首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The blueschists along the Indus Suture Zone in Ladakh, NW Himalaya   总被引:5,自引:0,他引:5  
ABSTRACT Blueschists occur along the Indus Suture Zone in Ladakh as tectonic thrust slices, as isolated blocks within mélange units and as pebbles within continental detrital series. In the Shergol-Baltikar section high-pressure rocks within the Mélange unit lie between the Dras-Naktul-Nindam nappes in the north and the Lamayuru units in the south. The blueschists are imbricated with mélange formation of probably upper Cretaceous age. They are overlain discordantly by the Shergol conglomerate of post Eocene (Oligo-Miocene ?) age. Blueschist lithologies are dominated by volcanoclastic rock sequences of basic material with subordinate interbedding of cherts and minor carbonates. Mineral assemblages in metabasic rocks are characterized by lawsonite-glaucophane/crossite-Na-pyroxene-chlorite-phengite-titanite ± albite ± stilpnomelane. In the quartz bearing assemblages garnet is present but omphacite absent. P-T estimates indicate temperatures of 350 to 420°c and pressures around 9–11 kbar. Geochemical investigations show the primary alkaline character of the blueschist, which suggests an oceanic island or a transitional MORB type primary geotectonic setting. K/Ar isotopic investigations yield middle Cretaceous ages for both whole rocks and minerals. Subduction related HP-metamorphism affecting the Mesozoic Tethyan oceanic crust developed contemporaneously with magmatism in the Dras volcanic are and the Ladakh batholith. Subsequent collision of India with Asia obducted relics of subduction zone material which later became involved in nappe emplacement during the Himalayan mountain building.  相似文献   

4.
5.
SUPRA-SUBDUCTION ZONE ENVIRONMENT AND ECONOMIC POTENTIAL OF THE NIDAR OPHIOLITE OF INDUS SUTURE ZONE, EASTERN LADAKH,THE HIMALAYA  相似文献   

6.
7.
In the Ladakh area of India, a passive Triassic to Lower Cretaceous continental margin is indicated by Indian-shield-derived clastics on the shelf and Atlantic-type turbidites off the continental margin. Mid-Cretaceous initiation of ocean closing is reflected in Pacific-type flysch and associated island are volcanics, which were initially emplaced over the northern Indian continental margin in late Cretaceous times-resulting in the formation of a fore-deep in which flysch and minor continental molasse accumulated briefly during the late Cretaceous. These transient uplifts were, however, rapidly destroyed for by the latest Cretaceous to latest Palaeocene, uniform carbonate sediments were being laid down over the area.

With the early Eocene, the development of a second fore-deep, this time filled with very thick flysch and molasse sediment, indicates a major uplift of the northern Indian margin, which we attribute to the development of an Andean-type magmatic arc on the northern edge of the Indian plate. Uplift and molasse sedimentation in this fore-deep continued through the Oligocene and Miocene, when the collision of India and Asia caused extensive deformation of all the sequences and the shift of molasse sedimentation southwards to the Himalaya foothills and Indo-Gangetic plain.  相似文献   


8.
We report the following new40Ar/39Ar ages: 130–150 and 90–100 Ma from monzodiorite and tremolite-actinolite schist of the Kohistan Complex; 44±0.5, 39.7±0.2 Ma from dikes cutting the Ladakh-Deosai Batholith Complex; 130–145 Ma from a diorite in the Shyok melange; and 7.8±0.1 Ma from a late stage monzogranite of the Kärakorum Batholith. A 261±13 Ma age from gneiss of the Karakorum Batholith is of uncertain significance. These dates, previously published ones which we summarize here, and some Sr isotope data suggest the following, (due to subduction switching between the Indian and Asian margins during closing of the Tethys ocean): Late Cretaceous emplacement of the Dras-Kohistan Cretaceous Island arc, followed by rapid cooling between abut 85 and 45 Ma. A quiet phase tectonically on the northern Indian plate during the Palaeocene to early Eocene, when subduction was occurring on the Asian margin. Further southward thrusting of the Indian continental margin associated with the development of an Andean-type arc (the Ladakh-Desosai Batholiths) on the northern Indian margin during the Eocene. An Oligocene Andean arc (the Karakorum Batholiths) on the Asian margin, followed by Miocene collision of the two continents and intrusion of ‘true’ granites derived from partial melting of continental crust.  相似文献   

9.
Present study reports the PGE-geochemistry of mantle peridotites and Nd-isotope geochemistry of arc related mafic rocks from the Indus Suture Zone (ISZ), western Ladakh. The total PGE concentration of the Shergol and Suru Valley peridotites (∑PGE = 96–180 ppb) is much higher than that of the primitive mantle and global ophiolitic mantle peridotites. The studied peridotites show concave upward PGE-distribution patterns with higher palladium-group PGE/Iridium-group PGE ratios (i.e., 0.8–2.9) suggesting that the partial melting is not the sole factor responsible for the evolution of these peridotites. The observed PGE-distribution patterns are distinct from residual/refractory mantle peridotites, which have concave downward or flat PGE-distribution patterns. Relative enrichment of palladium-group PGE as well as other whole-rock incompatible elements (e.g., LILE and LREE) and higher Pd/Ir ratio (1.1–5.9) reflects that these peridotites have experienced fluid/melt interaction in a supra-subduction zone (SSZ) tectonic setting. Also, the Shergol mafic intrusives and Dras mafic volcanics, associated with the studied peridotites, have high 143Nd/144Nd ratios (i.e., 0.512908–0.513078 and 0.512901–0.512977, respectively) and positive εNd(t) (calculated for t = 140 Ma) values (i.e., +5.3 to +8.6 and + 5.1 to +6.6, respectively), indicating derivation from depleted mantle sources within an intra-oceanic arc setting, similar to Spongtang and Nidar ophiolites from other parts of Ladakh Himalaya. The transition from SSZ-type Shergol and Suru Valley peridotites to Early Cretaceous tholeiitic Shergol mafic intrusives followed by tholeiitic to calc-alkaline Dras mafic volcanics within the Neo-Tethys Ocean exhibit characteristics of subduction initiation mechanism analogous to the Izu-Bonin-Mariana arc system within western Pacific.  相似文献   

10.
11.
12.
The Indus River flows through Ladakh, one of the driest and coldest places on earth, in a tectonically active domain. Fluvial, glaciofluvial, lacustrine and debris dominated sequences represent the Late Quaternary sedimentary record along the river course. Karakoram Fault, a major crustal scaled feature reported to be active during the Quaternary, is associated with the Indus River drainage. Linkages between a major, active fault and deposits formed during the activity period of the fault are explored using heavy mineral deduced provenance and Optically Stimulated Luminescence(OSL) chronology.Five deposits in a ~200 km long stretch of the Indus River have been examined for a ~80 ka period to decipher the climate linked aggradation history. Damming of the Indus River at ~79 ka and existence of the Spituk Lake for >30 ka is demonstrated. Using geology of the provenance in relation to the mineralogical attributes of the Quaternary deposits, the major drainage reorganization when the connection of the Tangtse Valley to the Indus was blocked, is inferred at ~73 ka. It is supported by the geologicalgeomorphological evidence. The study demonstrates the application of provenance linked mineralogy in terrestrial aggradation in a tectonically active region.  相似文献   

13.
The Rajmahal Traps were discovered in the Panagarh area, West Bengal, during the exploration for coal resources. A Gondwana succession was found beneath the traps, consisting of the Early Cretaceous Intratrappean Rajmahal Formation, the Early Triassic Panchet Formation and the Late Permian coal-bearing Raniganj Formation. The present palynological study was aimed at confirming the age of the Panchet Formation. As a result of this study it has been found that Jurassic sediments are also included in the Panchet Formation. The study has revealed that the Panchet Formation, defined on a lithological basis, is a time-transgressive unit extending from the Early Triassic to the Late Jurassic, with a phase of non-deposition between the Middle Triassic and Middle Jurassic.  相似文献   

14.
Palynological complexes from the coaliferous Talyndzhan and Dublikan formations of the Bureya sedimentary basin are analyzed. The palynological assemblage from the upper part of the Talyndzhan Formation is characterized by dominant gymnosperms largely close to Pinaceae and Ginkgocycadophytus. The content of ferns is insignificant against the background of their relatively high taxonomic diversity. The assemblage is marked by the last occurrence of Staplinisporites pocockii, Camptotriletes cerebriformis, C. nitida, and Cingulatisporites sanguinolentus spores typical of the Late Jurassic palynofloras. The palynological assemblage from the Dublikan Formation is dominated by Pteridophyts representing mainly by Cyathidites and Duplexisporites. In addition to the conifer, the role of Classopollis increased among the gymnosperms in this assemblage. It also includes the first-appearing Stereisporites bujargiensis, Neoraistrickia rotundiformis, Contignisporites dorsostriatus, Duplexisporites pseudotuberculatus, D. rotundatus, Appendicisporites tricostatus, and Concavissimisporites asper. These sporomorphs are characteristic of the Berriasian palynofloras. Thus, the Jurassic-Cretaceous boundary is most likely located between the Talyndzhan and Dublikan formations.  相似文献   

15.
Analysis of fault-striations measured in the Kohistan part of the Indus Suture Zone (NW Himalaya, Pakistan) has been carried out to document dynamic evolution during the brittle stage of the collision of India and Asia. Processing of the data with a direct inversion method identified four stress fields which were chronologically ordered from field evidence as SSE–NNW compression, E–W compression, radial extension and SSW–NNE compression. The last corresponds to the present-day stress field defined from seismic activity. The earlier stress fields are related to times during the Miocene, when convergence-related stresses were disturbed by the formation of the nearby Nanga Parbat and Indus syntaxes.  相似文献   

16.
New field observations on granitoids and associated lithounits in some parts of Indus-Shyok Suture Zones have been documented in order to re-establish the geological relationships between various volcano-plutonic magmatic lithounits. Careful examination of outcrops and contact relationships between the various lithounits have pin-pointed the sequence of geological events. Field features of granitoids exposed along Leh-Saboo-Khardung_La suggest multiple pulses of mafic-felsic magma interactions (mingling to mixing) with almost 25% of the mafic to hybrid magma input in the evolution of the eastern part of Ladakh batholith. Along Khardung_La-Shyok-Diskit, thick sequence of volcanic lithounits is exposed, which dominantly consist of massive basaltic andesite, porphyritic andesite, dacite and rhyolite forming Khardung Formation. On the other hand Shyok Formation, dipping opposite to the Khardung Formation, composed predominantly of meta-sedimentary lithounits and subordinate amount of volcanic materials at present exposed level. Spectacular intrusive contacts of Ladakh granitoids with metavolcanics and meta-sedimentary country rocks of Shyok Formation near Diskit can be observed, which are manifested by ubiquitous xenoliths near the marginal parts. Although the nature of granitoid melt invasion into country-rocks was relatively winty, granitoid melt has produced leucogranite-pegmatite system because of devolatization and decompression effects. Frequent xenoliths of porphyritic andesite and dacite roof pendants are being reported in Tirit granitoids, which strongly suggest sub-volcanic emplacement of granitoid melt, extensive assimilation and roof collapse of overlying volcanic materials. It is more likely that the xenoliths hosted in Tirit granitoids belong to Shyok volcanics. It is suggested that multiple pulses of coeval mafic and felsic magmatism occurred extensively and emplaced at differential crustal levels.  相似文献   

17.
In this paper, we present whole-rock and mineral geochemistry of serpentinized peridotites from the Suru Valley ophiolite slice Ladakh Himalaya, in an attempt to put constraints on their petrogenesis and tectonic evolution in the context of Mesozoic Neo-Tethys Ocean. On the basis of petrographic study, Suru Valley serpentinized peridotites can be identified as serpentinized harzburgites. Relative to primitive mantle these rocks have depleted major and rare earth element (REE) geochemical characteristics comparable to ocean floor mantle rocks reflecting their mantle residual nature. However, higher abundance of highly incompatible large ion lithophile elements (e.g., Rb, Ba, Th, U, Pb and Sr), reflect metasomatism in a subduction zone environment. The presence of silicate assemblage includes Mg-rich olivine (Fo90-92) and orthopyroxene (En91-93 Fs6.4-8.7) of supra-subduction zone affinity. Evaluation of mineral and whole-rock geochemistry suggests that the Suru Valley ophiolitic peridotites represent residues left after moderate degrees of partial melting thereby underwent metasomatism in a supra-subduction zone environment related to north dipping intra-oceanic island arc during Cretaceous in the context of Mesozoic Neo-Tethys ocean.  相似文献   

18.
We determined U–Pb ages on zircons from Ladakh granitoid samples of three previously undated plutons and deduced four distinct age groups between c. 67 and c. 45 Ma (66.6 ± 2.1, 57.6 ± 1.4, 53.4 ± 1.8, 52.50 ± 0.53 and 45.27 ± 0.56 Ma). This suggests that the Ladakh batholith grew by addition of at least four distinct subduction‐related magma pulses at c. 67, 58, 53 and 45 Ma, thus indicating that the belt was continuously active throughout the Palaeocene and the Middle Eocene (Lutetian). The 45.27 ± 0.56 Ma pluton at Daah‐Hanu is the last major calcalkaline arc magmatic pulse in the Ladakh batholith. Thereafter, the subduction‐related major plutonism gradually waned. The earlier estimate for the youngest pluton within the Ladakh batholith is 49.8 ± 0.8 Ma for the Leh pluton ( J. Geol., 2000, 108 , 303 ).  相似文献   

19.
The Kohistan Arc Complex is an integral part of the NW Himalayan collision system and is bounded by two major suture zones, the Indus Suture Zone (ISZ) and the Northern Suture in the south and north respectively. Fission‐track analyses on samples collected along the Indus River across the arcuated ISZ in the Besham region are presented here. The footwall yields zircon and apatite fission‐track (FT) ages of ∼23 Ma and ∼3.7 Ma respectively; the hanging wall ages range from 24 to 42 Ma for zircon and ∼10 Ma for apatite. Thus, the change in ISZ kinematics from thrusting to normal faulting was not later than Oligocene and normal faulting on this ISZ segment was still active at least into early Pliocene times. At this time normal faulting had already ended at other ISZ segments, but it was still (or again) active across the ISZ in the Besham region most likely as a local phenomenon caused by the growth of the Indus Syntaxis, a transverse antiform parallel to the Nanga Parbat Syntaxis.  相似文献   

20.
The Mahadevi hills, located in the axial zone of Cauvery Suture Zone, comprise a sequence of granulite facies rocks represented by garnet-bearing pyroxene granulites and quartzo-feldspathic gneisess interfolded with banded iron formations. Structural mapping with hand held GPS reveals that the Mahadevi hills constitute a mega sheath fold structure exposing well developed easterly plunging extension lineations. Depressional and culmination surfaces are well demarcated in association with elliptical map patterns. The development of the mega sheath fold structure is genetically related to the regional thrust-nappe tectonics, supporting the model of subduction-accretion-collisional history for the evolution of the Cauvery Suture Zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号