首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stratigraphy and sedimentology of the glacial deposits exposed along the coast of east Yorkshire are reviewed. Critical sections at Filey Brigg, Barmston and Skipsea are examined to reassess the stratigraphy of Devensian Dimlington Stadial glacial deposits in the light of recent developments in glacial sedimentology. Sedimentary and glaciotectonic structures studied in the field and by using scanning electron microscopy are emphasised. Two hypotheses are considered for the genesis of the interbedded diamictons and stratified sediments. The first involves the deposition of lodgement till and/or deformation till followed by meltout till, which was overridden to produce more deformation till, reflecting periods of ice stagnation punctuated by glacier thickening. The second hypothesis, which is favoured on the basis of field evidence and micromorphology, involves the vertical accretion of a deforming till layer associated with cavity/channel or tunnel valley fills, beneath active ice. At Barmston the upper part of the diamicton contains elongate pendant structures containing gravels, indicating that the diamicton was saturated and able to flow. The diamictons, therefore, represent a complex sequence of tills deposited and deformed by active ice during the Dimlington Stadial. Previously published stratigraphical schemes involving classifications of multiple tills in east Yorkshire should be simplified and it is more appropriate to assign these to a single formation, the Skipsea Till Formation. Rhythmic glaciolacustrine and proglacial glaciofluvial sediments overlie the tills at Barmston and Skipsea. These were deposited in sag basins during deglaciation as the tills settled and deformed under thickening sediment and as buried ice melted out. Extensive sands and gravels cap the succession and were deposited on a sandur during the later stages of deglaciation.  相似文献   

2.
The Jæren area in southwestern Norway has experienced great changes in sea‐levels and sedimentary environments during the Weichselian, and some of these changes are recorded at Foss‐Eikeland. Four diamictons interbedded with glaciomarine and glaciofluvial sediments are exposed in a large gravel pit situated above the post‐glacial marine limit. The interpretation of these sediments has implications for the history of both the inland ice and the Norwegian Channel Ice Stream. During a Middle Weichselian interstadial, a large glaciofluvial delta prograded into a shallow marine environment along the coast of Jæren. A minor glacial advance deposited a gravelly diamicton, and a glaciomarine diamicton was deposited during a following marine transgression. This subsequently was reworked by grounded ice, forming a well‐defined boulder pavement. The boulder pavement is followed by glaciomarine clay with a lower, laminated part and an upper part of sandy clay. The laminated clay probably was deposited under sea‐ice, whereas more open glaciomarine conditions prevailed during deposition of the upper part. The clay is intersected by clastic dykes protruding from the overlying, late Weichselian till. Preconsolidation values from the marine clay suggest an ice thickness of at least 500 m during the last glacial phase. The large variations in sea‐level probably are a combined effect of eustasy and glacio‐isostatic changes caused by an inland ice sheet and an ice stream in the Norwegian Channel. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Ó Cofaigh, C., Evans, D. J. A. & Hiemstra, J. F. 2010: Formation of a stratified subglacial ‘till’ assemblage by ice‐marginal thrusting and glacier overriding. Boreas, 10.1111/j.1502‐3885.2010.00177.x. ISSN 0300‐9483. A thick sequence of glaciotectonically stacked till and outwash is preserved in a coastal embayment at Feohanagh, southwest Ireland. The sequence contains a variety of diamicton lithofacies, including laminated, stratified and massive components, but stratified diamictons dominate. Stratification/lamination is imparted by the presence of numerous closely spaced subhorizontal and anastomosing partings, which give a fissile appearance to the diamictons. Many partings are the result of sandy or thin gravelly layers within the diamictons. Some diamictons contain interbeds and lenses of sand, mud and gravel, which still preserve the original stratification. The sequence at Feohanagh is the product of a two‐stage depositional process in which initial glaciolacustrine sedimentation in an ice‐dammed lake was followed by glaciotectonic thrusting and overriding, during which the lake sediments were reworked and variably deformed. Similar late Quaternary sequences of glaciotectonically stacked stratified sediments and till have been described from around the coastal margins of Ireland and Britain, where they constitute glaciotectonite–subglacial traction till continuums rather than true lodgement tills as traditionally implied. Thick stratified diamicton assemblages are likely to occur in areas where steep topography provides pinning points for the glacier margin to stabilize and deliver large volumes of sediment into a glaciolacustrine or glaciomarine setting before proglacial and subglacial reworking of the sediment pile. The resulting geological–climatic unit, often defined as ‘till’, will contain a large amount of stratified and variably deformed material (laminated and stratified diamictons will be common), including intact sediment rafts, reflecting low strain rates and short sediment transport distances.  相似文献   

4.
Tills are described which occur in ridges and mounds arranged both parallel and transverse to the flow direction of the depositing glacier. Field localities are drawn from the English Midlands, Western Canada, and South Victoria Land, Antarctica. The tills retain textural and structural properties associated with glacial transport, and have suffered a minimum of redistribution suhsequent to their release from glacier ice. It is shown that ridges and mounds cannot he explained in terms of preferential till accretion. An alternative mechanism is presented in which form and structurc are a result of redistribution of debris in transport by secondary flows in ice.
Flutings are longitudinal forms which are related to helicoidal flow cells. Fabric distributions, patterns of till thickness, and internal structure support the helicoidal flow hypothesis.
Debris entrainment by Antarctic cold-based glaciers is explained by consideration of the morphology and sedimentology of the ice margin and the pattern of glacier flow. Deposition by sublimation and melt-out produces an upwards succession of (1) undisturbed proglacial deposits; (2) a complex of poorly sorted flow deposits intercalated with sorted and stratified water-lain deposits; (3) foliated till with sub-horizantal jointing and isolated clasts. A section shobbing this succession is described from Taylor Valley, Antarctica.
Transverse asymmetric ridges are related to till stacking by over-folding in the marginal compressive zone of cold-based glaciers. Plastic deformation of the debris-laden ice may be enhanced by incorporated salts. The folding process is illustrated by structures within Taylor glacier, and is used to explain Pleistocene landforms and structures in Shropshirc, England and Taylor Valley, Antarctica.  相似文献   

5.
Internal structure, stable isotope composition and tritium concentration were measured in and around debris‐bearing ice at the margin of Storglaciären, where englacial debris bands have previously been inferred to form by thrusting. Two types of debris bands were distinguished: (i) an unsorted diamicton band that is laterally continuous for more than 200 m, and (ii) well‐sorted sand and gravel bands that are lenticular and discontinuous. Above‐background tritium levels and enrichment of δ18 O and δD in ice from the diamicton band indicate entrainment by basal freeze‐on since 1952. Isotopic enrichment and tritium‐free ice in the sandy debris bands also indicate entrainment in freezing water, but prior to 1952. The lenticular cross‐section, sorting and stratification of the sandy bands suggest that they were deposited englacially. The basally accreted diamicton band has been elevated tens of metres above the bed and presently overlies the englacially deposited sandy bands, suggesting that the stratigraphy has been disrupted. Three interpretations could account for these observations: (i) thrusting of fast‐moving ice over slow, marginal ice uplifting recently accreted basal ice along the fault; (ii) folding near the margin, elevating young basal ice over older basal and englacial ice; and (iii) debris‐band formation by an unknown mechanism and subsequent contamination of ice geochemical properties by meltwater flow through debris bands. Although none of these interpretations is consistent with all measurements, folding is most compatible with observations and local ice‐flow kinematics.  相似文献   

6.
This paper focuses on the structural glaciology, dynamics, debris transport paths and sedimentology of the forefield of Soler Glacier, a temperate outlet glacier of the North Patagonian Icefield in southern Chile. The glacier is fed by an icefall from the icefield and by snow and ice avalanches from surrounding mountain slopes. The dominant structures in the glacier are ogives, crevasses and crevasse traces. Thrusts and recumbent folds are developed where the glacier encounters a reverse slope, elevating basal and englacial material to the ice surface. Other debris sources for the glacier include avalanche and rockfall material, some of which is ingested in marginal crevasses. Debris incorporated in the ice and on its surface controls both the distribution of sedimentary facies on the forefield and moraine ridge morphology. Lithofacies in moraine ridges on the glacier forefield include large isolated boulders, diamictons, gravel, sand and fine-grained facies. In relative abundance terms, the dominant lithofacies and their interpretation are sandy boulder gravel (ice-marginal), sandy gravel (glaciofluvial), angular gravel (supraglacial) and diamicton (basal glacial). Proglacial water bodies are currently developing between the receding glacier and its frontal and lateral moraines. The presence of folded sand and laminites in moraine ridges in front of the glacier suggests that, during a previous advance, Soler Glacier over-rode a former proglacial lake, reworking lacustrine deposits. Post-depositional modification of the landform/sediment assemblage includes melting of the ice-core beneath the sediment cover, redistribution of finer material across the proglacial area by aeolian processes and fluvial reworking. Overall, the preservation potential of this landform/sediment assemblage is high on the centennial to millennial timescale.  相似文献   

7.
At Kap Herschell, in the outer fjord zone of central northeast Greenland, exposed sections in a Late Pleistocene ice-cored moraine revealed four major stratigraphic units deposited during the complex Kap Herschell Stade . All contain fragmented and redeposited marine shells that most likely belong to an Eemian or Early Weichselian marine episode. The oldest unit consists of buried ground ice with folded and sheared debris bands. Isotopic analyses show that the slope of the regression line for δ2H vs. δ18O of the ice is about 8.5. which suggests correlation with the Global Meteoric Water Line (GMWL). Data strongly suggest that the ground ice at Kap Herschell is a remnant of a Late Pleistocene glacier. It was probably generated at low altitudes (< 1000 m) in the inner fjord region or in the nunatak zone. The ground ice is unconformably overlain by all younger stratigraphic units, the oldest of which is a diamicton probably deposited as ablation till from the ice. A complex unit composed of mainly glaciolacustrine deposits and subordinate beds of fluvial and deltaic origin overlies the till and ground ice. Luminescence dating of the lacustrine sediments indicates maximum ages younger than 43 ka BP, suggesting deposition during isotope stages 3 or 2. The glaciolacustrine deposits suffered strongly from glaciotectonic deformation, caused by renewed glacier advance through the fjord. It reached the inner shelf and led to deposition of a discordant till at Kap Herschell, most probably during the Late Weichselian.  相似文献   

8.
Glacial lineations on a bank area and a coastal lowland, both bordering the Norwegian Channel, are studied with regard to morphology and distribution by means of side-scan sonar data, detailed digital maps and fieldwork. Their genesis and age are further elucidated through stratigraphic and sedimentologic information from excavations in one typical coast-parallel drumlin. Four excavated sections revealed four lithologic units: Prodeltaic glaciomarine sand, glaciofluvial gravel, glaciomarine diamicton and deformation till. After Middle Weichselian delta progradation, glaciomarine diamicton was deposited and later subglacially reworked by a northwards flowing glacier. The two upper diamictons form the main volume of the ridge, which is interpreted as a drumlin, and imply a reinterpretation of the Jæren part of the so-called Lista moraine. Preconsolidation of glaciomarine diamicton suggests a maximum ice thickness of 500 m during drumlin formation, indicating an ice surface slope of 1 m/km. The occurrence of sediments that provided low basal shear stresses, and the orientation of drumlins and megaflutes indicating ice confluence both point to high glacier flow velocities and suggest that an ice stream, rather than a slower moving part of the ice sheet, occupied the Norwegian Channel during the Late Weichselian maximum. Deformation till overlying, more or less, undeformed glaciomarine diamicton suggests that high glacier velocities during periods of low driving stresses were possible due to a subglacial deformable layer.  相似文献   

9.
Hummocky terrain composed of boulder gravel and a wavy contact between stratified till and sand are described and explained as products of subglacial meltwater activity beneath the Saginaw Lobe of the Laurentide Ice Sheet in south-central Michigan. Exposures and geophysical investigations of hummocky terrain in a tunnel channel reveal that hummocks (˜100m diameter) are glaciofluvial bedforms with a supraglacial melt-out till or till flow veneer. The hummocky terrain is interpreted as a subglacial glaciofluvial landscape rather than one of stagnant ice processes commonly assumed for hummocky landscapes. Sandy bedforms at another site are in-phase with a wavy contact at the base of a stratified till exposed for 50m along the margin of a tunnel channel. The 0.4m thick stratified till is overlain by up to 5m of compact, pebble-rich, sandy subglacial melt-out till. The contact between the till and sand has a wave form with a 0.5m amplitude and 3-5m wavelength. Bedding within the stratified till, sandy bedforms and melt-out till are mostly in-phase with each other. Clasts from the overlying stratified till penetrate and deform the underlying sand recording recoupling of the ice to its bed. Ice ripples cut into the base of river ice have a similar morphology and are considered analogs for cavities cut into the base of the glacier and subsequently filled with sand. Subglacial meltwater activity was not coeval at each study site, indicating that subglacial meltwater played important roles in the evolution of the subglacial environment beneath the Saginaw Lobe at different times.  相似文献   

10.
The macro‐ and micro‐sedimentology of a supraglacial melt‐out till forming at the Matanuska Glacier was examined in relationship to the properties of the stratified basal zone ice and debris from which it is originating. In situ melting of the basal ice has produced a laminated to bedded diamicton consisting mainly of silt. Macroscopic properties include: discontinuous laminae and beds; lenses of sand, silt aggregates and open‐work gravel; deformed and elongate clasts of clay; widely dispersed pebbles and cobbles, those that are prolate usually with their long axes subparallel to parallel to the bedding. Evidence for deformation is absent except for localized bending of beds over or under rock clasts. Microscopic properties are a unique element of this work and include: discontinuous lineations; silt to granule size laminae; prolate coarse sand and rock fragments commonly with their long axis subparallel to bedding; subangular to subrounded irregular shaped clay clasts often appearing as bands; sorted and unsorted silt to granule size horizons, sometimes disrupted by pore‐water pathways. Limited deformation occurs around rock clasts and thicker parts of lamina. This study shows that in situ melting of debris‐rich basal ice can produce a laminated and bedded diamicton that inherits and thereby preserves stratified basal ice properties. Production and preservation of supraglacial melt‐out till require in situ melting of a stagnant, debris‐rich basal ice source with a low relief surface that becomes buried by a thick, stable, insulating cover of ice‐marginal sediment. Also required are a slow melt rate and adequate drainage to minimize pore‐water pressures in the till and overlying sediment cover to maintain stability and uninterrupted deposition. Many modern and ancient hummocky moraines down glacier of subglacial overdeepenings probably meet these process criteria and their common occurrence suggests that both modern and pre‐modern supraglacial melt‐out tills may be more common than previously thought.  相似文献   

11.
Extensive, 20–100 m thick Quaternary sediment accumulations, deposited before the latest Weichselian stage, were discovered in the Suupohja region in western Finland, near the centre of the Scandinavian glaciations. Fourteen lithofacies have been identified and interpreted in the accumulations. Geomorphologically and lithostratigraphically these accumulations occur in two forms: (1) till-covered beaded gravelly ridges that have occasional fine-grained sediments and paleosols between the gravel and the overlying till, and (2) irregularly shaped broad multilayer accumulations that include up to seven till units, three silt/clay units and three sand units. These sediments have been deposited in glacial, glaciofluvial, glaciomarine/-lacustrine and possibly in littoral and eolian environments during up to six glacial–deglacial cycles. The units are divided into five formations, which are proposed to form the Suupohja Group. According to the luminescence datings, lithostratigraphy and sedimentary structures, the sediments below the uppermost till are interpreted to have been deposited before the latest Weichselian glaciation, which occurred during the Middle or Late Weichselian Substage. This article clarifies the multiple lithostratigraphy of the Suupohja region and introduces potential type sections for further stratigraphic studies. The rich diversity of the sediments and their large extent makes this region one of the key areas in the Pleistocene research of the glaciated areas of northern Europe.  相似文献   

12.
Englacial debris structures, morphology and sediment distribution at the frontal part and at the proglacial area of the Scott Turnerbreen glacier have been studied through fieldwork and aerial photograph interpretation. The main emphasis has been on processes controlling the morphological development of the proglacial area. Three types of supraglacial ridges have been related to different types of englacial debris bands. We suggest that the sediments were transported in thrusts, along flow lines and in englacial meltwater channels prior to, and during a surge in, the 1930s, before the glacier turned cold. Melting-out of englacial debris and debris that flows down the glacier front has formed an isolating debris cover on the glacier surface, preventing further melting. As the glacier wasted, the stagnant, debris-covered front became separated from the glacier and formed icecored moraine ridges. Three moraine ridges were formed outside the present ice-front. The further glacier wastage formed a low-relief proglacial area with debris-flow deposits resting directly on glacier ice. Melting of this buried ice initiated a second phase of slides and debris flows with a flow direction independent of the present glacier surface. The rapid disintegration of the proglacial morphology is mainly caused by slides and stream erosion that uncover buried ice and often cause sediments to be transported into the main river and out of the proglacial area. Inactive stream channels are probably one of the morphological elements that have the best potential for preservation in a wasting ice-cored moraine complex and may indicate former ice-front positions.  相似文献   

13.
Almost 90% of 39 m of core material recovered from Scoresby Sund and the adjacent East Greenland shelf is massive diamicton, interpreted to be formed predominantly by the release of iceberg rafted debris and reworking by iceberg scouring. There is also likely to be a contribution from suspension settling of fines derived from glaciofluvial sources. Model calculations suggest that the 14C derived Holocene sedimentation rate of 0.1-0.3 m 1000 yr−1 in Scoresby Sund can be accounted for mainly by iceberg rafting of debris. A further 4% of core material is of gravel or coarse sand lenses, interpreted to reflect iceberg dumping of debris. Intensive iceberg scouring, which reworks sea floor sediments, is observed on acoustic records from over 30 000 km2 of the Scoresby Sund fiord system and the adjacent East Greenland shelf (69-72°N and 75°N). The rate of iceberg production from Greenland Ice Sheet outlet glaciers, and iceberg drift tracks on the shelf, suggests that iceberg rafting and scouring may be important over a significant proportion of the 500 000 km2 area above the shelf break. The relatively extensive modern occurrence of massive diamicton, formed by iceberg rafting and scouring, together with suspension settling of fines, suggests that it may also be a significant facies in the glacier-influenced geological record. The recognition in the geological record of the massive diamicton facies described above may also indicate the former presence of fast flowing ice sheet outlet glaciers.  相似文献   

14.
15.
Deposition of till by melt-out was described as early as a hundred years ago, and today the criteria which provide evidence to support an interpretation of melt-out till are available. The most important criteria are (P1) the presence of unlithified, sorted and stratified sediments within or interstratified with the till(s). (P2) the presence of a statistically preferred orientation of stone axes closely related to ice-flow condition, and (P3) a configuration of till with a recognizable textural or lithological property closely related to the configruation of englacial debris with regard to P1. Based on P1 and P2 and on regional aspects, tills composing ridges transverse to the dircetion of ice flow are interpreted as mult-out till and flow till. The interpretation of till genesis must be based on the balnce of probability, as absolute proof is unrealistic in most cases.  相似文献   

16.
Sediment from the Attawapiskat area near James Bay, Northern Ontario was sampled for micromorphological analyses. The sediment is a glacial diamicton (till) of subglacial origin. The till contains entrained and scavenged sediments of proglacial and/or subglacial glaciofluvial/glaciolacustrine origin from a subglacial deforming layer that was emplaced due to both stress reduction and/or porewater dissipation. Evidence of porewater escape, clay translocation and other microstructures all point to emplacement under active subglacial bed deformation. The limited number of edge to edge (ee) grain crushing events, however, point to lower stress levels than might anticipated under a thin fast ice lobe of the James Bay during the Middle Pliocene. Microstructures of Pleistocene tills were quantitatively compared with the Attawapiskat till and the limited number of ee events at Attawapiskat further highlighted that grain to grain contact was curtailed possibly due to high till porosity, high porewater pressures and low strain rates or alternatively due to a high clay matrix component reducing grain crushing contact events. It is suggested that this Middle Pliocene till may be indicative of sediments emplaced under ice lobe surging conditions or fast ice stream subglacial environments. This proposal has significant implications for the glaciodynamics of this part of the Middle Pliocene James Bay lobe. This research highlights a crucial link between subglacial conditions, till microstructural analyses and glaciodynamics.  相似文献   

17.
《Sedimentary Geology》2007,193(1-4):21-31
Three basal-till facies from the Lower Vistula valley were examined. The lowest facies, a sandy diamicton with characteristic sand inclusions forming detached and attenuated folds, is overlain by a bedded till characterized by alternating diamictons and sorted sediment layers. The uppermost till facies is a homogeneous diamicton.The three till facies must have been formed by complex subglacial sedimentary processes during the first Late Weichselian ice advance. The lowest till facies is interpreted as a deformation till, and accumulated during the initial stage of the ice advance. The middle facies represents a stagnation phase during the initial ice advance, and was deposited during recurrent periods of subglacial melt-out followed by meltwater sedimentation. The upper till facies was deposited by direct subglacial melt-out during a stage of stagnant ice.It is suggested that bed deformation and temporarily enhanced basal sliding have been caused by ice streaming at the time of the ice-sheet advance and just before its stagnation.  相似文献   

18.
The Kuannersuit Glacier surged 11 km between 1995 and 1998. The surge resulted in the formation of an ice cored thrust moraine complex constructed by subglacial and proglacial glaciotectonic processes. Four main thrust zones are evident in the glacier snout area with phases of compressional folding and thrusting followed by hydrofracture in response to the build-up of compressional stresses and the aquicludal nature of submarginal permafrost and naled. Various types of stratified debris-rich ice facies occur within the marginal zone: The first (Facies I) comprises laterally continuous strata of ice with sorted sediment accumulations, and is reworked and thrust naled ice. The second is laterally discontinuous stratified debris-rich ice with distinct tectonic structures, and is derived through subglacial extensional deformation and localised regelation (Facies II), whilst the third type is characterised by reworked and brecciated ice associated with the reworking and entrainment of meteoric ice (Facies III). Hydrofracture dykes and sills (Facies IV) cross-cut the marginal ice cored thrust moraines, with their sub-vertically frozen internal contact boundaries and sedimentary structures, suggesting supercooling operated as high-pressure evacuation of water occurred during thrusting, but this is not related to the formation of basal stratified debris-rich ice. Linear distributions of sorted fines transverse to ice flow, and small stratified sediment ridges that vertically cross-cut the ice surface up-ice of the thrust zone relate to sediment migration along crevasse traces and fluvial infilling of crevasses. From a palaeoglaciological viewpoint, marginal glacier tectonics, ice sediment content and sediment delivery mechanisms combine to control the development of this polythermal surge valley landsystem. The bulldozing of proglacial sediments and the folding and thrusting of naled leads to the initial development of the outer zone of the moraine complex. This becomes buried in bulldozed outwash sediment and well-sorted fines through surface ablation of naled. Up-ice of this, the heavily thrust margin becomes buried in sediment melted out from basal debris-rich ice and subglacial diamicts routed along thrusts. These mechanisms combine to deliver sediment to supraglacial localities, and promote the initial preservation of structurally controlled moraines through insulation, and the later development of kettled dead ice terrain.  相似文献   

19.
Until recently, little was known about the Quaternary marine sedimentary record in East Greenland. Geophysical and geological investigations in Scoresby Sund were undertaken to characterize the nature and chronology of this record. Seismic records show that almost 70% of the outer fjord system is covered by about 10 m of unlithified sediments, making direct correlation with the Quaternary records on land and the adjacent continental margin difficult. These acoustically unstratified sediments are scoured by icebergs above 550 m water depth. Almost 90% of core material is massive diamicton of Holocene age, deposited mainly from iceberg rafting and turbid meltwater. Sedimentation rates are 0.1 -0.3 m 1000 yr-1. Thicker accumulations of unlithified Quaternary sediments in Scoresby Sund occur as sediment ridges and in two other major depocentres. A low sediment ridge runs across the mouth of Scoresby Sund, and is interpreted as an end moraine of Late Weichselian Flakkerhuk stadial age. The very restricted sediment thickness suggests that grounded ice filled the fjord during the Flakkerhuk and an ice shelf was not present. High inputs of ice rafted debris to the continental margin at about 18 000 BP indicate this as a probable age for the moraine. During the Allerød Interstadial, ice probably retreated from the outer fjord system, since massive diamictons similar to those of Holocene age are present at the base of most cores. A major depocentre of acoustically stratified sediments at the head of Hall Bredning is interpreted to represent ice proximal deposits from a glacier margin extending across the fjord. It is adjacent to dated moraines on land and is inferred to be of Milne Land stadial age (about 10 000 BP). A similar age is interpreted for acoustically laminated sediments and a moraine at the entrance of Vikingebugt, on the south side of Scoresby Sund. Dated kame terraces in the inner fjord system indicate that ice retreated to its present position 6–7000 years ago.  相似文献   

20.
Transverse-to-iceflow ribbed moraine occurs in abundance in the coastal zone of northern Sweden, particularly in areas below the highest shoreline (200–230 m a.s.l.), but occasionally also slightly above. Based on detailed sedimentological and structural investigations of machine-dug sections across five ribbed moraine ridges, it is concluded that these vertically and distally prograding moraine ridges were formed as a result of subglacial folding/thrust stacking and lee-side cavity deposition. The proximal part of the moraines (Proximal Element) was formed by subglacial folding and thrust stacking of sequences of pre-existing sediments, whereas the distal part (Distal Element) was formed by glaciofluvial and gravity-flow deposition in lee-side cavities. The initial thrusting and folding is suggested to be a result of differences in bed rheology at the ice-marginal zone during the early or late melt season, and that generated a compressive zone transverse to ice flow as a result of a more mobile bed up-glacier compared to a less mobile bed down-glacier. It is considered that the lee-side cavities were formed as a result of ice-bed separation on the distal slope of the thrust/fold-created obstruction. The lee-side cavities formed an integral part of a subglacial linked-cavity drainage network regulated in their degree of interconnection, size and shape by fluctuations in basal meltwater pressure/discharge and basal iceflow velocity. The proximal and distal elements of the ribbed moraine ridges are erosively cut and/or draped with a consistently more homogeneous deforming bed till (Draping Element) marking the final phase of ribbed moraine formation considered to be contemporaneous with De Geer moraine formation further down-flow at the receding ice-sheet margin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号