首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Doklady Earth Sciences - Based on atomistic modeling data, various schemes of the isomorphic incorporation of K+ and Na+ ions into the crystal structures of CaSiO3 and MgSiO3 in the pressure range...  相似文献   

2.
3.
It is shown that presence of the Early Precambrian sial crust in the Indo–Atlantic segment of the Earth and its absence in the Pacific has been caused by geochemical differences in the mantle underlying these segments. These differences were examined on the basis of Nd–Hf and U–Pb isotopes in modern basalts. The U–Pb isotope system is of particular interest, since uranium is a member of a group of heat-generating radioactive elements providing heat for plumes. It is shown that in the Indo–Atlantic segment, a distribution of areas of the modern HIMU type mantle is typical, while it is almost completely absent in the Pacific segment. In the Archean, in the upper HIMU type paleo-mantle areas, plume generation and formation of the primordial basic crust occurred; this was followed by its remelting resulting in the appearance of an early sial crust forming cratons of the Indo–Atlantic segment.  相似文献   

4.
Sokol  A. G.  Sokol  E. V.  Kupriyanov  I. N.  Sobolev  N. V. 《Doklady Earth Sciences》2018,479(1):404-407
Doklady Earth Sciences - The synthesis of NH4-bearing muscovite at P = 6.3 GPa and T = 1000°C in equilibrium with NH3–H2O fluid is performed. It is determined that the newly formed...  相似文献   

5.
6.
The catastrophic Shikotan earthquake of October 4 (5), 1994, occurred in the Pacific Ocean. Its focus was located 80 km eastward of Shikotan Island. The stress state of the Earth’s crust in this area was estimated by the method of the cataclastic analysis of the whole range of the earthquake mechanisms. The performed reconstruction of the parameters of the current stress state of the Earth’s crust and the upper mantle in the area of the Southern Kuril Islands made it possible to establish that this area is characterized, on the one hand, by the presence of extensive areas of steady behavior of the stress tensor parameters and, on the other hand, by the presence of local sections of anomalously fast changes in these parameters.  相似文献   

7.
The ultrabasic–basic magmatic evolution of the lower mantle material includes important physicochemical phenomena, such as the stishovite paradox and the genesis of superdeep diamonds. Stishovite SiO2 and periclase–wüstite solid solutions, (MgO · FeO)ss, associate paradoxically in primary inclusions of superdeep lower mantle diamonds. Under the conditions of the Earth’s crust and upper mantle, such oxide assemblages are chemically impossible (forbidden), because the oxides MgO and FeO and SiO2 react to produce intermediate silicate compounds, enstatite and ferrosilite. Experimental and physicochemical investigations of melting phase relations in the MgO–FeO–SiO2–CaSiO3 system at 24 GPa revealed a peritectic mechanism of the stishovite paradox, (Mg, Fe)SiO3 (bridgmanite) + L = SiO2 + (Mg, Fe)O during the ultrabasic–basic magmatic evolution of the primitive oxide–silicate lower mantle material. Experiments at 26 GPa with oxide–silicate–carbonate–carbon melts, parental for diamonds and primary inclusions in them, demonstrated the equilibrium formation of superdeep diamonds in association with ultrabasic, (Mg, Fe)SiO3 (bridgmanite) + (MgO · FeO)ss (ferropericlase), and basic minerals, (FeO · MgO)ss (magnesiowüstite) + SiO2 (stishovite). This leads to the conclusion that a peritectic mechanism, similar to that responsible for the stishovite paradox in the pristine lower mantle material, operates also in the parental media of superdeep diamonds. Thus, this mechanism promotes both the ultrabasic–basic evolution of primitive oxide–silicate magmas in the lower mantle and oxide–silicate–carbonate melts parental for superdeep diamonds and their paradoxical primary inclusions.  相似文献   

8.
Doklady Earth Sciences - The results of experiments on dissolution of diamond in a Fe melt with variable concentrations of S at high P–T parameters are presented. It is established that the...  相似文献   

9.
Relatively old ages of chondrites(normally around 4.5Ga)suggest that their parent bodies did not experience any mely-fractionation under high temperature and high pressure conditions pertaining to the interior of terrestrial plaets.Therefore,it is reasonable to take chondrites as starting materials in the study of the chemical evolution of the early earth.The sillicate phase in the Jilin chondrite (H5)was chosen for this purpose because it possesses a chemical composition similar to that of the primitive mantle.The melting experiment was carried out at 20-30 k bar and has rsulted in a product which contains1-5% melts in addition to solid cryustal phase.The chemical composition of the melt phases and the partitioning of various elements between the coexisting silicate melts are geochemically similar to those of anatectic rocks on the earth.This can thus serve as the basis for discussing the chemical evolution of the early upper mantle.  相似文献   

10.
The North Qaidam is an Early Paleozoic UHP metamorphic belt located at the north margin of the Tibet plateau. Eclogites in this belt contain both continental‐and oceanic‐type ones. In which, the continental‐type eclogites have protolith ages of 750–850 Ma and WPB or CFB geochemical signatures and are believed to have formed in a continental rift or an incipient oceanic basin setting related to the breakup of the Rodinia supercontinent, their metamorphic ages (421–458 Ma) and P–T paths are comparable to their host gneisses; oceanic‐type eclogites have cumulate gabbro or E‐MORB geochemical signatures, their protolith and metamorphic ages are 510–516 Ma and 425–450 Ma, respectively(Zhang et al., 2008). Therefore, the North Qaidam UHP belt was thought to record the whole Neoprotoerozoic–Paleozoic Wilson cycle (Song et al., 2014). In this study, we reported three new kinds of eclogites: kyanite‐bearing eclogite, lawsonite pseudomorph‐bearing eclogite and double mineral eclogite. They occur as big lentoid blocks in regional granitic gneiss in the western part of the belt. Phase equilibrium modelling and zircon LA‐ICPMS U‐Pb dating show that all these three eclogites experienced a clockwise P–T path with peak metamorphic conditions close to or fall in the coesite stability field, and their peak metamorphic age were around 436‐439 Ma, similar to those continental‐type eclogites in this belt. But their protolith ages are between 1273 and 1070 Ma, and some of them recorded an amphibolite facies metamorphic age of 927 Ma, and geochemical data and zircon Lu‐Hf and O isotope analysis indicate these eclogites have features of present day N‐MORB. Combined with the existing results, we propose that the North Qaidam is a polycyclic composite orogenwhich recorded tectonic evolution of Mesoproterozoic ocean floor spreading, assembly and breakup of Rodinia supercontinent, Early Paleozoic oceanic deep subduction and subsequently continental deep subduction.  相似文献   

11.
12.
Methods of celestial mechanics are used to refine a mathematical model for irregularity in the axial rotation of the Earth proposed earlier. This refinement applies corrections (residuals) introduced by perturbations of zonal tides. We examine intraday and near-diurnal variations in the Earth’s axial rotation, and a celestial-mechanical model explaining the origin of the intraday and near-diurnal oscillations in the rotational angular velocity is constructed. The correspondence between the variations of the intrayear rotational irregularity and the overall angular momentum of the atmosphere is analyzed.  相似文献   

13.
The fluorine (F) and chlorine (Cl) contents of arc magmas have been used to track the composition of subducted components, and the F and Cl contents of MORB have been used to estimate the halogen content of depleted MORB mantle (DMM). Yet, the F and Cl budget of the Earth’s upper mantle and their distribution in peridotite minerals remain to be constrained. Here, we developed a method to measure low concentrations of halogens (≥0.4 µg/g F and ≥0.3 µg/g Cl) in minerals by secondary ion mass spectroscopy. We present a comprehensive study of F and Cl in co-existing natural olivine, orthopyroxene, clinopyroxene, and amphibole in seventeen samples from different tectonic settings. We support the hypothesis that F in olivine is controlled by melt polymerization, and that F in pyroxene is controlled by their Na and Al contents, with some effect of melt polymerization. We infer that Cl compatibility ranks as follows: amphibole > clinopyroxene > olivine ~ orthopyroxene, while F compatibility ranks as follows: amphibole > clinopyroxene > orthopyroxene ≥ olivine, depending on the tectonic context. In addition, we show that F, Cl, Be and B are correlated in pyroxenes and amphibole. F and Cl variations suggest that interaction with slab melts and fluids can significantly alter the halogen content of mantle minerals. In particular, F in oceanic peridotites is mostly hosted in pyroxenes, and proportionally increases in olivine in subduction-related peridotites. The mantle wedge is likely enriched in F compared to un-metasomatized mantle, while Cl is always low (<1 µg/g) in all tectonic settings studied here. The bulk anhydrous peridotite mantle contains 1.4–31 µg/g F and 0.14–0.38 µg/g Cl. The bulk F content of oceanic-like peridotites (2.1–9.4 µg/g) is lower than DMM estimates, consistent with F-rich eclogite in the source of MORB. Furthermore, the bulk Cl budget of all anhydrous peridotites studied here is lower than previous DMM estimates. Our results indicate that nearly all MORB may be somewhat contaminated by seawater-rich material and that the Cl content of DMM could be overestimated. With this study, we demonstrate that the halogen contents of natural peridotite minerals are a unique tool to understand the cycling of halogens, from ridge settings to subduction zones.  相似文献   

14.
Variations in the flux of Jovian electrons near the Earth in two synodic cycles of the Earth–Jupiter system, in 1974–1975 and 2007–2008, are considered. In the 1974–1975 cycle, Jovian electrons were observed by IMP-8 during 13 successive solar rotations; electrons were observed by SOHO during 14 solar rotations during the 2007–2008 cycle. The fluxes of these electrons in each solar revolution experienced variations with a characteristic time scale of ~27 d , with the maximum flux near the middle of the rotation. The mean period of the variations does not coincide with the synodic period for the Sun–Earth system, equal to 27.3 d . The mean variation periods for the electron fluxes were 26.8 d in 1974–1975 and 26.1 d in 2007–2008. The detected variations are interpreted as reflecting variations in the structure of the solar wind speed and associated magnetic traps, the confinement time of the electrons in thesemagnetic traps, and the influence of the relative positions of the Earth and Jupiter in space.  相似文献   

15.
Numerical celestial-mechanical models are used to compare (andg interpolate and forecast) near-diurnal tidal variations in the Earth’s axial rotation and oscillations in the global angular momentum of the atmosphere using the IERS data and NCEP/NCAR meteorological data. In order to improve the accuracy of interpolations and forecasts made for short and intraday time intervals, it is expedient to include the effect of small perturbations in short-term zonal tides, which influence fluctuations in Universal Time UT1 directly related to the Earth’s rotation. Due to the quasi-static formulation of the problem, it is assumed that the dynamics of the thin surface atmosphere are completely determined by the gradient of the tide-generating geopotential, which supports forced oscillations of the entire subsystem (i.e., of the mantle and atmospheric envelope). A comparison of the numerical simulations with the NCEP/NCAR data shows that the model is effective for applications in forecasting atmospheric tides.  相似文献   

16.
Wadsleyite II is a variably hydrous magnesium-iron silicate phase similar to spinelloid IV and a potential host for H in the Transition Zone of the Earths mantle. Two separate samples of wadsleyite II synthesized at 17.5 GPa and 1400°C and at 18 GPa and 1350°C have been characterized by electron microprobe, single-crystal X-ray diffraction, visible, IR, Raman, and Mössbauer spectroscopies, and transmission electron microscopy including electron energy-loss spectroscopy. The two samples have the following chemical formulae: Mg1.71Fe0.18Al0.01H0.33Si0.96O4 and Mg1.60Fe0.22Al0.01 H0.44Si0.97O4. Mössbauer spectroscopy and electron energy loss spectroscopy (EELS) indicate that about half of the iron present is ferric. Refinement of the structures shows them to be essentially the same as spinelloid IV. Calculated X-ray powder diffraction patterns show only subtle differences between wadsleyite and wadsleyite II. The hydration mechanism appears to be protonation of the non-silicate oxygen (O2) and possibly the oxygens surrounding the partially vacant tetrahedral site Si2, charge-balanced by cation vacancies in Si2, M5 and M6. The unit cell volume of this phase and its synthesis conditions indicate that it may be an intermediate phase occurring between the fields of wadsleyite and ringwoodite, if sufficient trivalent cations are available. The unit cell parameters have been refined at pressures up to 10.6 GPa by single-crystal X-ray diffraction in the diamond anvil cell. The refined bulk modulus for the sample containing 2.8 wt% H2O is 145.6 ± 2.8 GPa with a K of 6.1 ± 0.7. Similar to wadsleyite and ringwoodite, hydration has a large effect on the bulk modulus. The presence of this phase in the mantle could serve to obscure the seismic expression of the phase boundary between wadsleyite and ringwoodite near 525 km. The large apparent effect of hydration on bulk modulus is consistent with hydration having a larger effect on seismic velocities than temperature in the Transition Zone.  相似文献   

17.
A simple mechanical model explaining the long-period (about 100-year) variations in the Earth’s rotational velocity is proposed. This model takes into account the gravitational interaction of the mantle with the solid core of the Earth and the fact that the core rotation leads that of the mantle. Well-known Earth parameters provide estimates of the gravitational torque that support the proposed model. The mathematical problem involved reduces to the classical problem of a nonlinear oscillator exposed to a constant torque. The well-known parameters of the core-mantle system result in a stable equilibrium and a stable limiting cycle on the phase cylinder of this oscillator. This equilibrium corresponds to a single angular velocity for the mantle and solid core, with no long-period oscillations in the length of the day. The limiting cycle corresponds to the core rotation leading the mantle rotation. In this case, the ellipsoidality of the gravitationally interacting bodies provides a periodic interchange of kinetic angular momentum between the mantle and solid core that results in long-period variations in the length of the day. The proposed model does not support the formerly widespread opinion that the core rotates more slowly than the mantle.  相似文献   

18.
The analysis of 3D relief models of the lower Amur region and several adjacent areas suggested that the structure of the region is related to the horizontal tectonic layering of the upper part of the Amur plate. When it was dislocated to the northwest at the terminal Cretaceous, some fragments of the upper layers were displaced not strictly synchronously but with some lag relative to the whole plate. This scenario was responsible for the formation of the main morphostructural elements of the region: river valleys, mountain ranges, and graben series. These inferences are supported by field observations and some geological data. The proposed hypothesis can also be applied for several other regions.  相似文献   

19.
Based on synthetic fluid inclusions in quartz grown at 240–490°C and 7–150 MPa in aqueous–oil solutions, the behavior, composition, and phase states of liquid, gaseous, and solid hydrocarbons (HC) were studied. Investigations were performed using common and fluorescent microscopy, microthermometry, local common and high-temperature IR Fourier spectroscopy, Raman spectroscopy, chromatography, and X-ray and microprobe analysis. The data obtained allowed us to understand the influence of thermobaric conditions and volume proportions of the oil, aqueous, and gaseous phases on the composition, phase state, and behavior of hydrous–hydrocarbon fluids and estimate the forms and probable maximal depths of the origin of oil in the Earth’s interior.  相似文献   

20.
Parts of the Fe–C–N system were studied in experiments at 7.8 GPa and 1350°C. It was shown that the admixture of nitrogen extends considerably the domain of melt stability in the system at temperatures close to the Fe–Fe3C eutectic temperatures. Nitrogen solubility in cementite in equilibrium with the nitrogen- rich melt is below the detection limit of the EMPA technique applied. The metal melt is the only nitrogen concentrator (up to 4 wt % of N) in the range of compositions considered. The data obtained permit the conclusion that, in the case of complete dissolution of carbon and nitrogen, which might occur in the enriched mantle, native iron at ~250 km depth should either be completely molten or consist of a melt and carbide of iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号