首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Models of geomagnetic reversals as a stochastic or gamma renewal process have generally been tested for the Heirtzler et al. [1] magnetic polarity time scale which has subsequently been superseded. Examination of newer time scales shows that the mean reversal frequency is dominated in the Cenozoic and Late Cretaceous by a linearly increasing trend on which a rhythmic fluctuation is superposed. Subdivision into two periods of stationary behavior is no longer warranted. The distribution of polarity intervals is visibly not Poissonian but lacks short intervals. The LaBrecque et al. [2] polarity time scale shows the positions of 57 small-wavelength marine magnetic anomalies which may represent short polarity chrons. After adding these short events the distribution of all polarity intervals in the age range 0–40 Myr is stationary and does not differ significantly from a Poisson distribution. A strong asymmetry develops in which normal polarity chrons are Poisson distributed but reversed polarity chrons are gamma distributed with indexk = 2. This asymmetry is of opposite sense to previous suggestions and results from the unequal distribution of the short polarity chrons which are predominantly of positive polarity and concentrated in the Late Cenozoic. If short-wavelength anomalies arise from polarity chrons, the geomagnetic field may be more stable in one polarity than the other. Alternative explanations of the origin of short-wavelength marine magnetic anomalies cast doubt on the inclusion of them as polarity chrons, however. The observed behavior of reversal frequency suggests that core processes governing geomagnetic reversals possess a long-term memory.  相似文献   

2.
地球磁场多次发生南北(正负)磁极位置的变换和白垩纪超静磁带(CNS)的异常现象,这已为大家所公认.但造成这种异常现象的原因,则是迄今未能很好解答的一个难题. 应用非线性理论对地球磁极倒转和白垩纪超静磁带进行了分析, 认为超静磁带事件意味着地球核幔相互作用和外核流体运动可能处于能量最低的状态,地球磁场系统通过不断地与外界交换物质和能量,维持一种空间或时间的有序结构.在121~83Ma期间,无外星撞击地球引起地磁极性倒转,可能是白垩纪超静磁带出现的原因之一.地球磁场极性的随机倒转具有混沌运动的自逆转特性,混沌理论给地磁极性倒转提出了一个简明的动力机制解释.  相似文献   

3.
Polarity zones of sedimentary sections reflect a pattern of alternating polarity of the geomagnetic field recorded by the remanent magnetization of rocks. Unfortunately, this pattern can have been modified by the variable sedimentation rate, which complicates the identification of polarity zones against the reference geomagnetic polarity time scale. To avoid this obstacle, the present paper suggests a transform applied to both the sequence of levels of polarity reversal horizons and the sequence of ages of polarity reversals before computing their cross-correlation. This transform usually reduces the impact of the variable sedimentation rate so that a sequence of more than eight polarity reversal horizons may be identified without biostratigraphic constraints. Numerical experiments involving random processes to simulate both the duration of polarity reversals and the sedimentation rate proved, however, that not all the parts of a hypothetical stratigraphic section spanning the past 165 Ma would be equally suitable for dating by magnetic polarity stratigraphy. A program performing both the compilation of polarity zones from the directions of the primary magnetization sampled along a section and subsequent identification of these polarity zones is made available online.  相似文献   

4.
The results of comparative analysis of the behavior of paleointensity and polarity (intervals between reversals) of the geomagnetic field for the last 167 Ma are presented. Similarities and differences in the behavior of these characteristics of the geomagnetic field are discussed. It is shown that bursts of paleointensity and long intervals between reversals occurred at high mean values of paleointensity in the Cretaceous and Paleogene. However, there are differences between the paleointensity behavior and the reversal regime: (1) the characteristic times of paleointensity variations are less than the characteristic times of the frequency of geomagnetic reversals, (2) the achievement of maximum values of paleointensity at the Cretaceous–Paleogene boundary and the termination of paleointensity bursts after the boundary of 45–40 Ma are not marked by explicit features in the geomagnetic polarity behavior.  相似文献   

5.
Detailed sampling of two short magnetozones within the Matuyama Chronozone recorded at DSDP Site 609 (49.86°N, 335.77°E) confirms that one, the Cobb Mountain Subchronozone (1.12 Ma), is a very short, full normal polarity interval and that the other, the older interval, is a record of a geomagnetic excursion which occurred at approximately 1.55 Ma. The Cobb Mountain Subchron lasted approximately 25,000 years, one third the duration of the Jaramillo Subchron. The normal polarity interval is bounded by two transition zones which document an antisymmetry in the sequence of directions in the reverse to normal and normal to reverse polarity transitions. We interpret the antisymmetry as reflecting a dependence upon the sense of the reversal, without significant changes in the relative contributions of non-dipole terms. The polarity interval recorded at 1.55 Ma lasted only 8,800 years with what may be regarded as full polarity directions observed across only 3 cm of stratigraphic section. This feature is interpreted as an excursion of the geomagnetic field and appears to be correlative with the Gilsa Subchron. Similarities between the transition bounding these two magnetozones suggest that these features occur as the result of the same process or triggering mechanisms in the earth's outer core.  相似文献   

6.
Paleomagnetic records of the Gauss-Matuyama reversal were obtained from two loess sections at Baoji on the Chinese Loess Plateau. Stepwise thermal demagnetization shows two obvious magnetization components. A low-temperature component isolated between 100 and 200–250°C is close to the present geomagnetic field direction, and a high-temperature component isolated above 200–250°C reveals clearly normal, reversed, and transitional polarities. Magnetostratigraphic results of both sections indicated that the Gauss-Matuyama reversal consists of a high-frequency polarity fluctuation zone, but the characteristic remanent magnetization directions during the reversal are clearly inconsistent. Rock magnetic experiments demonstrated that for all the specimens with normal, reversed, and transitional polarities magnetite and hematite are the main magnetic carriers. Anisotropy of magnetic susceptibility indicates that the studied loess sediments have a primary sedimentary fabric. Based on virtual geomagnetic pole latitudes, the Gauss-Matuyama reversal records in the two sections are accompanied by 14 short-lived geomagnetic episodes (15 rapid polarity swings) and 12 short-lived geomagnetic episodes (13 rapid polarity swings), respectively. Our new records, together with previous ones from lacustrine, marine, and aeolian deposits, suggest that high-frequency polarity swings coexist with the Gauss-Matuyama reversal, and that the Gauss-Matuyama reversal may have taken more than 11 kyr to complete. However, we need more detailed analyses of sections across polarity swings during reversals as well as more high-resolution reversal records to understand geomagnetic behavior and inconsistent characteristic remanent magnetization directions during polarity reversals.  相似文献   

7.
雷琼地区火山岩的钾-氩同位素年龄测定和古地磁极性研究表明,新生代在该地区的岩浆活动一直很强烈。火山岩的生成年代不晚于中新世晚期,至更新世岩浆活动尤为强烈。 研究也表明中新世晚期以来这里的地球磁场极性变化规律与近期发表的地磁极性年表大体相符,并肯定了数个尚有争议的短期极性事件的存在。年代为0.58±0.13Ma的反极性火山岩的资料肯定了安比拉(Emperor)事件的存在。研究还证实了布容/松山极性时界线之下和哈拉米洛极性亚时之上有一短期的极性事件,其年代约为0.78±0.03Ma.在奥尔都维和哈拉米洛极性亚时之间存在有另一正极性事件,这可能相当于吉尔萨(Gilsa)事件。  相似文献   

8.
Sea-surface magnetic profiles exhibit coherent short wavelength “micro-anomalies” (or “tiny wiggles”) superimposed to the main anomalies due to reversals. In this study, we investigate the nature and distribution of these tiny wiggles on oceanic crust formed during the  42 Myr-long period following the Cretaceous Normal Superchron. To this end, we compute stacks of anomaly profiles from different areas in the Indian and the Pacific oceans. Using a simple method based on upward continuation, we demonstrate that, the tiny wiggles are consistent worldwide although their patterns exhibit different resolutions at different spreading rates. They are therefore confidently ascribed to past fluctuations of the geomagnetic dipole moment. A high resolution record of these fluctuations is obtained by selecting and stacking profiles from areas with the highest spreading rates. Modeling the micro-anomalies as short magnetic polarity intervals yields durations for these intervals generally shorter than 10 kyr, likely too short to be indeed “true” subchrons. Moreover, the number of detected tiny wiggles clearly depends on the spreading rate. These results support geomagnetic intensity fluctuations as being the cause of most tiny wiggles, as also suggested by recent magnetostratigraphic data. The tiny wiggles are uniformly distributed within chrons, indicating that paleointensity fluctuations are neither inhibited after, nor enhanced before, a reversal beyond a “blind” zone of about 10 km (corresponding to 80 to 250 kyr depending on the spreading rate) for which the anomalies due to reversals prevent the detection of tiny wiggles. Most tiny wiggles probably represent a filtered record of a uniform secular variation regime, as suggested by their uniform spatial distribution over the whole investigated period.  相似文献   

9.
A method is proposed for quantified structuring of a magnetochronological scale of the Phanerozoic, i.e., the construction of a magnetostratigraphic timescale on the basis of a cumulative function of geomagnetic field asymmetry with regard for the polarity sign. Analysis of the cumulative curve reveals basic characteristic patterns of the field evolution in the Phanerozoic: the reversed polarity being predominant in this epoch, three megachrons of variable polarity are identified against this background: Paleozoic R13 (468-315 Ma), Mesozoic N6 (258-123 Ma), and Cenozoic R10 (83-0 Ma). The megachrons are subdivided into hyper-and superchrons and are separated by single polarity hyperchrons. Most important are changes in the general trend of the polarity bias in the Middle Triassic and at the Paleogene/Cretaceous boundary. Data of fractal and wavelet analyses suggest the presence of two regimes of geomagnetic field generation: chaotically distributed frequent reversals (geodynamo) and a stable polarity.  相似文献   

10.
Summary It has been predicted that the geomagnetic field strength will be at its highest during periods of low reversal frequency. Using basaltic lavas from Israel and India, which were erupted during the 35 Ma interval of normal polarity in the mid-Cretaceous (the Cretaceous Quiet Zone), we have obtained palaeointensity estimates. The mean virtual dipole moments from the two areas are about 75% of the present value. This suggests that there is no simple relationship between the time averaged strength of the dipole and the frequency of reversals.  相似文献   

11.
地球失磁与地磁极性倒转的探讨   总被引:1,自引:0,他引:1  
在地磁成因的磁核观点基础上,探讨了地球失磁与地磁极性倒转的可能原因,地球失磁可能是内核温度升高造成的。地磁极性倒转发生在地球失磁之后,当内核温度降低至居里点以下时,磁核将重新形成,其方向取决于最核心的磁粒,磁粒的磁场方向,取决于磁粒由顺磁质向铁磁质转变的一瞬间,外部磁化力的合方向,这个方向可能是正的也可能是反的,则地磁极性可能不变或倒转。  相似文献   

12.
Until recently, the existing data prevented the geophysicists from accurately dating the Bysy-Yuryakh stratum, which outcrops in the middle reach of the Kotuy River, constraining the time of its formation to a wide interval from the end of the Late Cambrian to the beginning of the Silurian. The obtained paleomagnetic data unambiguously correlate the Bysy-Yuryakh stratum to the Nyaian regional stage and constrain its formation, at least a considerable part of it, by the Tremadocian. This result perfectly agrees with the data on the Bysy-Yuryakh conodonts studied in this work and yields a spectacular example of the successful application of paleomagnetic studies in solving important tasks of stratigraphy and, correspondingly, petroleum geology. Within the Bysy-Yuryakh stratum, we revealed a large normal-polarity interval corresponding to the long (>1 Ma) period when the geomagnetic reversals were absent. This result, in combination with the data for the Tremadocian and Middle–Upper Cambrian sequences of the other regions, indicates that (1) the rate of occurrence of the geomagnetic reversals on the eve of the Ordovician Moyero superchron of reversed polarity was at most one reversal per Ma; (2) the superchron does not switch on instantaneously but is preceded by a certain gradual change in the operation conditions of the dynamo mechanism which, inter alia, manifests itself by the reduction of the frequency of geomagnetic reversals with the approach of the superchron. This finding supports the views according to which a process preparing the establishment of the superchrons takes place at the core–mantle boundary.  相似文献   

13.
We present new 40Ar/39Ar ages and paleomagnetic data for São Miguel island, Azores. Paleomagnetic samples were obtained for 34 flows and one dike; successful mean paleomagnetic directions were obtained for 28 of these 35 sites. 40Ar/39Ar age determinations on 12 flows from the Nordeste complex were attempted successfully: ages obtained are between 0.78 Ma and 0.88 Ma, in contrast to published K–Ar ages of 1 Ma to 4 Ma. Our radiometric ages are consistent with the reverse polarity paleomagnetic field directions, and indicate that the entire exposed part of the Nordeste complex is of a late Matuyama age. The duration of volcanism across São Miguel is significantly less than previously believed, which has important implications for regional melt generation processes, and temporal sampling of the geomagnetic field. Observed stable isotope and trace element trends across the island can be explained, at least in part, by communication between different magma source regions at depth. The 40Ar/39Ar ages indicate that our normal polarity paleomagnetic data sample at least 0.1 Myr (0–0.1 Ma) and up to 0.78 Myr (0–0.78 Ma) of paleosecular variation and our reverse polarity data sample approximately 0.1 Myr (0.78–0.88 Ma) of paleosecular variation. Our results demonstrate that precise radiometric dating of numerous flows sampled is essential to accurate inferences of long-term geomagnetic field behavior. Negative inclination anomalies are observed for both the normal and reverse polarity time-averaged field. Within the data uncertainties, normal and reverse polarity field directions are antipodal, but the reverse polarity field shows a significant deviation from a geocentric axial dipole direction.  相似文献   

14.
New paleomagnetic investigation was carried out on the late Neogene fluviolacustrine sequence of the Yuanmou Basin, located near the southeastern margin of the Tibetan Plateau. Magnetostratigraphic results indicate nine reverse magnetozones (R1 to R9) and eight normal magnetozones (N1 to N8) in the sedimentary profile, which can be correlated to the geomagnetic polarity timescale from C3n.3r to C1r.1r. The age of the sedimentary sequence of the Yuanmou Basin can thus be paleomagnetically constrained to an interval from early Pliocene to Pleistocene, with sedimentation rates varying from 12.5 to 55 cm/kyr. In addition to its highly resolved magnetostratigraphic sequence, the Yuanmou Basin provides a record of Plio-Pleistocene tectono- and climato-sedimentary processes. The mean declinations of the seventeen polarity units (excluding samples with transitional directions) can be grouped into three distinct directional intervals, Group I (2.58–1.37 Ma), Group II (4.29–2.58 Ma) and Group III (4.91–4.29 Ma). These directions indicate that the Yuanmou Basin has probably experienced vertical-axis clockwise rotation of about 12° from 1.4 Ma to 4.9 Ma, which may be related to slip activity of the Red River fault to the southwest and the Xianshuihe–Xiaojiang fault to the east.  相似文献   

15.
Mantle plumes control magnetic reversal frequency   总被引:2,自引:0,他引:2  
Magnetic reversal frequency correlates inversely with mantle plume activity for the past 150 Ma, as measured by the volume production rate of oceanic plateaus, seamount chains, and continental flood basalts. This inverse correlation is especially striking during the long Cretaceous magnetic normal “superchron”, when mantle plume activity was at a maximum. We suggest that mantle plumes control magnetic reversal frequency by the following sequence of events. Mantle plumes rise from theD″ seismic layer just above the core/mantle boundary, thinningD″ to fuel the plumes. This increases core cooling by allowing heat to be conducted more rapidly across the core/mantle boundary. Outer core convective activity then increases to restore the abnormal heat loss, causing a decrease in magnetic reversal frequency in accord with model predictions for bothα2 andαω dynamos. When core convective activity increases above a critical level, a magnetic superchron results. The pulse of plume activity that caused the Cretaceous superchron resulted in a minimum increase in core heat loss of about 1200 GW over the present-day level, which corresponds to an increase in Joule heat production of about 120 GW within the core.  相似文献   

16.
地磁场长期变化的自洽正态统计模型   总被引:3,自引:0,他引:3       下载免费PDF全文
从地磁场时间变化尺度可分的理论考虑和观测事实出发,建立地磁场Reynolds分解,强调地磁场时均部分和长期变化部分均包含所有的多极子分量;重新解释Constabe和Paker关于规一化Gduss系数的统计结果,从而将地磁场长期变化自洽正态模型自洽化.在这一结构最简单的统计模型中,地磁角度要素和总强度的统计分布均为非正态.地磁场方向及其等价表示虚偶极磁矩方向服从广义Fisher分布,可以解释地磁场方向和虚磁偶极矩方向的椭圆分布长轴大致正交的观测事实.模型的VGP角散布不能解释古地磁观测,意味着时均场中显著存在非轴向偶极子分量.解析结果加强了Egbert关于VGP路径优势经度为不均匀采样所致的推论.  相似文献   

17.
A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V × Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.  相似文献   

18.
The reversed paleomagnetic direction of the Laschamp and Olby flows represents a specific feature of the geomagnetic field. This is supported by paleomagnetic evidence, showing that the same anomalous direction was recorded at several distinct sites, including scoria of the Laschamp volcano. To examine this anomalous geomagnetic fluctuation, we studied the paleointensity of the Laschamp and Olby flows, using the Thellier method. Twenty-five samples were selected for the paleointensity experiments, and from seven we obtained reliable results. Because the paleointensity results of the Olby and Laschamp flows as well as Laschamp scoria are very similar, they can be represented by a single mean paleointensity,F = 7.7 μT. Considering that this low paleointensity is less than 1/6 of the present geomagnetic field and is more characteristic of transitional behavior, our results suggest that the paleomagnetic directions of the Laschamp and Olby flows were not acquired during a stable reversed polarity interval. A more likely explanation is that the Laschamp excursion represents an unsuccessful or aborted reversal.  相似文献   

19.
The meridional propagation velocities of the ionospheric F2-region response to 268 geomagnetic storms are calculated. Ionospheric vertical sounding data of 1 h time resolution from several stations located in a longitude sector approximately centred along the great circle that contains both the geomagnetic poles and the geographic poles are used.Most meridional propagation velocities from high to low latitudes are less than 600 m/s. The smaller velocities are typical of global neutral meridional wind circulation and the larger are representative of traveling atmospheric disturbances.Simultaneous disturbances at several locations are more frequent during positive phases than during negative phases. Negative phase meridional propagation velocities associated with meridional neutral winds are less frequent in the southern hemisphere when compared with corresponding velocities observed in the northern hemisphere. This may be related to the fact that the distance between the geomagnetic pole and the equator is smaller in the northern hemisphere.Most negative phase onsets are within the 06–10 LT interval. For middle geomagnetic latitudes a “forbidden time interval” between 11 and 14 LT is present. The positive phase onsets show the “dusk effect”.  相似文献   

20.
The data that describe the long-term reversing behavior of the geodynamo show strong and sudden changes in magnetic reversal frequency. This concerns both the onset and the end of superchrons and most probably the occurrence of episodes characterized by extreme geomagnetic reversal frequency (>10–15 rev./Myr). To account for the complexity observed in geomagnetic reversal frequency evolution, we propose a simple scenario in which the geodynamo operates in three distinct reversing modes: i—a “normal” reversing mode generating geomagnetic polarity reversals according to a stationary random process, with on average a reversal rate of ~3 rev./Myr; ii—a non-reversing “superchron” mode characterizing long time intervals without reversal; iii—a hyper-active reversing mode characterized by an extreme geomagnetic reversal frequency. The transitions between the different reversing modes would be sudden, i.e., on the Myr time scale. Following previous studies, we suggest that in the past, the occurrence of these transitions has been modulated by thermal conditions at the core-mantle boundary governed by mantle dynamics. It might also be possible that they were more frequent during the Precambrian, before the nucleation of the inner core, because of a stronger influence on geodynamo activity of the thermal conditions at the core-mantle boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号