首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study presents shear wave splitting analysis results observed at ISP (Isparta) broadband station in the Isparta Angle, southwestern Turkey. We selected 21 good quality seismic events out of nearly 357 earthquakes and calculated splitting parameters (polarization direction of fast wave, ϕ and delay time between fast and slow waves, δt) from mainly SKS and a few SKKS phases of the selected 21 seismic events. Then, we compared calculated splitting parameters at ISP station (56° ≤ ϕ ≤ 205°; 0.37 s ≤ δt ≤ 4 s) with those previously calculated at ANTO (Ankara) and ISK (İstanbul) stations (27° ≤ ϕ ≤ 59°; 0.6 s ≤ δt ≤ 2.4 s and 26° ≤ ϕ ≤ 54°; 0.6 s ≤ δt ≤ 1.5 s) which are located at 230 and 379 km away from ISP station in central and northwestern Turkey, respectively. The backazimuthal variations of the splitting parameters at ISP station indicate a different and complex mantle polarization anisotropy for the Isparta Angle in southwestern Turkey compared to those obtained for Ankara and İstanbul stations.  相似文献   

2.
The active North Anatolian fault zone (NAFZ) presents very complex seismotectonic activity. The occurrence of the Abant earthquake in 1957 (Ms = 7.1) and the Mudurnu earthquake in 1967 (Ms = 6.8) are only two examples of several seismic events associated with intense tectonic activity of the NAFZ. Statistical analyses of earthquakes in an area extending between 30° 30′ to 31° 30' E Long. and 40° 15′ to 41° 00′ N Lat. reveal that epicenters generally were shallow. However, a few deep epicenters also were located, some of which reached a depth of 30 km. The epicenters were found to concentrate in a zone lying between the Duzce and Akyazi Plain to the north of Almacik Mountain and in the Adapazari Plain. The Northern Anatolian fault displays an en echelon character in the area, except for the eastern part, where it extends as a single segment. The en echelon character of the NAFZ is interpreted as a structure distributing the potential energy and consequently reducing the intensity of earthquakes, giving rise to micro-earthquakes of magnitudes less than 4.2.  相似文献   

3.
Daily resolution data retrieved from the 1243 ground-based Global Positioning System (GPS) stations in Japan are utilized to expose surface displacements before the destructive M9 Tohoku-Oki earthquake (March 11, 2011). Variations in the residual GPS data, in which effects of the long-term plate movements, short-term noise and frequency-dependent variations have been removed through a band-pass filter via the Hilbert–Huang transform, are compared with parameters of the focal mechanism associated with the Tohoku-Oki earthquake for validation. Analytical results show that the southward movements, which were deduced from the residual displacements and agree with the strike of the rupture fault, became evident on the 65th day before the Tohoku-Oki earthquake. This observation suggests that the shear stress played an important role in the seismic incubation period. The westward movements, which are consistent with the angle of the maximum horizontal compressive stress, covered entire Japan and formed an impeded area (142°E, 42°N) about 75 km away from the epicenter on the 47th day prior to the earthquake. The horizontal displacements integrated with the vertical movements from the residual GPS data are very useful to construct comprehensive images in diagnosing the surface deformation from destructive earthquakes along the subduction zone.  相似文献   

4.
We present new constraints on an active low-angle normal fault system in the Città di Castello–Sansepolcro basin (CSB) of the northern Apennines of Italy. New field data from the geological survey of the Carta Geologica d'Italia (CARG project) define the surface geometry of the normal fault system and lead to an interpretation of the CROP 03 deep-crust seismic reflection profile (Castiglion Fiorentino–Urbania segment), with particular attention paid to the geometry of the Plio-Quaternary extensional structures. Surface and sub-surface geological data are integrated with instrumental and historical seismicity in order to define the seismotectonics of the area.Low-angle east-dipping reflectors are the seismic expression of the well-known Altotiberina Fault (AF), a regional extensional detachment on which both east- and west-dipping high-angle faults, bounding the CSB, sole out. The AF breakaway zone is located ~ 10 km west of the CSB. Within the extensional allochthon, synthetic east-dipping planes prevail. Displacement along the AF is ~ 4.5 km, which agrees with the cumulative offset due to its synthetic splays. The evolution of the CSB has mainly been controlled by the east-dipping fault system, at least since Early Pleistocene time; this system is still active and responsible for the seismicity of the area. A low level of seismic activity was recorded instrumentally within the CSB, but several damaging earthquakes have occurred in historical times. The instrumental seismicity and the intensity data points of the largest historical earthquakes (5 events with maximum MCS intensity of IX to IX–X) allow us to propose two main seismogenic structures: the Monte Santa Maria Tiberina (Mmax = 5.9) and Città di Castello (Mmax up to 6.5) normal faults. Both are synthetic splays of the AF detachment, dipping to the NE at moderate (45–50°) to low (25–30°) angles and cutting the upper crust up to the surface. This study suggests that low-angle normal faults (at least with dips of 25–30°) may be seismogenic.  相似文献   

5.
The preparation process of an impending earthquake may leave fingerprints on the earth??s surface. Elastic strain in rocks, formation of micro-cracks, gas releases and other chemical or physical activities in the earth??s crust before and during earthquakes has been reported to cause rises in temperature, surface latent heat flux (SLHF), upwelling index and chlorophyll-a (Chl-a) concentration on the ground or sea surface. Changes in surface temperature can be monitored with thermal infrared sensors such as NOAA-AVHRR and microwave radiometers like AMSR-E/Aqua. SLHF data and upwelling indices are provided by National Centers for Environmental Prediction (NCEP) Reanalysis Project and Pacific Fisheries Environmental Laboratory, respectively. This study examines behaviors of the above four factors prior to the past three oceanic and coastal earthquakes occurred at the Pacific Ocean (Northern California of June 15, 2005, Central California of September 28, 2004, and December 22, 2003). We were successful in detecting pre-earthquake anomalies prior to all three earthquakes. Our detailed analysis revealed 1?C5?°C rises in surface temperature in epicentral areas. Considerable anomalies in Chl-a concentration, 1?C2?weeks before the day of the main earthquakes, were spotted, which are attributed to the rise in upwelling index. Time series of SLHF showed meaningful rises from 1?month to a fortnight before the earthquake events. One problem in our research was the low resolution of the data which makes the graphs that are generated from NCEP database affected by all sources of anomalies, other than seismic activities, within an about 1.8°?C2.5° (200?km) area.  相似文献   

6.
本文提出了一个新的地震机理模型:高温高压高导低速流变体震源腔(简称震源腔)与闭锁断层组合模型。高温高压下的软流圈物质在复杂相变空间中,受到温度场中的异重流作用和受迫振动作用而形成深源震源腔。随着软流圈物质上涌, 幔汁在温度差和压力差驱使下,涌入地壳中的物理空间,形成浅源地震震源腔。由于温度升高使得腔体内岩石部分熔融或全部熔融,释放出大量气液流体,拓展腔体空间范围,同时提升腔体内压。当腔体内部有效压力(即内压与上覆地壳压力之差)达到腔体边缘或者上方与脆性活动断层交会部位的岩石破坏强度时,震源腔便进入临界状态。当软流圈物质上涌继续向腔体内供能,或者由于星体连线在震源区造成触发作用,便引起震源腔的隐蔽爆炸,即隐爆,释放腔体内部积累的能量,同时释放区域构造应力场作用于闭锁断层积累的应变能。 腔体隐爆释放能量与腔体规模正相关。闭锁断层释放应变能与闭锁断层规模、闭锁区大小以及区域构造应力场强度相关。震源腔与脆性活动断层交会部位,是潜在震源位置。多年观测资料表明,震源腔从进入临界状态到隐爆,一般经历1~13天,平均7天。长期观测表明,潜在震中区在震前经常出现干旱、气温升高、海温升高、大量水汽释放等异常现象。通过超低频地震仪监测、重力波作用于水汽形成的地震云的观测、次声波的监测、卫星重力异常反映的高程面垂向震荡监测、以及地基卫星导航系统地面升降监测等,都显示出震源腔进入临界状态后的胀缩震荡引起震中及其外围地面的垂向振动。文中还给出了震源腔体隐爆遗迹的直接证据。  相似文献   

7.
Using 4.0 and greater magnitude earthquakes which occurred between 1 January 1900 and 31 Dec 2008 in the Sinop province of Turkey this study presents a seismic hazard analysis based on the probabilistic and statistical methods. According to the earthquake zonation map, Sinop is divided into first, second, third and fourth-degree earthquake regions. Our study area covered the coordinates between 40.66°– 42.82°N and 32.20°– 36.55°E. The different magnitudes of the earthquakes during the last 108 years recorded on varied scales were converted to a common scale (Mw). The earthquake catalog was then recompiled to evaluate the potential seismic sources in the aforesaid province. Using the attenuation relationships given by Boore et al. (1997) and Kalkan and Gülkan (2004), the largest ground accelerations corresponding to a recurrence period of 475 years are found to be 0.14 g for bedrock at the central district. Comparing the seismic hazard curves, we show the spatial variations of seismic hazard potential in this province, enumerating the recurrence period in the order of 475 years.  相似文献   

8.
A one-dimensional velocity model and station corrections for the Middle-Durance fault zone (south-eastern France) were computed by inverting P-wave arrival times recorded on a local seismic network of 8 stations. A total of 93 local events with a minimum of 6 P-phases, RMS 0.4 s and a maximum gap of 220° were selected. Comparison with previous earthquake locations shows an improvement for the relocated earthquakes. Tests were carried out to verify the robustness of inversion results in order to corroborate the conclusions drawn from our findings. The obtained minimum 1-D velocity model can be used to improve routine earthquake locations and represents a further step toward more detailed seismotectonic studies in this area of south-eastern France.  相似文献   

9.
The historical seismicity of the last ten centuries and the instrumental data that occurred in the Gulf of Aqaba region during the period 1982–2008 are evaluated. It is found that 12 historical earthquakes have occurred with average recurrence periods 70–90 and 333–500 years for M?≥?6.0 and 7.0, respectively. Those with M?≤?6.5 appear to be incomplete and require further investigation. More than 98 % of the instrumental data has occurred in the form of swarms and sequences. The first have released about 32 % of the total energy and are most likely related to subsurface volcanic activities. Their epicentral distribution indicates that all regional faults of the gulf area are active in the present, but with clear concentration within the area bound by latitudes 28.2°–29.8° and longitudes 34.4°–35.2°. Regional strike-slip faults of the northern two basins appear to be as twice active as the normal, or more. An appreciable level of seismic hazard is envisaged as the “a” value is 6.0–6.2 while the “b” value shows a temporal variation, mostly in the range 0.8–1.05. More than 95 % of the seismic energy was released from earthquakes shallower than 22 km. This indicates a brittle upper crust and a ductile lower crust and upper mantle. Tectonic movements at depths?>?22 km appear to be aseismic. The epicentral distribution of the five swarms indicates that the lengths of the causative faults varied in the range 45–70 km. The maximum expected magnitude is Mw?=?6.8–7.2. This implies a seismic slip rate of about 0.54–0.8 Cm/year and some 20–30 % of aseismic tectonic movements. This and the sequence nature of the seismicity of this region result in a noticeable hazard reduction. Combining the seismicity data of the Gulf of Aqaba region with other geophysical, geological, tectonic, and environmental data, clearly indicate that the seismicity of this region is as old as the initiation of the gulf itself. No apparent southward or northward migration of activity is observed.  相似文献   

10.
云南地区水温异常与地震关系   总被引:1,自引:0,他引:1       下载免费PDF全文
张彬  方震  刘耀炜  杨选辉  赵刚  荆燕 《地球科学》2014,39(12):1880-1886
云南地区地震频发, 水温观测点分布也最集中, 为研究水温异常与地震的关系提供了便利条件.通过收集已经公开发表关于该区域"十五"之前的水温异常与地震的对应关系的文章, 较系统地研究了水温异常持续时间、异常空间位置与地震之间的关系.结果表明: 水温异常主要是地震短临异常, 强震前也存在水温中期趋势异常; 一般情况下, 地震震级越大, 异常范围越广, 发震地点通常出现在水温异常集中的区域.   相似文献   

11.
Large to great earthquakes and related tsunamis generated on the Aleutian megathrust produce major hazards for both the area of rupture and heavily populated coastlines around much of the Pacific Ocean. Here we use paleoseismic records preserved in coastal sediments to investigate whether segment boundaries control the largest ruptures or whether in some seismic cycles segments combine to produce earthquakes greater than any observed since instrumented records began. Virtually the entire megathrust has ruptured since AD1900, with four different segments generating earthquakes >M8.0. The largest was the M9.2 great Alaska earthquake of March 1964 that ruptured ~800 km of the eastern segment of the megathrust. The tsunami generated caused fatalities in Alaska and along the coast as far south as California. East of the 1964 zone of deformation, the Yakutat microplate experienced two >M8.0 earthquakes, separated by a week, in September 1899. For the first time, we present evidence that earthquakes ~900 and ~1500 years ago simultaneously ruptured adjacent segments of the Aleutian megathrust and the Yakutat microplate, with a combined area ~15% greater than 1964, giving an earthquake of greater magnitude and increased tsunamigenic potential.  相似文献   

12.
In the southern South–North Seismic Zone, China, seismic activity in the Yingjiang area of western Yunnan increased from December 2010, and eventually a destructive earthquake of Ms5.9 occurred near Yingjiang town on 10 March 2011. The focal mechanism and hypocenter location of the mainshock suggest that the Dayingjiang Fault was the site of the mainshock rupture. However, most of foreshocks and all aftershocks recorded by a portable seismic array located close to the mainshock occurred along the N–S-striking Sudian Fault, indicating that this fault had an important influence on these shocks. Coulomb stress calculations show that three strong(magnitude ≥5.0) earthquakes that occurred in the study region in 2008 increased the coulomb stress along the plane parallel to the Dayingjiang Fault. This supports the Dayingjiang Fault, and not the Sudian Fault, as the seismogenic fault of the 2011 Ms5.9 Yingjiang earthquake. The strong earthquakes in 2008 also increased the Coulomb stress at depths of ≤5 km along the entire Sudian Fault, and by doing so increased the shallow seismic activity along the fault. This explains why the foreshocks and aftershocks of the 2011 Yingjiang earthquake were located mostly on the Sudian Fault where it cuts the shallow crust. The earthquakes at the intersection of the Sudian and Dayingjiang faults are distributed mainly along a belt that dips to the southeast at ~40°, suggesting that the Dayingjiang Fault in the mainshock area also dips to the southeast at ~40°.  相似文献   

13.
CRUST AND UPPER STRUCTURE OF QINGHAI-TIBET PLATEAU AND ITS ADJACENT REGIONS FROM SURFACE WAVEFORM INVERSION  相似文献   

14.
A 1-D velocity model for the Marche region (Central Italy) was computed by inverting P- and S-wave arrival times of local earthquakes. A total of 160 seismic events with a minimum of ten observations, a travel time residual ≤0.8 s and an azimuthal gap lower than 180° have been selected. This “minimum 1-D velocity model” is complemented by station corrections, which can be used to take into account possible near-surface velocity heterogeneities beneath each station. Using this new P-wave velocity model and the program HYPOELLIPSE (Lahr 1999), the selected local events were relocated. Earthquake locations in this study are of higher quality with respect to the original ones. The obtained minimum 1-D velocity model can be used to improve the routine earthquake locations and represents a further step towards more detailed seismotectonic studies of the area.  相似文献   

15.
Coseismic soft-sediment deformation has been studied by structural and tectononophysical methods in the Selenga Delta area shaken by the devastating M ~ 7.5 Tsagan earthquake in 1862. Among the documented deformation structures (seismites), clastic dikes are the most reliable paleoseismic indicators. The dikes have their sizes and extent showing proximity to the primary coseismic rupture zone and are closely associated with faults of different hierarchic levels. The Tsagan event occurred under SW–NE extension as motion on a stepped system of normal faults dipping at 300°–350°, ∠45°–75°.The amount of vertical motion measured against a reference layer in a trench reached 2.83 m, and the maximum dip displacement measured in a single fracture was 0.5 m. The earthquake was generated by the Delta Fault that dips at 60° on average to the northwest.The distribution of quantitative parameters of brittle and brittle-plastic deformation has been analyzed along two profiles, and two new parameters were introduced: indices of mean intensity (I) of clastic dikes and microdikes; the new parameters were calculated by specially developed equations. Summation of significant peaks in all parameters (SUMspp) allowed contouring the zone of most intense soft-sediment deformation near Dubinino Village.Deformation mostly propagated in the NE–SW and N–S directions. The location of the 1862 Tsagan earthquake at 52.35° N and 106.67° E was inferred from the SUMspp value taking into account the dip of the causative fault plane and the average origin depth of earthquakes in the Baikal rift. The approach we used is applicable to locating preinstrumental events.The recurrence of large earthquakes in the area of Proval Bay (Lake Baikal) has been estimated to be 1120–1230 years proceeding from alternating deformed and undeformed sediments in the sections, their thicknesses and deposition rates according to radiocarbon dating. The seismic activity has been associated with the same fault which can generate M ≥ 7 events.  相似文献   

16.
《Tectonophysics》1987,138(1):45-53
In this paper, the seismic pattern in Northern China from 30 ° to 42 ° N latitude and 104 ° to 125 ° E longitude, and the characteristics of the epicentral distribution before large events are presented. The results suggest that:
  • 1.(1) the earthquakes in the region are mainly located in the orthogonal curvilinear network formed by the seismic belts;
  • 2.(2) the larger earthquakes (M ⩾6) occurred mainly in the nodal regions of this grid:
  • 3.(3) the strike of the fracture planes of the earthquakes coincided with the directions of the seismic belts;
  • 4.(4) the pattern of medium strong earthquakes (M ⩾ 4.7) prior to thirteen large earthquakes (M⩾ 7) are analysed to be of three types:
    • 4.1.(a) mainly arranged along the two intersecting belts,
    • 4.2.(b) randomly distributed,
    • 4.3.(3) forming seismic gaps.
A theoretical basis and rules for drawing the orthogonal grid is presented, and an idea for the prediction of the sites of future earthquakes in Northern China is suggested.  相似文献   

17.
华北地区距雄安新区300 km范围内包括唐山、邢台和张北三个典型强震区,近50年来,先后发生1966年邢台7.2级、1976年唐山7.8级和1998年张北6.2级强震活动,未来仍具发生破坏性地震的风险。在现今构造应力环境下,3个典型强震区内断裂活动危险性如何、再次发生中强地震对雄安新区地面稳定性有怎样的影响,这些都是要回答的问题。对此,本文首先基于唐山、邢台和张北强震区关键构造部位深孔水压致裂地应力测量数据,依据Byerlee断层滑动失稳摩擦准则,计算各强震区内潜在发震断层的临界失稳状态,探讨断裂活动危险性;之后依据中华人民共和国第五代《中国地震动参数区划图》之《中国大陆及邻区潜在震源区划分图》,厘定雄安新区外围300 km范围内主要潜在震源区和震级上限;最后选取适宜的地震烈度衰减模型,定量计算主要潜在震源区未来发生震级上限地震时对雄安新区地震烈度的影响,进而为雄安新区及重大工程抗震设防提供科学参考。结果表明:(1)唐山、邢台和张北强震区内主要潜在震源区未来发生震级上限地震产生的地震烈度衰减至雄安新区时均位于Ⅳ~Ⅶ度;(2)北京通州及邻区发生8.0级地震、涞水—高碑店沿线发生6.5级地震会在雄安新区产生Ⅶ度地震烈度,震害较轻;(3)其他潜在震源区在雄安新区产生的地震烈度均小于V度,并不会产生显著震害效应。鉴于此,雄安新区抗震设防烈度建议由原Ⅶ度调至Ⅷ度为宜。  相似文献   

18.
The Diamantina ~120 km-diameter ring feature, a unique feature in western Queensland, is manifested by a near-360° circular drainage pattern, radial creeks and a coincident radiometric K–Th–U pattern. The structure has been studied in the context of an investigation of the nature and origin of Australian circular structures. Geophysical signatures, including total magnetic intensity (TMI), gravity and seismic reflection transect data from the region of the ring feature are examined to help test the origin of the structure. A western subdued TMI arc with a ~110 km diameter is offset by ~30 km eastward from the western rim of the drainage ring. Bouguer anomaly data show a gravity low near the centre of the ring structure, but no outer circular pattern. Two recent seismic transects indicate a moderately reflective to weakly reflective crust below flat lying strata of the Jurassic–Cretaceous Eromanga and Permian–Triassic Galilee basins, and above a usually well-defined ~39–45 km-deep Moho. An approximately ~100 km-wide seismically non-reflective to weakly reflective zone overlapping the Diamantina ring feature separates crust of different seismic reflection character to either side. The nature of the seismic non-reflective crust is unknown. A potential interpretation of the ring structure in terms of asteroid impact cannot be confirmed or rejected given the present state of knowledge, owing to (1) the near-30 km depth of the seismically non-reflective zone along the transects; and (2) the shift of the TMI part ring zone relative to the geomorphic expression of the Diamantina ring feature. A test of the nature and origin of the Diamantina ring feature requires a cored drill hole near the centre of the TMI ring structure.  相似文献   

19.
Zircon and apatite fission track data provide constraints on the exhumation history, fault activity, and thermal evolution of the South-Central Chilean active continental margin (36°S–42°S), which we use to assess the tectonic and geomorphic response of the margin to the Andean subduction regime. Several domains with different exhumation histories are identified. The Coastal Cordillera is characterized by uniform and coherent exhumation between Late Triassic (~200 Ma) and late Miocene times, with surprisingly slow average rates of 0.03–0.04 mm/a. Thermal anomalies, related to Late Cretaceous and early Miocene magmatism, have regionally modified fission track age patterns. The Upper Cretaceous thermal overprint is of previously unrecognized significance and extent in the Coastal Cordillera south of 39°S. With the exception of a local but distinct Pliocene to Recent exhumation period in the high-relief Cordillera Nahuelbuta segment between 37°S and 38°S, Cenozoic overall exhumation in the Coastal Cordillera was very slow. The sedimentary record shows that uplift and subsidence here was episodic, with low amplitudes and durations. This rules out large-scale, long-term, Cenozoic accretion, trench-parallel tilting, and tectonic erosion processes in the forearc. The Main Andean Cordillera shows markedly greater long-term exhumation rates than the Coastal Cordillera and, at ~39°S, a steep exhumation gradient. To the south, long-term average Pliocene to Recent exhumation rates of ~1 to ~2 mm/a in the Liquiñe area (39°45′S) are almost an order of magnitude more rapid than average Paleogene to Recent exhumation near Lonquimay (38°30′S) and farther north. While no imprint of the intra-arc Liquiñe-Ofqui Fault Zone on the exhumation pattern is evident, long-term exhumation rates decrease from the crest of the Andes toward the western foothills. Exhumation gradients correlate with climatic gradients, suggesting a causal link to the variable intensity of late Miocene to Pleistocene glacial erosion.  相似文献   

20.
Kenai, located on the west coast of the Kenai Peninsula, Alaska, subsided during the great earthquake of AD 1964. Regional land subsidence is recorded within the estuarine stratigraphy as peat overlain by tidal silt and clay. Reconstructions using quantitative diatom transfer functions estimate co‐seismic subsidence (relative sea‐level rise) between 0.28±0.28 m and 0.70±0.28 m followed by rapid post‐seismic recovery. Stratigraphy records an earlier co‐seismic event as a second peat‐silt couplet, dated to ~1500–1400 cal. yr BP with 1.14±0.28 m subsidence. Two decimetre‐scale relative sea‐level rises are more likely the result of glacio‐isostatic responses to late Holocene and Little Ice Age glacier expansions rather than to co‐seismic subsidence during great earthquakes. Comparison with other sites around Cook Inlet, at Girdwood and Ocean View, helps in constructing regional patterns of land‐level change associated with three great earthquakes, AD 1964, ~950–850 cal. yr BP and ~1500–1400 cal. yr BP. Each earthquake has a different spatial pattern of co‐seismic subsidence which indicates that assessment of seismic hazard in southern Alaska requires an understanding of multiple great earthquakes, not only the most recent. All three earthquakes show a pre‐seismic phase of gradual land subsidence that marked the end of relative land uplift caused by inter‐seismic strain accumulation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号