudes, M B <−20, the OLF derived here exhibits good agreement with that derived from the Hamburg/European Southern Observatory (ESO) QSO survey. However, the single power-law form for the OLF derived from the Hamburg/ESO survey is strongly ruled out by our data at M B >−20. Although the estimate of the OLF is best fitted by a power-law slope at M B <−20.5 that is flatter than the slope of the OLF derived at z >0.35, the binned estimate of the low-redshift OLF is still consistent with an extrapolation of the z >0.35 OLF based on pure luminosity evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号