共查询到20条相似文献,搜索用时 10 毫秒
1.
Cloud motions over the Indian Ocean were compared to ship observations for the FGGE year. The statistics of this comparison show seasonal changes in the cloud-ship relationship as well as geographical and wind-pattern-dependent fetch history changes. Most of these changes follow simple boundary-layer relationships governed by friction and temperature advection. The most significant result is the improvement of the cloud-ship directional shear with wind speed. The mean veering angle between cloud and ship measurements decreased at higher wind speeds along with scatter of the shearing angle. This implies that the ability of cloud motion measurements to indicate the wind stress on the ocean improves for the important situations when the winds are strong. 相似文献
2.
Tropical cyclone (TC) rainfall asymmetry is often influenced by vertical wind shear and storm motion. This study examined the effects of environmental vertical wind shear (200-850 hPa) and storm motion on TC rainfall asymmetry over the North Indian Ocean (NIO): the Bay of Bengal (BoB) and the Arabian Sea (AS). Four TC groups were used in this study: Cyclonic Storm (CS), Severe Cyclonic Storm (SCS), Very Severe Cyclonic Storm (VSCS) and Extreme Severe Cyclonic Storm (ESCS). The Fourier coefficients for wave number-1 was used to analyze the structure of TC rainfall asymmetry. Results show that the maximum TC rainfall asymmetry was predominantly in the downshear left quadrant in the BoB, while it placed to downshear right quadrant in the AS, likely due to the different primary circulation strength of the TC vortex. For the most intense cyclone (ESCS), the maximum TC rainfall asymmetry was in the upshear left quadrant in the BoB, whereas it was downshear right quadrant in the AS. It is evident for both basins that the magnitude of TC rainfall asymmetry declined (increased) with TC intensity (shear strength). This study also examined the collective effects of vertical wind shear and storm motion on TC rainfall asymmetry. Here, the analysis in case of the strong shear environment (>7 m s-1) omitted for the AS because the maximum value for this basin was about 7 m s-1. The result showed that the downshear left quadrant was dominant in the BoB for the maximum TC rainfall asymmetry. In a weak shear environment (<5 m s-1), on the other hand, downshear right quadrant is evident for the maximum TC rainfall asymmetry in the BoB, while it placed dominantly downshear left quadrant in the AS. In the case of motion-relative wavenumber-1, the maximum TC rainfall asymmetry was dominantly downshear for both basins. 相似文献
3.
Summary Variability of Indian summer monsoon rainfall is examined with respect to variability of surface wind stresses over Indian
Ocean. The Indian Ocean region extending from 40°–120° E, and 30° S–25° N, has been divided into 8 homogeneous subregions,
viz (1) Arabian Sea (AS), (2) Bay of Bengal (BB), (3) West-equatorial Indian Ocean (WEIO), (4) Central-equatorial Indian Ocean
(CEIO), (5) East-equatorial Indian Ocean (EEIO), (6) South-west Indian Ocean (SWIO), (7) South-central Indian Ocean (SCIO),
and (8) South-east Indian Ocean (SEIO). The period of study extends for 13 years from 1982–1994. Monthly NCEP surface wind
stress data of five months – May through September, have been used in the study. The spatial variability of seasonal and monthly
surface wind stresses shows very low values over CEIO and EEIO and very high values over AS, SWIO, and SEIO regions. On the
seasonal scale, all India summer monsoon rainfall (AISMR) shows concurrent positive relationships with the surface wind stresses
over AS, BB, WEIO, SWIO and SCIO and negative relationships with the surface wind stresses over EEIO and SEIO. The relationships
of AISMR with the surface wind stresses over AS and WEIO are significant at 5% level. The concurrent relationships between
monthly surface wind stresses over these 8 oceanic sub-regions and monthly subdivisional rainfalls over 29 sub-divisions have
been studied. The rainfalls over the subdivisions in the central India and on the west coast of India are found to be significantly
related with surface wind stresses over AS, SWIO, SCIO. Monthly subdivisional rainfalls of four subdivisions in the peninsular
India show negative relationship with BB surface wind stresses. May surface wind stresses over AS, BB, WEIO, CEIO and SWIO
have been found to be positively related with ensuing AISMR. The relationship with AS wind stresses is significant at 5% level
and hence may be considered as a potential predictor of AISMR.
Received May 21, 2001 Revised October 8, 2001 相似文献
4.
Summary Vertical fluxes of momentum, sensible and latent heat have been estimated over the surface of the global oceans. A three-dimensional mesh grid 32 longitude points, 17 latitude points and 365 days from December 1, 1978 to November 30, 1979 is used to obtain seasonal and annual mean values of the surface fluxes. The global climatology shows the seasonal variation, the continental influence, the principal ocean currents and the typical middle latitude (30°–50°) and tropical effects (30°S–30°N). The annual mean of latent heat shows greater flux over the subtropical regions (~ 280 W/m2) than in the polar regions (~ 80 W/m2). On the other hand, the annual mean of sensible heat shows greater flux over the polar regions (~ 100 W/m2) than in the tropics (~ 40 W/m2). Time series analyses of the daily estimates of the surface fluxes show greater energy at high frequencies due to the surface effect; however, the low-frequency spectra show relatively high energy at the 30- to 50-day mode, especially for the middle latitude regions. The 30–50 day filtered data for the surface fluxes, presented in time/latitude cross-sections for the middle latitude regions show a westerly wave propagation with wave numberK = 2 and phase speed of the order of 12 degrees/day from June to August over the southern hemisphere at 55°S.
With 7 Figures 相似文献
Zusammenfassung Die vorliegende Studie beschäftigt sich mit der Einschätzung der vertikalen Impuls-Flüsse und der Flüsse von sensibler und latenter Wärme über der gesamten Meeresoberfläche. Ein dreidimensionales Gitter mit 32 × 17 Punkten und Daten von 365 Tagen (von 1. 12. 1978 bis 30. 11. 1979) wird benutzt, um sowohl Jahreszeiten als auch Jahresmittelwerte der Oberflächenflüsse zu erhalten. Die globale Klimatologie zeigt die jahreszeitlichen Schwankungen, den kontinentalen Einfluß, die wichtigsten Meeresströmungen und die typischen Effekte der mittleren Breiten (30°–50°) und der Tropen (30°S–30°N). Das Jahresmittel latenter Wärme weist größere Flüsse über subtropischen Regionen (ca. 280 W/m2) als über polaren Regionen (ca. 80 W/m2) auf, während andererseits das Jahresmittel sensibler Wärme über Polarregionen (ca. 100 W/m2) größere Flüsse als über den Tropen (ca. 40 W/m2) aufweist. Zeitreihen-Analysen der täglichen Schätzwerte von Oberflächenflüssen deuten auf mehr Energie bei hohen Frequenzen aufgrund des Oberflächeneffekts hin; in jedem Fall zeigen die Niederfrequenz-Spektren relativ hohe Energie in den 30 – 50-Tage-Perioden, besonders für mittlere Breiten. Die über einen Zeitraum von 30 – 50 Tagen gesammelten Daten der Oberflächenflüsse dargestellt in Zeit-Breiten-Querschnitten für mittlere Breiten zeigen von Juni bis August über der südlichen Hemisphäre bei 55°S eine Ausbreitung der westlichen Wellen mit der WellenzahlK = 2 und einer Phasengeschwindigkeit im Ausmaß von 12° pro Tag.
With 7 Figures 相似文献
5.
6.
We analyze gust probe measurements obtained in the convective boundary layer over the central equatorial Pacific as part of the Equatorial Pacific Ocean Climate Studies (EPOCS) program. From the lowest level flights, the bulk transfer coefficients are found to be 1.1 × 10-3 and 1.4 × 10-3 for latent and sensible heat fluxes, respectively. Vertical profiles of water vapor density, potential temperature and wind velocity are obtained as are the profiles of the fluxes of latent and sensible heat and momentum. From the extrapolated profiles, we obtain surface fluxes of 120 W m-2 and 13 W m-2 for latent and sensible heat, respectively, and 0.11 N m-2 for momentum. The 10 m drag coefficient is 1.5 × 10-3. Two convergence boxes, north and south of the ITCZ, are analyzed. Enhanced convergence is found in the northern trades relative to the southern trades. The advective acceleration is found to be comparable in magnitude to the other terms in the horizontal equations of motion. 相似文献
7.
8.
Summary The results of incorporating a nonlocal boundary-layer diffusion scheme in a forecast model over Indian region are discussed.
The simple formulation of atmospheric boundary layer height in the nonlocal diffusion scheme is examined in detail to understand
how far the model simulated boundary layer height is realistic. Analyses of the temporal and spatial variability of the boundary
height for three cases representing premonsoon, active monsoon and post monsoon conditions over Indian region show that it
is comparable with the observational evidence. Further, for a case of active monsoon condition over Indian region, comparison
of precipitation forecasts with the nonlocal scheme and the control local boundary-layer scheme clearly indicated that the
model run with the nonlocal scheme is significantly more accurate in forecasting the intense precipitation locations.
Received November 16, 2001 Revised December 28, 2001 相似文献
9.
Ramesh Kumar M. R. Pinker Rachel T. Mathew Simi Venkatesan R. Chen W. 《Theoretical and Applied Climatology》2018,132(3-4):983-988
Theoretical and Applied Climatology - Radiative fluxes are a key component of the surface heat budget of the oceans. Yet, observations over oceanic region are sparse due to the complexity of... 相似文献
10.
M. R. Ramesh Kumar Y. Sadhuram G. S. Michael L. V. Gangadhara Rao 《Boundary-Layer Meteorology》1990,52(1-2):177-191
The spatial variability of the structure of the lower troposphere over the northwestern Indian Ocean for the period 12th July to 2nd September, 1983 has been studied using upper air data collected during the first scientific cruise of ORV Sagar Kanya.An analysis of thermodynamic structure and kinematics of the marine boundary layer for different zonal and meridional sections revealed the following features: (a) Temperature and humidity inversions were generally absent over the study area except over a few locations in the western region; (b) Large-scale subsidence was found over the central equatorial Indian Ocean; (c) The convective activity over the western Indian Ocean was found to be moderately suppressed as compared to the eastern region; (d) The zonal and meridional components of winds along the equator and 10° N zonal section exhibited a mirror-image-like distribution. 相似文献
11.
El Ni?o Southern Oscillation (ENSO) and given phases of the Madden?CJulian Oscillation (MJO) show similar regional signatures over the Equatorial Indian Ocean, consisting in an enhancement or reversing of the convective and dynamic zonal gradients between East Africa and the Maritime Continent of Indonesia. This study analyses how these two modes of variability add or cancel their effects at their respective timescales, through an investigation of the equatorial cellular circulations over the central Indian Ocean. Results show that (1) the wind shear between the lower and upper troposphere is related to marked regional rainfall anomalies and is embedded in larger-scale atmospheric configurations, involving the Southern Oscillation; (2) the intraseasonal (30?C60?days) and interannual (4?C5?years) timescales are the most energetic frequencies that modulate these circulations, confirming the implication of the MJO and ENSO; (3) extreme values of the Indian Ocean wind shear result from the combination of El Ni?o and the MJO phase enhancing atmospheric convection over Africa, or La Ni?a and the MJO phase associated with convective activity over the Maritime Continent. Consequences for regional rainfall anomalies over East Africa and Indonesia are then discussed. 相似文献
12.
Thirty strong Madden-Julian Oscillation (MJO) events in boreal winter 1982-2001 are selected to investigate the triggering processes of MJO convection over the western equatorial Indian Ocean (IO). These MJO events are classified into three types, according to their dynamic and thermodynamic precursor signals in situ. In Type I, a remarkable increase in low-level moisture occurs, on average, 7 days prior to the convection initiation. This low-level moistening is mainly due to the advection of the background mean moisture by easterly wind anomalies over the equatorial IO. In Type II, lower-tropospheric ascending motion anomalies develop, on average, 4 days prior to the initiation. The cause of this ascending motion anomaly is attributed to the anomalous warm advection, set up by a suppressed MJO phase in the equatorial IO. In Type III, there are no clear dynamic and thermodynamic precursor signals in situ. The convection might be triggered by energy accumulation in the upper layer associated with Rossby wave activity fluxes originated from the midlatitudes. 相似文献
13.
Tropical cyclone (TC) activities in the North Indian Ocean (NIO) peak in May during the pre-monsoon period, but the TC frequency shows obvious inter-annual variations. By conducting statistical analysis and dynamic diagnosis of long-term data from 1948 to 2016, the relationship between the inter-annual variations of Indian Ocean SST and NIO TC genesis frequency in May is analyzed in this paper. Furthermore, the potential mechanism concerning the effect of SST anomaly on TC frequency is also investigated. The findings are as follows: 1) there is a broadly consistent negative correlation between NIO TC frequency in May and SST in the Indian Ocean from March to May, with the key influencing area located in the southwestern Indian Ocean (SWIO); 2) the anomalies of SST in SWIO (SWIO-SST) are closely related to a teleconnection pattern surrounding the Indian Ocean, which can significantly modulate the high-level divergence, mid-level vertical motion and other related environmental factors and ultimately influence the formation of TCs over the NIO; 3) the increasing trend of SWIO-SST may play an essential role in the downward trend of NIO TC frequency over the past 69 years. 相似文献
14.
Surface-level moisture transport over the Indian Ocean has been computed using NOAA/HIRS data for the years 1980, 1981 and 1984. The global relation between monthly mean surface-level humidity and precipitable water (Liu, 1986) has been applied for the computation of surface-level humidity using monthly mean satellite-derived water vapour. The monthly mean surface wind fields over the Indian ocean provided by Florida State University have been used for the surface-level moisture flux computations. Our analysis indicates net positive surface-level moisture flux divergence over the Arabian Sea and negative moisture flux divergence over the Bay of Bengal. It has also been found that evaporation over the Arabian Sea is a variable quantity and forms a significant part of the net moisture budget over the Arabian Sea. The relative contribution of cross-equatorial flux and evaporation from the Arabian Sea has been studied for all three years. 相似文献
15.
D. R. Kothawale A. A. Munot H. P. Borgaonkar 《Theoretical and Applied Climatology》2008,92(1-2):31-45
Summary The present study examines the long term trend in sea surface temperatures (SSTs) of the Arabian Sea, Bay of Bengal and Equatorial
South India Ocean in the context of global warming for the period 1901–2002 and for a subset period 1971–2002. An attempt
has also been made to identify the relationship between SST variations over three different ocean areas, and All-India and
homogeneous region summer monsoon rainfall variability, including the role of El-Ni?o/Southern Oscillation (ENSO). Annual
sea surface temperatures of the Arabian Sea, Bay of Bengal and Equatorial South India Ocean show a significant warming trend
of 0.7 °C, 0.6 °C and 0.5 °C per hundred years, respectively, and a relatively accelerated warming of 0.16 °C, 0.14 °C and
0.14 °C per decade during the 1971–2002 period.
There is a positive and statistically significant relationship between SSTs over the Arabian Sea from the preceding November
to the current February, and Indian monsoon rainfall during the period 1901–2002. The correlation coefficient increases from
October and peaks in December, decreasing from February to September. This significant relationship is also found in the recent
period 1971–2002, whereas, during 1901–70, the relationship is not significant. On the seasonal scale, Arabian Sea winter
SSTs are positively and significantly correlated with Indian monsoon rainfall, while spring SSTs have no significant positive
relationship. Nino3 spring SSTs have a negative significant relationship with Indian monsoon rainfall and it is postulated
that there is a combined effect of Nino3 and Arabian Sea SSTs on Indian monsoon. If the Nino3 SST effect is removed, the spring
SSTs over the Arabian Sea also have a significant relationship with monsoon rainfall. Similarly, the Bay of Bengal and Equatorial
South Indian Ocean spring SSTs are significantly and positively correlated with Indian monsoon rainfall after removing the
Nino3 effect, and correlation values are more pronounced than for the Arabian Sea.
Authors’ address: Dr. D. R. Kothawale, A. A. Munot, H. P. Borgaonkar, Climatology and Hydrometeorology divisions, Indian Institute
of Tropical Meteorology, Pune 411008, India. 相似文献
16.
Variations in water-vapour absorption were measured using a recently constructed field spectrophotometer, operated at a wavelength of 1.38 gm and with path lengths of 15 and 20 m. Observations were made 1 m above the ground near sunset, dawn, and during the morning destruction of nocturnal atmospheric stability. A diurnally consistent evolution of water-vapour turbulence regimes was observed. The presence of ordered events was revealed. These fluctuations indicate changes of vapour pressure, spatially averaged over the base-line, as large as about +7 mb in 4 s. Classification of light-wind observing conditions by using six classes of distinct non-random events appears possible. Such a classification system may reduce some of the characteristic scatter of micrometeorological results which arises during stable observing conditions or during comparison of real-world observing sites.On sabbatical leave (1975) at the Royal Military College of Science, Shrivenham, Wilts., England. 相似文献
17.
Local intraseasonal air-sea relationship over the North Indian Ocean and western North Pacific during the spring-to-summer transition 下载免费PDF全文
《大气和海洋科学快报》2017,(1)
该工作研究了1998-2013年春夏转换期间的两种主要模态的局地季节内海气相互作用。大气要素场和海表热通量在高频尺度上(10-20天)显示出更大的变率。在北印度洋,南海和菲律宾海,30-60天的海温和海表热通量的显著相关区域更大,并且相关系数更高。结果表明在两个时间尺度上在北印度洋,南海和西北太平洋存在强烈的局地海气相互作用,然而海气相互作用的强度取决于区域和要素的选取方式。 相似文献
18.
The concentrations of submicron aerosols in the size range 10−7 to 10−5 cm, also called Aitken nuclei (AN) were measured over the Indian Ocean enroute India-Antarctica-India within the 10°E–70°E longitude zone from about 10°N to 70°S latitude on board MV Thuleland during the period from November 26, 1986 to March 18, 1987 as part of the scientific activities on the Sixth Indian Antarctic Expedition. Our analyses showed that only in about 25% of the cases, AN count fell below 1000 cm−3. Throughout the tropical trade wind region, the concentrations of AN were relatively stable with an average of about 3000 cm−3 (medians of 2600 and 1700 cm−3 in Northern and Southern Hemispheres, respectively). Large AN concentrations were found to be associated with higher sea surface temperatures and stronger surface winds in this region. In contrast, the scatter of single observations was found to be remarkable over South Indian Ocean and in Antarctic waters. The average AN concentration over the Indian Ocean to the south of 30°S was of the order of 1500 cm−3. No definite correlation could be established between large AN concentration and sea surface temperature, wind speed or wave height. Period with very low concentrations were, however, associated with clear sky conditions and calm winds or light breeze. Many events of sudden short-lived but large increase in AN concentrations were observed over the south Indian Ocean and in Antarctic waters and these were always associated with the approach of frontal systems. It is likely that particle production by bursting bubbles and sea spray as well as photochemical reactions and gas-to-particle conversions play important role in the observed high concentration of AN over South Indian Ocean. 相似文献
19.
The present study attempts to formulate a regression model to predict summer rainfall over Peninsular India (PIR) using some regional predictors. Parameters having significant correlation (99%) with PIR were identified for the period 1975–1997 (training), and a 15-year sliding correlation (90%) was found to check the consistency of the relationship between PIR and predictors. From a set of 14 candidate predictors, 4 were selected using a stepwise regression method and tested over a period from 1998 to 2006. The predictors selected are sea surface temperature during March over Indian Ocean, air temperature at 850?hPa during May over Peninsular India, zonal, and meridional wind at 700?hPa during February and January, respectively, over the Arabian Sea. The model captures a variance of 77.7% and has a multiple correlation of 0.88. The root mean square error, absolute mean error, and bias for the training (test) period were 7.6% (21.5%), 6.6% (17.9%), and 0% (11.4%) of mean rainfall, respectively. Results of the climatological predictions show that the model developed is useful. 相似文献
20.
D. Bala Subrahamanyam Radhika Ramachandran K. Sen Gupta Tuhin K. Mandal 《Boundary-Layer Meteorology》2003,107(3):683-695
The upper air data collected from the balloon-borne GLASS Sondes launched from the Oceanic Research Vessel (ORV) Sagar Kanya during the Intensive Field Phase of the Indian Ocean experiment (INDOEX, IFP-99;SK-141 Cruise) are utilized forstudying the variability in the mixed-layer heights observed over the western tropical Indian Ocean and central Arabian Sea. During the entire cruise, typical daytime convective mixed-layer heights (roughly corresponding to 1400 LT) obtained from V and q profiles, were observed to be in the range 200–900 m. Shallowmixed -layer heights are observed, in general, over the Inter-Tropical Convergence Zone (ITCZ). Over the central Arabian Sea, vertical profiles of V and q demonstrate a double mixed-layer structure of the marine atmospheric boundary layer (MABL), which gradually disappears close to the Indian coastline. 相似文献