首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 4 毫秒
1.
提出了核心筒部分悬挂结构体系,在已有该体系振动台试验基础上,建立了该体系的抗震分析简化力学模型及其理论公式。按小震、中震和大震3种不同的地震作用情况,分析了该结构体系力学模型和动力方程的差异。利用有限元分析程序SAP2000,对这种结构体系进行了小震和大震作用下的结构地震反应分析,计算结果与试验结果吻合较好。  相似文献   

2.
In this paper, a computational model for the simulation of coupled hydromechanical and electrokinetic flow in fractured porous media is introduced. Particular emphasis is placed on modeling CO2 flow in a deformed, fractured geological formation and the associated electrokinetic flow. The governing field equations are derived based on the averaging theory and the double porosity model. They are solved numerically with a mixed discretization scheme, formulated on the basis of the standard Galerkin finite element method, the extended finite element method, the level-set method and the Petrov–Galerkin method. The standard Galerkin method is utilized to discretize the equilibrium and the diffusive dominant field equations, and the extended finite element method, together with the level-set method and the Petrov–Galerkin method, are utilized to discretize the advective dominant field equations. The level-set method is employed to trace the CO2 plume front, and the extended finite element method is employed to model the high gradient in the saturation field front. The proposed mixed discretization scheme leads to a convergent system, giving a stable and effectively mesh-independent model. The accuracy and computational efficiency of the proposed model is evaluated by verification and numerical examples. Effects of the fracture spacing on the CO2 flow and the streaming potential are discussed.  相似文献   

3.
未固结碎屑砂岩储层是国内外重要的油气储层类型之一,其物理本质是由离散颗粒组成的软凝聚态物质.在地震勘探中通常使用Hertz-Mindlin等效介质模型来计算未固结砂岩的地震弹性特征,但该模型在使用中通常会得到明显偏高的剪切模量值.基于3D离散元技术,对颗粒介质在单轴压缩与纯剪两种过程中的力学响应进行离散元数值模拟,从微...  相似文献   

4.
RC框架节点的弯矩-滑移转角恢复力模型   总被引:4,自引:0,他引:4  
本文提出了框架结构梁端纵向受力钢筋在节点中锚固滑移所产生的附加转角的简化计算模型,并在梁柱组合件试验所获得的杆端弯矩—滑移转角滞回曲线基础上建立了杆端弯矩—附加滑移转角恢复力模型。该恢复力模型包括一条基于计算的双线型骨架曲线和一系列基于试验现象的滞回规则。计算结果与试验结果的比较表明,本文提出的杆端弯矩—附加滑移转角恢复力模型可以较好地反映试件的滞回性能,可供框架结构弹塑性地震反应分析时参考。  相似文献   

5.
 Analogue experiments in part I led to the conclusion that pyroclastic flows depositing very high-grade ignimbrite move as dilute suspension currents. In the thermo–fluid–dynamical model developed, the degree of cooling of expanded turbulent pyroclastic flows dynamically evolves in response to entrainment of air and mass loss to sedimentation. Initial conditions of the currents are derived from column-collapse modeling for magmas with an initial H2O content of 1–3 wt.% erupting through circular vents and caldera ring-fissures. The flows spread either longitudinally or radially from source up to a runout distance that increases with higher mass flux but decreases with higher gas content, temperature, bottom slope and coarser initial grain size. Progressive dilution by entrainment and sedimentation causes pyroclastic currents to transform into buoyant ash plumes at the runout distance. The ash plumes reach stratospheric heights and distribute 30–80% of the erupted material as widespread co-ignimbrite ash. Pyroclastic suspension currents with initial mass fluxes of 107-1012 kg/s can spread for tens of kilometers with only limited cooling, although they move as supercritical, strongly entraining currents for the eruption conditions considered here. With increasing eruption mass flux, cooling during passage through the fountain diminishes while cooling during flow transport increases. The net effect is that eruption temperature exerts the prime control on emplacement temperature. Pyroclastic suspension currents can form welded ignimbrite across their entire extent if eruption temperature is To>1.3.Tmw, the minimum welding temperature. High eruption rates, a large fraction of fine ash, and a ring-fissure vent favor the formation of extensive high-grade ignimbrite. For very hot eruptions producing sticky, partially molten pyroclasts, analysis of particle aggregation systematics shows that factors favoring longer runout also favor more efficient aggregation, which reduces runout. As a result, very high-grade ignimbrites cannot spread more than a few tens of kilometers from their source. In cooler pyroclastic currents, particles do not aggregate, and the sedimentation process may involve re-entrainment of particles, which potentially leads to more extensive cooling and longer runout; such effects, however, are only significant when net erosion of substrate occurs. Model results can be employed to estimate mass flux and duration of ignimbrite eruptions from measured ignimbrite masses and aspect ratios. The model also provides an alternative explanation of the observed decrease in H/Lratios with ignimbrite mass. Received: 10 May 1998 / Accepted: 21 October 1998  相似文献   

6.
A coupling model of Finite Elements (FEs), Boundary Elements (BEs), Infinite Elements (IEs) and Infinite Boundary Elements (IBEs) is presented for analysis of soil–structure interaction (SSI). The radiation effects of the infinite layered soil are taken into account by FE–IE coupling, while the underlying bed rock half-space is discretized into BE–IBE coupling whereby the non-horizontal bed rock surface can be accounted for. Displacement compatabilities are satisfied for all types of aforementioned elements. The equivalent linear approach is employed for approximation of nonlinearity of the near field soil. This model has some advantages over the current SSI program in considering the bed rock half-space and non-vertical wave incidence from the far field. Examples of verification demonstrate the applicability and accuracy of the method when compared with the FLUSH program. Finally, the effects of the relative modulus ratio Er/Es of rock and soil and the incident angles of non-vertical waves on the responses of the structure and the soil are examined. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
We present a mathematical model of local, steady groundwater flow near a vertical barrier wall. Flow features represented in the model include an impermeable arc-shaped barrier wall and multiple wells; distant boundary conditions are not included explicitly, but their effects on the local flow field are modelled by specifying a uniform flow at infinity and a constant areal recharge within a local domain. We develop an explicit closed-form solution to the boundary-value problem using the analytic element method. The solution is an extension of a harmonic solution presented by Anderson and Mesa [Anderson EI, Mesa E. The effects of vertical barrier walls on the hydraulic control of contaminated groundwater. Adv Water Resourc 2006;29(1):89–98] which does not include the effects of recharge. We demonstrate that the general solution with recharge consists of the harmonic solution superposed on a special case of the harmonic solution along with two elementary one-dimensional flow solutions. The results are used to investigate the effects of areal recharge on the capture zone envelopes of the pumping wells and on the reduction in discharge that can be achieved by including a barrier wall in a pump and treat design. We find that the benefits of including an open barrier wall in a design, measured as a reduction in the pumping rate required to contain a plume, increase for higher recharge rates. Dimensionless plots of capture zone envelopes are presented for a practical well and barrier wall configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号