首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The coal deposits of Meghalaya occur in the Lakadong Sandstone (25–250 m thick) of Eocene age. The coal-bearing formations are understood to have been deposited over platform areas in estuarine and lagoonal environments and subjected to recurrent marine transgressions and regressions during the Eocene period. There are three major groups of coalfields in Meghalaya, viz. Garo Hills (West Daranggiri and Siju Coalfields), Khasi Hills (Langrin and Mawlong–Shella Coalfields) and minor coalfields (Laitryngew, Cherrapunji and Bapung Coalfields). Pillar coal samples have been collected from 10 seams at 15 locations and have been subjected to a detailed petrographic examination for their characterization. An effort has been made to trace the path of their evolution based on coal petrography-based models. The quantitative petrographic analysis shows that these coals are vitrinite rich (45.0–92.9%, mean 73.4% mmf basis) with low concentration of inertinite (0.0–13.8%, mean 3.0% mmf basis), whereas the liptinite occurs in appreciable concentration (5.5–53.1%, mean 22.5% mmf basis). Further, these coals are rich in vitrite (51.6–100%, mean 78.3% mmf basis). The volatile matter (from 38.5% to 70.0%, d.a.f.) and vitrinite reflectance (Rom from 0.37% to 0.68%) characterize these coals, as per German (DIN) and North American classification, approximately as sub-bituminous ‘C' to high volatile ‘C' bituminous. The occurrence of teleutospore (single, double and triple celled) suggests that these coals have originated from a characteristic Tertiary flora. The maceral and microlithotype composition in the coal petrography-based depositional models suggest that the coals of Garo Hills were formed in reed to open water swamps in telmatic to limnic conditions. The coals of Khasi Hills were dominated by forest swamps and telmatic to limno-telmatic conditions. In addition, the occurrence of large-size resins suggests prolific growth of conifers in the swamps.  相似文献   

2.
The maceral and microlithotype compositions of coals representative of the different coal seams of the Ramagundam and Kothagudem coalfields, Godavari Valley Basin, are compared with those of the Ib River, Talcher, South Karanpura, Hura, and Brahmani coalfields. The vitrite + clarite—“Intermidiates”—durite + fusite + shale (<20%) triangular diagram places these coals in the area of non-coking coals, clearly distinct from the coking and semi-coking coals. The vitrinite reflectance is low (Rormoilaver: 0.38–0.71%), far below the coking-coal range. Thus, based on petrographic composition and rank, these coals are of non-coking nature. A triangular diagram is proposed delineating the coking, semi-coking and non-coking coal areas for the Gondwana coals of India.  相似文献   

3.
Cuttings and cores from the Poolowanna 1 well, Eromanga Basin, South Australia (in which oil was discovered in Lower Jurassic reservoirs) and the Macumba 1 well (no oil) have been analyzed petrographically to assess the nature of the coals and dispersed organic matter present. The Jurassic and Cretaceous coals have medium to high vitrinite contents, low to relatively high exinite, and medium to low inertinite contents. The dispersed organic matter has comparatively less vitrinite, more exinite and/or more inertinite than the associated coals. The microlithotype compositions of the coals indicate that the original vegetation was largely woody in character and was buried before much oxidation had occurred.The Jurassic sediments contain up to 2% dispersed organic matter by volume, 0–75% of which is exinite, including alginite. Vitrinite reflectances range from 0.5 to 0.7%. Where sufficiently mature, the Jurassic sediments are good potential source rocks for hydrocarbons.Statistical testing of the analytical results for the Jurassic Poolowanna Formation using Kendall's τ as a measure of dependence shows that there is a significant association between the macerals in coal and dispersed organic matter. The ratio of exinite to inertinite in dispersed organic matter is reasonably well predicted by the corresponding ratio in the associated coal.  相似文献   

4.
This paper attempts to characterize the coals of Satpura Gondwana basin using a large number of pillar coal samples drawn from the working coal mines of Pench, Kanhan, and Tawa (Pathakhera) Valley Coalfields of this basin. This westernmost Gondwana basin of Peninsular India is graben/half-graben type and occupies an area of 12 000 km2 with sedimentary fills (>5000 m) ranging in age from Permian to Cretaceous. The Barakar Formation (Permian) is exclusively coal-bearing with a total coal reserve of nearly 2000 Mt. The results show that the coals of this basin are equally rich in inertinite (22.8–58.7%, 24.5–62.0% mmf basis) and vitrinite (24.4–52.4%, 24.4–56.0% mmf basis). The concentration of liptinite ranges from 8.8% to 23.2% (9.0–26.0% mmf basis). The dominant microlithotypes of these coals are inertite and vitrite with comparatively low concentrations of vitrinertite and clarite. The vitrinite reflectance (Rom% values) suggests that the Pench Valley (0.30–0.58%) coals are subbituminous C to high volatile C bituminous in rank, while the Kanhan and Tawa Valley coals (0.52–0.92%) are subbituminous A to high volatile A bituminous in rank. The localized enhancement of rank in the latter two basins has been attributed to the extraneous heat flow from deep-seated igneous intrusions in the basin. The microlithotype composition of these coals is suggestive of their evolution in limno-telmatic zones, under fluvio-lacustrine control with the development of upper deltaic and lower deltaic conditions near the fresh water lacustrines. The floral input is characteristic of forest swamps with intermittent floods, leading to the development of reed moor and open moor facies, particularly in the Pench Valley basin. The Gelification Index (GI) and Tissue Preservation Index (TPI) are suggestive of terrestrial origin with high tree density. Further, moderately high GI and exceedingly high telovitrinite based TPI along with high ash content, particularly for the coals of Kanhan and Tawa Valley Coalfields, are indicative of the recurrence of drier conditions in the forested swamps. Furthermore, lateral variation in TPI values is indicative of increase in the rate of subsidence vis-à-vis depth of the basin from east to west (Pench to Tawa Valley Coalfield). The Ground Water Index (GWI) suggests that these coals have evolved in mires under ombotrophic to mesotrophic hydrological conditions. The Vegetation Index (VI) values are indicative of the dominance of herbaceous plants in the formation of Pench Valley coals and comparatively better forest input in the formation of Kanhan and Tawa Valley coals.  相似文献   

5.
Pulverized coals from eleven power plants burning Central Appalachian coal blends and eight power plants burning Illinois Basin coal blends were studied in order to assess the petrographic nature of industrial-scale coal grinding. All coals were high volatile bituminous. Coals were wet screened at 100 (150 μ), 200 (75 μ), 325 (about 40 μ), and 500 (about 25 μ) mesh. Petrographic analysis of the whole coals and size fractions consisted of a combined maceral and microlithotype analysis. Microlithotype analysis, in particular, provides a reasonable approximation of the whole-particle composition at the scale of utility coal pulverization. In the size fractions, duroclarite, the most abundant trimaceral microlithotype, is most abundant in the coarsest fraction and least abundant in the finest fraction. Vitrite, the most abundant monomaceral microlithotype, exhibits the opposite trend. Duroclarite becomes more enriched in vitrinite towards the finer sizes. The partitioning of microlithotypes and the partitioning of macerals within the microlithotypes is indicative of the relative brittle nature of vitrite compared to the hard-to-grind trimaceral microlithotypes. Increased vitrinite in duroclarite is an indication that the microlithotype within the particular size fraction is more brittle than relatively vitrinite-depleted duroclarite in coarser fractions. The relative grindability of microlithotypes will, in turn, impact combustion efficiency.  相似文献   

6.
The study of coal succession from bore hole No. Q-448 of Yellendu area of the Godavari valley coalfield, Andhra Pradesh reveals that the coals of Queen seam are high volatile bituminous C in rank and have vitrinite reflectance (Ro max %) varying between of 0.52 and 0.62%. The petrographic constitution however, suggests that the depositional site appears to be a slowly sinking and tectonically controlled basin, having received continuous supply of vegetal matter rich resource at regular intervals. The formation of inertinite rich coal suggests, oxidising enviornment of deposition. The dominence of vitrinite and liptinite constituents in these coals postulates the existence of alternating cold and humid spells. The present study indicates that these coals originated under an alternate oxic and anoxic moor condition.  相似文献   

7.
Microlithotype composition of a coal sample is often summarized by examining a large number (~500) of subsamples of a grain mount and estimating proportions of vitrite, intermediates, and inertite, where, for samples we have investigated, the proportion of intermediates is generally less than 0.4. This suggests that most subsamples are either greater than 95% vitrinite or greater than 95% inertinite, so that the statistical distribution of vitrinite has most of its weight in its tails. Two distributions which may have this shape are the beta and the logistic normal, and these have been fitted to the microlithotype distribution of some coal samples. Parameters of these fitted distributions are related to the proportion of vitrinite in the sample and thickness of microscopic bands in the coal. For coals in the Sydney Basin, at least, it was found that the parameter relating to band thickness is approximately constant over a coal seam; therefore, fitting one or other of these distributions to such data leads to directly interpretable parameters.  相似文献   

8.
在收集和整理大量山西省煤岩资料的基础上,分析了该省太原组和山西组煤的显微煤岩组分,并对各煤田太原组和山西组煤的R0,max的变化规律进行了研究。研究表明:山西省太原组和山西组煤中显微组分一般以镜质组为主,并且有从北向南有不断增加的趋势,惰质组次之,其趋势与镜质组相反,壳质组最少;太原组反射率值在0.6%~3.9%,整体上呈北低南高、西低东高的趋势,煤级从中煤级煤Ⅰ到高煤级煤Ⅱ都有赋存;山西组反射率值在0.6%~4.2%,其反射率变化趋势和煤级赋存特征与山西组类似。研究结果为评价和利用山西省的煤炭资源提供了依据。  相似文献   

9.
The quantitative maceral study of the Queen seam from Mailaram coalfield of Godavari valley has displayed alternate coal bands rich in vitrinite/liptinite or inertinite. The random vitrinite reflectance (Ro max. %) of these coals, from top part ranges from 0.50 to 0.64%. However, the bottom part of the seam has indicated lower reflectance, between 0.49 and 0.52%. Thus, the Queen seam, in general, has attained high volatile bituminous C rank. The study indicates that the depositional site has been a slowly sinking basin that witnessed alternate dry (oxidizing) and wet (reducing) spells. This subsequently caused fluctuation in water table of the basin and the formation of oxic and anaoxic moor condition, where accumulated vegetal resource transformed into mixed and fusic coal types in due course of time. Being high in liptinite and vitrinite contents and low mineral matter, the Queen seam of Mailaram coalfield has high economic potential.  相似文献   

10.
A detailed study of maceral composition and vitrinite reflectance of the coal deposits from Marki-Jhari-Jamni area, situated in the northwestern extremity of Wardha valley coalfield, Yeotmal district, Maharashtra has been carried out with special reference to their depositional set up. These coals have two distinct types of maceral organization, one having significantly high distribution of the vitrinite group of macerals (35–41%) and the other containing the dominance of inertinite (26–49%). Liptinite maceral group is recorded between 14 and 24%, barring a few coal bands having liptinite maceral group as high as 33–37%. The vitrinite reflectivity ranges from 0.38–0.43%. Thus, they have attained sub-bituminous C rank. Mineral matter in these coals varies between 15 and 22%. The present study suggests that the basin primarily experienced cold climate having intermittent brackish water influx with alternating dry oxidizing spells.  相似文献   

11.
The Tertiary North East Indian coals, classified as sub-bituminous rank, have found less industrial application owing to their physico-chemical attributes. These coals are characterized by low ash (<15%), high volatile matter (>35%) and high sulphur (2.9-4.46%). Majority of the sulphur occurs in organic form affixed to the coal matrix owing to marine influence, is difficult to remove. The coal maceral analysis shows the dominance of vitrinite (>75%) with lesser amounts of liptinite and inertinite. Reflectance measurements (Rmax) of these sub-bituminous coals fall in the range of 0.57 to 0.65. In this study, the petrographical (maceral), thermal and other physico-chemical analyses of some low rank Tertiary sub-bituminous coals from north-east India were carried out to assess their potential for combustion, liquefaction and coal bed methane formation. The petrofactor, conversion (%) and oil yield (%), combustion efficiency of the coal samples were determined. The respective linear correlations of conversion (%) of the coals with their vitrinite contents, petrofactor and oil yield values have been discussed. The relative combustion efficiency of the coals was measured from the thermo gravimetric analysis (TGA) of coals. The influence of maceral composition upon gas adsorption characteristics of these high volatile coals showed the increase in methane adsorption with vitrinite enrichment. Both the maceral and mineral matter contents were observed to have important influence on the gas adsorption characteristics.  相似文献   

12.
The stratigraphic and regional variation of petrographic and chemical properties within the coals of the Upper Carboniferous Tradewater Formation and surrounding rocks in the Western Kentucky coal field were analyzed with the intent of constructing a depositional model for the occurrence of these low sulfur coals. Cores were megascopically described, and coal samples were analyzed for maceral, ash, and sulfur contents. These data were then analyzed to determine regional variation within the study area, as well as vertical variation within single coal columns.Sedimentological data from core logs indicate that the majority of the Tradewater rocks consist of irregularly distributed, coarsening-upward, fine-grained detrital material that was deposited in shallow bodies of water. Fossiliferous shales and limestones indicate a marine influence. Less common coarse-grained, fining-upward sequences appear to represent deposits of meandering or braided channels.Like the detrital rocks, the coal seams are irregularly distributed and exhibit substantial variation in petrographic and chemical properties which reflect changes in the Eh and pH of the coal swamp waters. These individual swamps were relatively limited in extent and probably occupied a low-lying coastal area. The relatively high vitrinite content of most of the coals suggests a reasonable degree of preservation of decaying plant materials. The study of benched samples from surface mines suggests a distinct dichotomy between swamps that were in more or less continuous contact with sulfate-rich marine or brackish water and those in which peat accumulated in a dominantly fresh-water setting. Most of the latter show a pattern of upward increasing sulfur content and decreasing vitrinite content, indicating increasing influences of oxygenated water that would encourage microbial action and which would degrade the peat and increase the tendency for sulfide precipitation. The high sulfur coals do not display this variability. The high rates of lateral variability encountered in the data suggest that future study should concentrate on smaller areas where variation can be completely documented.  相似文献   

13.
A detailed study of maceral composition and vitrinite reflectance of the coal deposits from Marki-Jhari-Jamni area, situated in the northwestern extremity of Wardha valley coalfield, Yeotmal district, Maharashtra has been carried out with special reference to their depositional set up. These coals have two distinct types of maceral organization, one having significantly high distribution of the vitrinite group of macerals (35–41%) and the other containing the dominance of inertinite (26–49%). Liptinite maceral group is recorded between 14 and 24%, barring a few coal bands having liptinite maceral group as high as 33–37%. The vitrinite reflectivity ranges from 0.38–0.43%. Thus, they have attained sub-bituminous C rank. Mineral matter in these coals varies between 15 and 22%. The present study suggests that the basin primarily experienced cold climate having intermittent brackish water influx with alternating dry oxidizing spells.  相似文献   

14.
An attempt has been made to study the petro-chemical characteristics of some high sulphur sub-bituminous coal samples from Makum coalfield, Assam, India. The proximate and ultimate analyes were carried out and forms of sulphur were determined and their relationships with the Maceral constituents (vitrinite, liptinite, and inertinite) were investigated. The macerals (vitrinite+liptinite+inertinite) have significant relationships (R2>0.500) with volatile matter and carbon, whereas weak correlations were seen with rest of the physico-chemical characteristics of the coals. The study reveals that these coals are rich in vitrinites and sulphur and are aromatic in nature. These coals have good hydrocarbon potential.  相似文献   

15.
This paper discusses the result of the detailed investigations carried out on the coal characteristics, including coal petrography and its geochemistry of the Pabedana region. A total of 16 samples were collected from four coal seams d2, d4, d5, and d6 of the Pabedana underground mine which is located in the central part of the Central-East Iranian Microcontinent. These samples were reduced to four samples through composite sampling of each seam and were analyzed for their petrographic, mineralogical, and geochemical compositions. Proximate analysis data of the Pabedana coals indicate no major variations in the moisture, ash, volatile matter, and fixed carbon contents in the coals of different seams. Based on sulfur content, the Pabedana coals may be classified as low-sulfur coals. The low-sulfur contents in the Pabedana coal and relatively low proportion of pyritic sulfur suggest a possible fresh water environment during the deposition of the peat of the Pabedana coal. X-ray diffraction and petrographic analyses indicate the presence of pyrite in coal samples. The Pabedana coals have been classified as a high volatile, bituminous coal in accordance with the vitrinite reflectance values (58.75–74.32 %) and other rank parameters (carbon, calorific value, and volatile matter content). The maceral analysis and reflectance study suggest that the coals in all the four seams are of good quality with low maceral matter association. Mineralogical investigations indicate that the inorganic fraction in the Pabedana coal samples is dominated by carbonates; thus, constituting the major inorganic fraction of the coal samples. Illite, kaolinite, muscovite, quartz, feldspar, apatite, and hematite occur as minor or trace phases. The variation in major elements content is relatively narrow between different coal seams. Elements Sc,, Zr, Ga, Ge, La, As, W, Ce, Sb, Nb, Th, Pb, Se, Tl, Bi, Hg, Re, Li, Zn, Mo, and Ba show varying negative correlation with ash yield. These elements possibly have an organic affinity and may be present as primary biological concentrations either with tissues in living condition and/or through sorption and formation of organometallic compounds.  相似文献   

16.
Variation in petrological composition of the coal of the 64/65 seam has been studied. Two types of vertical lithotype succession were distinguished. The first type is represented by bright lithotypes interlayered with clastic partings, while the second one shows a succession of lithotypes from bright to dull between clastic partings. The occurrence of these two types is believed to be the result of a different rate of subsidence. A trend of upward-decreasing vitrinite content has been observed in the seam with the second type of the vertical succession. This pattern was frequently interrupted by clastic partings. This tendency was not developed in the seam of the first succession type.On the basis of microlithotype and maceral composition it is found that the 64/65 seam represents a wide range of peat-forming environments from telmatic forest moor to open moor. Almost all bright-banded and banded coals were deposited in telmatic forest moor facies, while dull-banded coal, depending upon its petrographic composition, represents telmatic forest moor, telmatic reed moor, limno-telmatic forest moor and limno-telmatic reed moor. Dull coal represents only an open moor environment.Facial analysis of clastic sediments surrounding the seam revealed that there was a relationship between coal and clastic sedimentation. The features of the seam are strongly related to sub-peat topography, distance from active distributaries, and stability of the area.Sulfur and ash contents as well as character of clastic partings and petrology of the seam suggest conditions typical for groundwater and surface dominated swamps with pH a little higher than 4.  相似文献   

17.
Czechoslovak bituminous coals rich in inertinite contain a considerable amount of inertinite with a reflectance range displaced towards and partly overlapping that of the vitrinite reflectance. Together with the existence of the transitional maceral group of semivitrinite, this causes difficulties in maceral analysis as well as in the technological evaluation of these coals. The relationship between the volatile matter of vitrinite and its reflectance is very close for both vitrinite- and inertinite-rich coals. The analogous relationship between the vitrinite reflectance and the volatile matter of inertinite displays a considerable scatter due to the effects of some higher values of the volatile matter of inertinite — related to the presence of inertinite with relatively low reflectance. The results of investigations into the coking properties of coals rich in inertinite, however, do not supply any proof of a higher fusibility of these coals.  相似文献   

18.
The oil-generating potential of coals and other organic-rich sediments from the Late Oligocene–Early Miocene Nyalau Formation, the offshore extension of which is believed to be a major source rock, is evaluated. Coals of the Nyalau Formation are typically dominated by vitrinite, with moderate and low amounts of exinite and inertinite, respectively. Significant amounts of clay minerals are present in these coals and those containing between 15 to 65% mineral matter by volume are termed carbargilite. The samples analysed range from sub-bituminous to high-volatile bituminous rank, possessing vitrinite reflectance in the range 0.42% to 0.72%. Tmax values range from 425°–450°C which is in good agreement with vitrinite reflectance data. Good oil-generating potential is anticipated from these coals and carbargilites with moderate to rich exinite content (15–35%). This is supported by their high hydrogen indices of up to 400 mgHC/gTOC, Py–GC (S2) pyrograms with n-alkane/alkene doublets extending beyond nC30, and their being in the early to mid-mature oil-window range. Petrographically, the most significant evidence of the oil-generating potential of these coals is the generation of petroleum-like materials (exsudatinite) visible under the microscope. Exsudatinite is a secondary maceral, commonly considered to represent the very beginning of oil generation in coal, which is shown here to also have an important role to play in hydrocarbon expulsion. The precursor of exsudatinite in these coals is the maceral bituminite which readily expels or mobilizes to hydrocarbon-like material in the form of oil smears and/or exsudatinite as observed under the microscope. The maceral bituminite is considered to play a major generative role via early exsudatinite generation, which is considered to facilitate the overall expulsion process in coaly source rocks.  相似文献   

19.
The Late Miocene Muaraenim Formation in southern Sumatra contains thick coal sequences, mostly of low rank ranging from lignite to sub-bituminous, and it is believed that these thick low rank coals are the most prospective for the production of coal seam gas (CSG), otherwise known as coalbed methane (CBM), in Indonesia.As part of a major CSG exploration project, gas exploration drilling operations are being undertaken in Rambutan Gasfields in the Muaraenim Formation to characterize the CSG potential of the coals. The first stage of the project, which is described here, was designed to examine the gas reservoir properties with a focus on coal gas storage capacity and compositional properties. Some five CSG exploration boreholes were drilled in the Rambutan Gasfield, south of Palembang. The exploration boreholes were drilled to depths of ~ 1000 m into the Muaraenim Formation. Five major coal seams were intersected by these holes between the depths of 450 and 1000 m. The petrography of coal samples collected from these seams showed that they are vitrinite rich, with vitrinite contents of more than 75% (on a mineral and moisture free basis). Gas contents of up to 5.8 m3/t were measured for the coal samples. The gas desorbed from coal samples contain mainly methane (CH4) ranging from 80 to 93% and carbon dioxide (CO2) ranging from 6 to 19%. The composition of the gas released into the production borehole/well is, however, much richer in CH4 with about 94 to 98% CH4 and less than 5% CO2.The initial results of drilling and reservoir characterization studies indicate suitable gas recovery parameters for three of the five coal seams with a total thickness of more than 30 m.  相似文献   

20.
There are five workable coal beds in the Tikak Parbat Formation of the Barail Group in the Makum coalfield, Tinsukia District, Assam. Two of these beds, 18 and 6 m thick, are persistent across the field. The coal is high volatile bituminous B/C, has excellent coking properties, and is of great importance as a blending coal to improve the coking properties of the lower-quality Gondwanan coals.These coals are bimacerites as vitrinertite or trimacerites as duroclarite. Virtrinite predominates with minor amounts of other macerals and minerals. The high percentage of vitrinite indicates that the bark and woody tissues were the dominant contributors to the precursor peat. These peats were strongly decomposed under anaerobic conditions as indicated by the abundance of the collinite type of vitrinite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号