首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Common basin models assume that the post‐rift tectonic evolution of most basins is usually associated with tectonic quiescence. However, tectonic inversion during the post‐rift phase has been proposed for several sedimentary basins worldwide, but how and why it happens is still a matter of debate, especially in intracontinental settings where the lithosphere is old and thick. Here, we use geological and geophysical data from the Rio do Peixe Basin in NE Brazil to show evidence that intracontinental sedimentary basins can be tectonically inverted by far‐field compressive stresses acting on pre‐existing weakness zones of lithospheric‐scale where stresses can concentrate and inversion can occur. Geomorphological and field data combined with seismic reflection, gravimetric and borehole data show that: (a) inversion occurred along two main Precambrian lithospheric‐scale shear zones, the Patos (E‐W trending) and Portalegre (NE‐SW trending), which had already been reactivated as basin‐bounding faults during the earlier rift stage; (b) post‐rift reactivation affected (mostly) the original master normal faults with the largest rift displacements, and locally produced new reverse faults; (c) during contraction, deformation was partitioned between fault reactivation and buckling of the incompetent sediment pushed against the hard basement; (d) all these signs of inversion have been observed in the field and can be demonstrated on seismic reflection profiles; and (e) combined gravimetric and seismic data show that the main structures of the basin were followed by an inversion. These data are consistent with the operation of WSW‐ENE horizontal maximum compressive stress as a result of combined pushes of the Mid‐Atlantic Ridge (towards the W) and the Andes (towards the E), responsible for the post‐rift oblique inversion of normal faults inherited from the rift phase and formed with vertical maximum compressive stress.  相似文献   

2.
Reactivation of pre‐existing intra‐basement structures can influence the evolution of rift basins, yet the detailed kinematic relationship between these structures and overlying rift‐related faults remains poorly understood. Understanding the kinematic as well as geometric relationship between intra‐basement structures and rift‐related fault networks is important, with the extension direction in many rifted provinces typically thought to lie normal to fault strike. We here investigate this problem using a borehole‐constrained, 3D seismic reflection dataset from the Taranaki Basin, offshore New Zealand. Excellent imaging of intra‐basement structures and a relatively weakly deformed, stratigraphically simple sedimentary cover allow us to: (a) identify a range of interaction styles between intra‐basement structures and overlying, Plio‐Pleistocene rift‐related normal faults; and (b) examine the cover fault kinematics associated with each interaction style. Some of the normal faults parallel and are physically connected to intra‐basement reflections, which are interpreted as mylonitic reverse faults formed during Mesozoic subduction and basement terrane accretion. These geometric relationships indicate pre‐existing intra‐basement structures locally controlled the position and attitude of Plio‐Pleistocene rift‐related normal faults. However, through detailed 3D kinematic analysis of selected normal faults, we show that: (a) normal faults only nucleated above intra‐basement structures that experienced late Miocene compressional reactivation, (b) despite playing an important role during subsequent rifting, intra‐basement structures have not been significantly extensionally reactivated, and (c) preferential nucleation and propagation of normal faults within late Miocene reverse faults and folds appears to be the key genetic relationship between contractionally reactivated intra‐basement structures and rift‐related normal faults. Our analysis shows that km‐scale, intra‐basement structures can control the nucleation and development of newly formed, rift‐related normal faults, most likely due to a local perturbation of the regional stress field. Because of this, simply inverting fault strike for causal extension direction may be incorrect, especially in provinces where pre‐existing, intra‐basement structures occur. We also show that a detailed kinematic analysis is key to deciphering the temporal as well as simply the spatial or geometric relationship between structures developed at multiple structural levels.  相似文献   

3.
The Neoproterozoic basins of central Australia share many features of architecture and sedimentary fill, suggesting common large-scale extrinsic causal mechanisms. In an attempt to improve understanding of these mechanisms we have gathered and analysed new deep seismic reflection data and re-evaluated existing seismic and well-log data from the eastern Officer Basin, the largest and most poorly known of Australia's intracratonic basins. The Officer Basin is asymmetric and has a steep thrust-controlled northern margin paralleled by sub-basins as much as 10 km in depth. Further south the basin shallows gradually onto a broad platform. The basin rests on a thick crust (≈42 km) that is pervaded by a complex of northward-dipping surfaces most of which terminate erosionally against the sediments of the Officer Basin and are interpreted as prebasinal features, possibly faults. Some appear to have been zones of crustal weakness which were reactivated as thrust complexes and played a major role in basin evolution. The sedimentary succession can be subdivided into six megasequences separated by major tectonically and erosionally enhanced sequence boundaries. The megasequences have distinctive sequence stacking patterns suggesting that they were deposited in response to episodic subsidence induced by a major extrinsic tectonic event. The basin initially formed as part of a giant sag basin which incorporated all the present-day intracratonic basins (Amadeus, Georgina, Ngalia, Officer and Savory Basins) in a single large ‘superbasin’ perhaps as a response to mantle processes. Subsidence then ceased for ≈100 Myr producing a regional erosion surface. Beginning in the Torrensian or Sturtian five more major events of varying regional significance influenced the basin's evolution. Four were compressional events, the first of which activated major thrust complexes along the present basin margins, forming deep foreland sub-basins with elevated intervening basement blocks. Once activated, the thrust complexes and sub-basins persisted throughout the life of the intracratonic basins. From this epoch the intracratonic basins of central Australia were decoupled from the giant sag basin and became interrelated but independent features. Available information suggests that the Officer, Amadeus, Georgina, Ngalia and Savory Basins are related and are perhaps products of major tectonic events associated with the assembly and ultimate dispersal of the Proterozoic supercontinent. The closing phases of these basins were strongly influenced by events occurring along the newly created active eastern margin of the Australian continent in the Palaeozoic.  相似文献   

4.
《Basin Research》2018,30(Z1):363-381
Inversion of pre‐existing extensional fault systems is common in rift systems, back‐arc basins and passive margins. It can significantly influence the development of structural traps in hydrocarbon basins. The analogue models of domino‐style basement fault systems shown in this paper produced, on extension, characteristic hangingwall growth stratal wedges that, when contracted and inverted, formed classic inversion harpoon geometries and asymmetric hangingwall contractional fault‐propagation folds. Segmented footwall shortcut faults formed as the basement faults were progressively back‐rotated and steepened. The pre‐existing extensional fault architectures, basement fault geometries and the relative hangingwall and footwall block rotations exerted fundamental controls on the inversion styles. Digital image correlation (DIC) strain monitoring illustrated complex vertical fault segmentation and linkage during inversion as the major faults were reactivated and strain was progressively transferred onto footwall shortcut faults. Hangingwall deformation during inversion was dominated by significant back‐rotation as the inversion progressed. The mechanical stratigraphy of the cover sequences strongly influenced the fold and fault evolution of the reactivated fault systems. The implications of the experimental results for the interpretation and analysis of inversion structures are discussed and are compared with natural examples of inverted basement‐involved extensional faults observed in seismic datasets.  相似文献   

5.
The geodynamic setting along the SW Gondwana margin during its early breakup (Triassic) remains poorly understood. Recent models calling for an uninterrupted subduction since Late Palaeozoic only slightly consider the geotectonic significance of coeval basins. The Domeyko Basin initiated as a rift basin during the Triassic being filled by sedimentary and volcanic deposits. Stratigraphic, sedimentological, and geochronological analyses are presented in order to determine the tectonostratigraphic evolution of this basin and to propose a tectonic model suitable for other SW Gondwana‐margin rift basins. The Domeyko Basin recorded two synrift stages. The Synrift I (~240–225 Ma) initiated the Sierra Exploradora sub‐basin, whereas the Synrift II (~217–200 Ma) reactivated this sub‐basin and originated small depocentres grouped in the Sierra de Varas sub‐basin. During the rift evolution, the sedimentary systems developed were largely controlled by the interplay between tectonics and volcanism through the accommodation/sediment supply ratio (A/S). High‐volcaniclastic depocentres record a net dominance of the syn‐eruptive period lacking rift‐climax sequences, whereas low‐volcaniclastic depocentres of the Sierra de Varas sub‐basin developed a complete rift cycle during the Synrift II stage. The architecture of the Domeyko Basin suggests a transtensional kinematic where N‐S master faults interacted with ~NW‐SE basement structures producing highly asymmetric releasing bends. We suggest that the early Domeyko Basin was a continental subduction‐related rift basin likely developed under an oblique convergence in a back‐arc setting. Subduction would have acted as a primary driving mechanism for the extension along the Gondwanan margin, unlike inland rift basins. Slab‐induced dynamic can strongly influence the tectonostratigraphic evolution of subduction‐related rift basins through controls in the localization and style of magmatism and faulting, settling the interplay between tectonics, volcanism, and sedimentation during the rifting.  相似文献   

6.
The Alhama de Murcia and Crevillente faults in the Betic Cordillera of southeast Spain form part of a network of prominent faults, bounding several of the late Tertiary and Quaternary intermontane basins. Current tectonic interpretations of these basins vary from late‐orogenic extensional structures to a pull‐apart origin associated with strike–slip movements along these prominent faults. A strike–slip origin of the basins, however, seems at variance both with recent structural studies of the underlying Betic basement and with the overall basin and fault geometry. We studied the structure and kinematics of the Alhama de Murcia and Crevillente faults as well as the internal structure of the late Miocene basin sediments, to elucidate possible relationships between the prominent faults and the adjacent basins. The structural data lead to the inevitable conclusion that the late Miocene basins developed as genuinely extensional basins, presumably associated with the thinning and exhumation of the underlying basement at that time. During the late Miocene, neither the Crevillente fault nor the Alhama de Murcia fault acted as strike–slip faults controlling basin development. Instead, parts of the Alhama de Murcia fault initiated as extensional normal faults, and reactivated as contraction faults during the latest Miocene–early Pliocene in response to continued African–European plate convergence. Both prominent faults presently act as reverse faults with a movement sense towards the southeast, which is clearly at variance with the commonly inferred dextral or sinistral strike–slip motions on these faults. We argue that the prominent faults form part of a larger scale zone of post‐Messinian shortening made up of SSE‐ and NNW‐directed reverse faults and NE to ENE‐trending folds including thrust‐related fault‐bend folds and fault‐propagation folds, transected and displaced by, respectively, WNW‐ and NNE‐trending, dextral and sinistral strike–slip (tear or transfer) faults.  相似文献   

7.
Seven supracratonic, Proterozoic basins, occupying more than a fifth of the Precambrian exposures in the Indian Peninsula, comprise the Purana basins. A comprehensive review of the current status of knowledge of these voluminous orthoquartzite-carbonate-shale suites in the context of their contemporary lithostratigraphy, depositional environments and structural disposition is presented. Stromatolite biostratigraphy and available geochronological data are compared, to discern their age limits.
These basins contain perhaps one of the most elaborate records of Middle to Late Proterozoic (Riphean-Vendian) sedimentation preserved in an unmetamorphosed and only slightly deformed state. Further sedimentological and structural studies could lead to a better understanding of the Proterozoic craton-margin processes. Their close association with the Middle Proterozoic Mobile Belt of peninsular India is that of two contrasting tectonic regimes, contemporaneously adjoining each other. The existing lithostratigraphic classifications of many of these sequences may not stand the test of process - response considerations as demonstrated by the recent revisions in the stratigraphy of the Cuddapah and Bhima basins. The prolific stromatolitic, micro-organic and trace-fossil communities preserved in them require much more detailed, but cautious study, and may yield information on the Riphean-Vendian biota. However, these studies must be undertaken in association with elaborate geochronological determinations which are sparse at present.
Inadequacy of the existing knowledge of these basins is highlighted, with the view of inviting the attention of the geological community to these unique basins from peninsular India.  相似文献   

8.
The Rio do Peixe Basin is part of a series of aborted Cretaceous rifts formed within the Proterozoic Borborema Province, onshore NE Brazil in response to rifting between Africa and South America. The basin is remarkably well-imaged and comprises fault-bounded depocentres, the main ones being the NE-oriented Brejo das Freiras and the E–W-oriented Sousa half-grabens. These grabens and their bounding faults are influenced by Neoproterozoic basement shear zones and present a complex framework of secondary normal faults and folds. Recent workers also interpret large reverse faults and regional post-rift shortening driven by far-field stresses from the Andes. For those reasons, the basin represents an ideal setting to investigate the multiphase history of rift basins. We thus combine borehole-calibrated 2D and 3D seismic and magnetic data with section restoration and numerical modelling to investigate the architecture and evolution of this basin. We aim to understand: (i) the controls of the basement fabric in 3D fault architecture and kinematics and (ii) how syn-rift faults controlled the geometry and development of fault-related folds. By doing this, we also investigate the timing, kinematics, and magnitude of inversion in the basin to explore its multiphase history. We demonstrate that (i) the basement fabric controlled not only the strike of faults but also their geometry and polarity at depth, (ii) folds in the syn-rift sequence are attributed simply to syn-rift extension along stepped and/or curved faults, and (iii) inverted and/or reverse faults occur within the basin, but these are minor and appear to have formed during rifting. We explain this minor inversion by a change in plate kinematics related to the onset of the nearby transform margin to the north. These results have implications for understanding the 3D evolution of oblique grabens, the role of structural inheritance, and the recognition of inversion- versus extension-related folds in rift basins worldwide.  相似文献   

9.
Abstract The Amadeus Basin, a broad intracratonic depression (800 times 300 km) in central Australia, contains a complex Late Proterozoic to mid-Palaeozoic depositional succession which locally reaches 14 km in thickness. The application of sequence stratigraphy to this succession has provided an effective framework in which to evaluate its evolution. Analysis of major depositional sequences shows that the Amadeus Basin evolved in three stages. Stage 1 began at about 900 Myr with extensional thinning of the crust and formation of half-grabens. Thermal recovery following extension was well advanced when a second less intense crustal extension (stage 2) occurred towards the end of the Late Proterozoic. Stage 2 thermal recovery was followed by a major compressional event (stage 3) in which major southward-directed thrust sheets caused progressive downward flexing of the northern margin of the basin, and sediment was shed from the thrust sheets into the downwarps forming a foreland basin. This event shortened the basin by 50–100 km and effectively concluded sedimentation. The two stages of crustal extension and thermal recovery produced large-scale apparent sea-level effects upon which eustatic sea-level cycles are superimposed. Since the style of sedimentation and major sequence boundaries were controlled to a large degree by basin dynamics, depositional patterns within the Amadeus and associated basin are, to a large degree, predictable. This suggests that an understanding of major variables associated with basin dynamics and their relationship to depositional sequences may allow the development of generalized depositional models on a basinal scale. The Amadeus Basin is only one of a number of broad, shallow, intracratonic depressions that appeared on the Australian craton during the Late Proterozoic. The development of these basins almost certainly relates to the breakup of a Proterozoic supercontinent and in large part, basin dynamics appears to be tied to this global tectonic event. Onlap and apparent sea-level curves derived from the sequence analysis appear to be composite curves resulting from both basin dynamics and eustatic sea-level effects. It thus appears likely that sequence stratigraphy could be used as a basis for inter-regional correlation; a possibility that has considerable significance in Archaean and Proterozoic basins.  相似文献   

10.
The Paradox Basin is a large (190 km × 265 km) asymmetric basin that developed along the southwestern flank of the basement‐involved Uncompahgre uplift in Utah and Colorado, USA during the Pennsylvanian–Permian Ancestral Rocky Mountain (ARM) orogenic event. Previously interpreted as a pull‐apart basin, the Paradox Basin more closely resembles intraforeland flexural basins such as those that developed between the basement‐cored uplifts of the Late Cretaceous–Eocene Laramide orogeny in the western interior USA. The shape, subsidence history, facies architecture, and structural relationships of the Uncompahgre–Paradox system are exemplary of typical ‘immobile’ foreland basin systems. Along the southwest‐vergent Uncompahgre thrust, ~5 km of coarse‐grained syntectonic Desmoinesian–Wolfcampian (mid‐Pennsylvanian to early Permian; ~310–260 Ma) sediments were shed from the Uncompahgre uplift by alluvial fans and reworked by aeolian‐modified fluvial megafan deposystems in the proximal Paradox Basin. The coeval rise of an uplift‐parallel barrier ~200 km southwest of the Uncompahgre front restricted reflux from the open ocean south and west of the basin, and promoted deposition of thick evaporite‐shale and biohermal carbonate facies in the medial and distal submarine parts of the basin, respectively. Nearshore carbonate shoal and terrestrial siliciclastic deposystems overtopped the basin during the late stages of subsidence during the Missourian through Wolfcampian (~300–260 Ma) as sediment flux outpaced the rate of generation of accommodation space. Reconstruction of an end‐Permian two‐dimensional basin profile from seismic, borehole, and outcrop data depicts the relationship of these deposystems to the differential accommodation space generated by Pennsylvanian–Permian subsidence, highlighting the similarities between the Paradox basin‐fill and that of other ancient and modern foreland basins. Flexural modeling of the restored basin profile indicates that the Paradox Basin can be described by flexural loading of a fully broken continental crust by a model Uncompahgre uplift and accompanying synorogenic sediments. Other thrust‐bounded basins of the ARM have similar basin profiles and facies architectures to those of the Paradox Basin, suggesting that many ARM basins may share a flexural geodynamic mechanism. Therefore, plate tectonic models that attempt to explain the development of ARM uplifts need to incorporate a mechanism for the widespread generation of flexural basins.  相似文献   

11.
Abstract Burial histories of Late Neogene sedimentary basins on the Wairarapa fold and thrust belt of the Hikurangi convergent plate margin (New Zealand) have been deduced from decompacted sedimentary columns and palaeo-waterdepths. These indicate that at least two major cycles of basement subsidence and uplift have occurred since 15 Ma. The older (15-10 Ma) cycle affected outer areas of the forearc. Subsidence, at a minimum rate of 0.5-0.6 mm/yr, was followed by rapid uplift. The subsequent (10 Ma to present) cycle affected a broad area of the inner forearc. Subsidence, at an average rate 0.33 mm/yr, was followed by uplift at an average rate of 0.5-1.5 mm/yr. Vertical movement is continuing, with uplift of the axial greywacke ranges and development of the Wairarapa Depression.
Palinspastic reconstructions of the inner forearc region indicate that basin development was characterized by a see-saw oscillation in basin orientation, with the axis of the basin and direction of basin tilt switching back and forth from east to west through time. A large-scale change in basin orientation took place around 2 Ma when the westernmost part of Wairarapa began to rise on the flanks of the rising Tararua Range, associated with the ramping of the Australian Plate up and over the subducted Pacific Plate. Loading of the forearc is unlikely to have been a significant cause of basement subsidence before this event. Earlier phases of basin development associated with basement subsidence and uplift may be related to a complex interplay of tectonic factors, including the westward migration of the subducted Pacific Plate as it passed beneath southern North Island during Miocene time, episodes of locking and unlocking of parts of the plate interface, and growth of the accretionary prism.  相似文献   

12.
Neoproterozoic sedimentary basins cover a large area of central Australia. They rest upon rigid continental crust that varies from c. 40–50 km in thickness. Whilst the crust was in part formed during the Archaean and early Palaeoproterozoic, its final assembly occurred at approximately 1.1 Ga as the Neoproterozoic supercontinent, Rodinia, came into being. The assembly process left an indelible imprint on the region producing a strong crustal fabric in the form of a series of north dipping thrusts that pervade much of the thick craton and extend almost to the Moho. Following a period of stability (1.1–0.8 Ga), a large area of central Australia, in excess of 2.5 × 106 km2, began to subside in synchroneity. This major event was due to mantle instability resulting from the insulating effect of Rodinia. Initially, beginning c. 900 Ma, a rising superplume uplifted much of central Australia leading to peneplanation of the uplifted region and the generation of large volumes of sand‐sized clastic materials. Ultimately, the decline of the superplume led to thermal recovery and the development of a sag basin (beginning at c. 800 Ma), which in turn resulted in the redistribution of the clastic sediments and the development of a vast sand sheet at the base of the Neoproterozoic succession. The superbasin generated by the thermal recovery was short lived (c. 20 M.y.) but, in conjunction with the crustal fabric developed during supercontinent assembly, it set the stage for further long‐term basin development that extended for half a billion years well into the Late Palaeozoic. Following the sag phase at least five major tectonic episodes influenced the central Australian region. Compressional tectonics reactivated earlier thrust faults that had remained dormant within the crust, disrupting the superbasin, causing uplift of basement blocks and breaking the superbasin into the four basins now identified within the central Australian Neoproterozoic succession (Officer, Amadeus, Ngalia and Georgina Basin). These subsequent tectonic events produced the distinctive foreland architecture associated with the basins and were perhaps the trigger for the Neoproterozoic ice ages. The reactivated basins became asymmetric with major thrust faults along one margin paralleled by deep narrow troughs that formed the main depocentres for the remaining life of the basins. The final major tectonic event to influence the central Australian basins, the Alice Springs Orogeny, effectively terminated sedimentation in the region in the Late Palaeozoic (c. 290 Ma). Of the six tectonic episodes recorded in the basinal succession only one provides evidence of extension, suggesting the breakup of east Gondwana at the end of the Rodinian supercontinent cycle may have occurred at close to the time of the Precambrian–Cambrian boundary. The central Australian basins are thus the products of events surrounding the assembly and dispersal of Rodinia.  相似文献   

13.
Although the Neuquén basin in Argentina forms a key transitional domain between the south‐central Andes and the Patagonian Andes, its Cenozoic history is poorly documented. We focus on the sedimentologic and tectonic evolution of the southern part of this basin, at 39–40°30′S, based on study of 14 sedimentary sections. We provide evidence that this basin underwent alternating erosion and deposition of reworked volcaniclastic material in continental and fluvial settings during the Neogene. In particular, basement uplift of the Sañico Massif, due to Late Miocene–Pliocene intensification of tectonic activity, led to sediment partitioning in the basin. During this interval, sedimentation was restricted to the internal domain and the Collon Cura basin evolved towards an endorheic intermontane basin. From stratigraphic interpretation, this basin remained isolated 7–11 Myr. Nevertheless, ephemeral gateways seem to have existed, because we observe a thin succession downstream of the Sañico Massif contemporaneous with the Collon Cura basin‐fill sequence. Comparisons of stratigraphic, paleoenvironmental and tectonic features of the southern Neuquén basin with other foreland basins of South America allow us to classify it as a broken foreland with the development of an intermontane basin from Late Miocene to Late Pliocene. This implies a thick‐skinned structural style for this basin, with reactivation of basement faults responsible for exhumation of the Sañico Massif. Comparison of several broken forelands of South America allows us to propose two categories of intermontane basins according to their structural setting: subsiding or uplifted basins, which has strong implications on their excavation histories.  相似文献   

14.
Abstract The Deer Lake Basin is an entirely non-marine basin associated with the Cabot fault zone. Structural and stratigraphic evidence strongly suggest dextral strike-slip movements along the fault zone during Tournaisian-Visean time. Two elongated, end-on structural blocks (probable positive flower structures) contain fold axes and second-order faults oriented obliquely to fault traces bounding the blocks, in a manner implying dextral movements. In one part of the basin, the stratigraphic thickness of a long homoclinal section of later basin-fill sediment (Deer Lake Group) greatly exceeds the suggested depth to basement based on gravity measurements, a situation common to strike-slip basins. Formations representing basin fill can be arranged into megasequences (from oldest to youngest: Anguille Group, Wetstone Point and Wigwam Brook Formations, Deer Lake Group, Howley Formation) corresponding to lateral growth stages of the basin. Gravity, magnetic, and seismic data show that depths to basement on either side of the end-on flower structures are comparable, so that the youngest strata in the basin (Howley Formation) are not underlain by earlier basin fill. These geophysical data, therefore, corroborate the geological conclusion of onlapping stratigraphic relations. The geophysical data suggest participation of basement in Carboniferous gravity faulting and show the location of the subsurface extension of the Taylors Brook Fault in the western part of the Deer Lake Basin. Thermal maturation of the Anguille and Deer Lake Groups, as measured by vitrinite reflectance, clay mineral assemblages, illite crystallinity, and Rock-Eval pyrolysis, indicate a much higher level of maturation for the Anguille than for the Deer Lake Group. Palaeotemperatures for the Anguille and Deer Lake Groups are estimated to be around 200 and 100oC, respectively, suggesting that Anguille Group rocks are overmature whereas Deer Lake Group strata are within the oil-generating window. Onlapping stratigraphic relations and areally homogeneous time/temperature effects, however, have created a situation in which the Deer Lake Group and Howley Formation have similar maturation levels.  相似文献   

15.
Structural evolution of African basins: stratigraphic synthesis   总被引:1,自引:0,他引:1  
The structural and stratigraphic character of African interior sedimentary basins is highly variable, indicating contrasting basin-forming mechanisms and subsequent subsidence histories. A stratigraphic database has been compiled for African interior depositional basins for the purpose of better understanding basin thermal and structural development. Data are recorded in the form of stratal age, lithology, thickness and elevation of top with respect to present sea level. The data are obtained from published structure contour maps, well sections, and outcrop geology and elevation. There are various degrees of data coverage of the basins, proportional to the amount of water and oil drilling activity. Consequently, there is excellent coverage of North African basins such as the Algerian basin and the Sirte basin, while there is little known about the subsurface of the Congo basin. The stratigraphic data are used to reconstruct the depositional history of the basins, while backstripping leads to the quantification of the thermo-tectonic component of basin subsidence. The nature of basement subsidence can provide constraints on lithospheric flexural rigidity. In addition, the depositional and thermo-tectonic history of each basin bears upon the mechanisms of basin formation and subsidence. Virtually all types of basins are represented in interior Africa, including thrust-loaded basins (Algerian), passive-margin rift basins (Algerian, Sirte), modern active rift basins (East African), ancient rift basins (Benue, Abu Gabra), basins caused by uplift of their margins (Congo, Chad, Illumeden) and even basins that may be related to thermal subsidence of hot-spot domes (Algerian, Sirte).  相似文献   

16.
Summary. The lithospheric stretching model for the formation of sedimentary basins was tested in the central North Sea by a combined study of crustal thinning and basement subsidence patterns. A profile of crustal structure was obtained by shooting a long-range seismic experiment across the Central Graben, the main axis of subsidence. A seabed array of 12 seismometers in the graben was used to record shots fired in a line 530 km long across the basin. The data collected during the experiment were interpreted by modelling synthetic seismograms from a laterally varying structure, and the final model showed substantial crustal thinning beneath the graben. Subsidence data from 19 exploration wells were analysed to obtain subsidence patterns in the central North Sea since Jurassic times. Changes in water depth were quantified using foraminiferal assemblages where possible, and observed basement subsidence paths were corrected for sediment loading, compaction and changes in water depth through time. The seismic model is shown to be compatible with the observed gravity field, and the small size of observed gravity anomalies is used to argue that the basin is in local isostatic equilibrium. Both crustal thinning and basement subsidence studies indicate about 70 km of stretching across the Central Graben during the mid-Jurassic to early Cretaceous extensional event. This extension appears to have occurred over crust already slightly thinned beneath the graben, and the seismic data suggest that total extension since the early Permian may have been more than 100km. The data presented here may all be explained using a simple model of uniform extension of the lithosphere.  相似文献   

17.
Two end‐member models have been proposed for the Paleogene Andean foreland: a simple W‐E migrating foreland model and a broken‐foreland model. We present new stratigraphic, sedimentological and structural data from the Paleogene Quebrada de los Colorados (QLC) Formation, in the Eastern Cordillera, with which to test these two different models. Basin‐wide unconformities, growthstrata and changes in provenance indicate deposition of the QLC Formation in a tectonically active basin. Both west‐ and east‐vergent structures, rooted in the basement, controlled the deposition and distribution of the QLC Formation from the Middle Eocene to the Early Miocene. The provenance analysis indicates that the main source areas were basement blocks, like the Paleozoic Oire Eruptive Complex, uplifted during Paleogene shortening, and that delimits the eastern boundary of the present‐day intraorogenic Puna plateau. A comparison of the QLC sedimentary basin‐fill pattern with those of adjacent Paleogene basins in the Puna plateau and in the Santa Bárbara System highlights the presence of discrete depozones. These reflect the early compartmentalization of the foreland, rather than a stepwise advance of the deformation front of a thrust belt. The early Tertiary foreland of the southern central Andes is represented by a ca. 250‐km‐wide area comprising several deformation zones (Arizaro, Macón, Copalayo and Calchaquí) in which doubly vergent or asymmetric structures, rooted in the basement, were generated. Hence, classical foreland model is difficult to apply in this Paleogene basin; and our data and interpretation agree with a broken‐foreland model.  相似文献   

18.
Well‐calibrated seismic interpretation in the Halten Terrace of Mid‐Norway demonstrates the important role that structural feedback between normal fault growth and evaporite mobility has for depocentre development during syn‐rift deposition of the Jurassic–Early Cretaceous Viking and Fangst Groups. While the main rift phase reactivated pre‐existing structural trends, and initiated new extensional structures, a Triassic evaporite interval decouples the supra‐salt cover strata from the underlying basement, causing the development of two separate fault populations, one in the cover and the other confined to the pre‐salt basement. Detailed displacement–length analyses of both cover and basement fault arrays, combined with mapping of the component parts of the syn‐rift interval, have been used to reveal the spatial and temporal evolution of normal fault segments and sediment depocentres within the Halten Terrace area. Significantly, the results highlight important differences with traditional models of normal fault‐controlled subsidence, including those from parts of the North Sea where salt is absent. It can now be shown that evaporite mobility is intimately linked to the along‐strike displacement variations of these cover and basement faults. The evaporites passively move beneath the cover in response to the extension, such that the evaporite thickness becomes greatest adjacent to regions of high fault displacement. The consequent evaporite swells can become large enough to have pronounced palaeobathymetric relief in hangingwall locations, associated with fault displacement maxima– the exact opposite situation to that predicted by traditional models of normal fault growth. Evaporite movement from previous extension also affects the displacement–length relationships of subsequently nucleated or reactivated faults. Evaporite withdrawal, on the other hand, tends to be a later‐stage feature associated with the high stress regions around the propagating tips of normal faults or their coeval hangingwall release faults. The results indicate the important effect of, and structural feedback caused by, syn‐rift evaporite mobility in heavily modifying subsidence patterns produced by normal fault array evolution. Despite their departure from published models, the results provide a new, generic framework within which to interpret extensional fault and depocentre development and evolution in areas in which mobile evaporites exist.  相似文献   

19.
New seismic reflection profiles from the Tugrug basin in the Gobi‐Altai region of western Mongolia demonstrate the existence of preserved Mesozoic extensional basins by imaging listric normal faults, extensional growth strata, and partially inverted grabens. A core hole from this region recovered ca. 1600 continuous meters of Upper Jurassic – Lower Cretaceous (Kimmeridgian–Berriasian) strata overlying Late Triassic volcanic basement. The cored succession is dominated by lacustrine and marginal lacustrine deposits ranging from stratified lacustrine, to subaqueous fan and delta, to subaerial alluvial‐fluvial environments. Multiple unconformities are encountered, and these represent distinct phases in basin evolution including syn‐extensional deposition and basin inversion. Prospective petroleum source and reservoir intervals occur, and both fluid inclusions and oil staining in the core provide evidence of hydrocarbon migration. Ties to correlative outcrop sections underscore that, in general, this basin appears to share a similar tectono‐stratigraphic evolution with petroliferous rift basins in eastern Mongolia and China. Nevertheless, some interesting contrasts to these other basins are noted, including distinct sandstone provenance, less overburden, and younger (Neogene) inversion structures. The Tugrug basin occupies an important but perplexing paleogeographic position between late Mesozoic contractile and extensional provinces. Its formation may record a rapid temporal shift from orogenic crustal thickening to extensional collapse in the Late Jurassic, and/or an accommodation zone with a Mesozoic strike‐slip component.  相似文献   

20.
黄河中游流域地貌形态对流域产沙量的影响   总被引:13,自引:7,他引:13  
卢金发 《地理研究》2002,21(2):171-178
在黄河中游地区 ,选择了 5 0多个面积约 5 0 0~ 2 5 0 0平方公里的水文测站流域 ,分别代表 6种不同自然地理类型 ,在流域沟壑密度、沟间地坡度小于 15°面积百分比等地貌形态指标量计的基础上 ,进行了流域产沙量与地貌形态指标相关分析。结果表明 ,对于不同类型流域 ,流域产沙量随流域地貌的变化遵循不同的响应规律 ,而且视流域其它下垫面环境条件的均一程度 ,其相关程度和响应速率各不相同。受地面物质、植被、地貌发育阶段等流域其它下垫面环境条件的制约 ,除沟壑密度外 ,流域产沙量与流域地貌形态的关系都没有人们以前所预期的好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号