首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A complex of Precambrian chlorite-micaschists in the Moravian zone of the Bohemian massif contains up to 20 vol.% of fine grained magnetite and ilmenite. The rocks are characterized by high Fe, Ti and V contents (averages: 13 wt %, 1.6 wt% and 200 ppm), showing a strong positive correlation. SiO2 contents amount to 60 wt.%; together with relatively high K and low Ca and Mg values this is considered to be evidence for metapelites and -psammites. Relictic sedimentary layers of magnetite and chlorite, as well as relictic titano-magnetites were occasionally observed. Magnetite contains up to 0.5 wt.% V2O3 and Cr2O3 each, and up to 1.2 wt.% TiO2. Ilmenites show up to 5 wt.% MnO.The unusual bulk chemistry of the metasediments, the relictic layered structures and the composition of the magnetites (in relation to magnetites of different genesis) suggest a clastic sedimentary origin of the ore minerals, eroded probably from some basic magmatic complex. Hence a Precambrian black-sand is proposed as a precursor rock and compared with different blacksands known from the literature.
Präkambrische Blacksands als Precursors von Ilmenit führenden Chlorit-Glimmerschie fern der Böhmischen Masse, österreich
Zusammenfassung Eine Serie prdkambrischer Chlorit-Glimmerschiefer im Moravikum der Böhmischen Masse enthält bis zu 20 Vol.% feinkörnigen Magnetit und Ilmenit. Die Gesteine sind durch hohe Gehalte an Fe, Ti and V (durchschnittlich 13 Gew.%, 1.6 Gew.% und 200 ppm), die cine starke positive Korrelation untereinander aufweisen, charakterisiert. Die SiO2-Gehalte betragen 60 Gew.%; dies wird, gemeinsam mit relativ hohen K- und niedrigen Ca- und Mg-Werten, als Hinweis auf Metapelite und -psammite angesehen. Gelegentlich wurden reliktische Lagen von Magnetit und Chlorit, wie auch reliktische Titano-Magnetite beobachtet. Der Magnetit enthält bis zu jeweils 0.5 Gew.% V2O3 und Cr2O3, und bis zu t.2 Gew.% TiO, Die Ilmenite zeigen bis zu 5 Gew.% MnO.Die ungewöhnliche Gesamtzusammensetzung der Metasedimente, die reliktisch gebänderten Strukturen und die Zusammensetzung der Magnetite (verglichen mit Magnetiten verschiedenster Genese) legen einen klastisch-sedimentären Ursprung der, wahrscheinlich von einem basischen Magmatit abgetragenen, Erzminerale nahe. Folglich wird der Einfluß eines präkambrischen Blacksands im Ausgangsgestein vorgeschlagen und mit unterschiedlichen Blacksands aus der Literatur verglichen.


With 5 Figures  相似文献   

2.
Summary The magnetite-apatite deposits of Hamadan and Gole Gohar situated in the Sanandaj-Sirjan zone of Iran about 1200 km apart, show striking mineralogical and textural similarities. The orebodies are of magmatic origin and have intruded as ore magmas.The magnetite-apatite deposits are associated with ultramafic, calcalkaline and other rocks with a strong carbonate enrichment (magnesite, dolomite, ankerite, and calcite), more pronounced in Hamadan. Characteristics supporting the association with carbonatite are: multiple carbonate generations with differing compositions, breccias healed by carbonate, comb-texture of carbonate, amygdales of dolomite, the stable isotope composition of carbonate; metasomatic alteration, fenitization and carbonatization of the associated rocks; the occurrence of apatite, fluorite, phlogopite, valleriite and baddeleyite. An ultramafic environment is indicated by the exclusively Mg-rich nature of abundant chlorite and other Mg-rich minerals (e.g. phlogopite, brucite, forsterite and chondrodite). Hornblendite (type 1) consisting of Ca-rich and alkaline-bearing amphibole with minor phlogopite, apatite, and tourmaline (Gole Gohar) is the chief alkaline rock type. Hornblendite (type II) (fiole Gohar and Hamadan) is predominated by actinolite which may contain minor concentrations of sodium and originated from pyroxenite by late stage supereritical solutions. Other rocks are flow-textured hornblendite (type III) which contains plagioclase and biotite (Hamadan) and rocks which are strongly metasomatically altered. These are epidotisized diorite (Hamadan) and probably peridotite (fiole Gohar) which is chloritisized. The associated metamorphic rocks (gneiss, amphibolite and marble) belong to the Precambrian basement of the Sanandaj-Sirjan zone.Magnetite carries many inclusions such as apatite, amphiboles, chlorite, albite, carbonates, brucite and spinel exsolutions. Additionally, zoned magnetite crystals occur in which the core consists of a chromite-hercynite-magnetite solid solution which formed at a temperature higher than 900°C. The orebodies and the associated rocks (apart from those which belong to the Precambrian basement) do not show metamorphic textures. Magnetite crystallized from a melt and forms foam texture which resulted from triplejunction configuration. Brecciation of compact magnetite is common.A characteristic feature of the Iranian deposits is the presence of high P2O5 and volatile-concentrations (H2O, F, CO, and B2O3) in the original melt. These components are consistent with its pronounced capacity to differentiate and the separation of the mobile magnetite-apatite melt. Indications of this are cumulus textures (forsterite in magnetite, pyroxene in pyrrhotite, magnetite in pyrrhotite and vice versa).The iron deposits in the Bafq district of the central-east Iranian microplate probably have the saine origin. Among the deposits, drill core samples of the North Anomaly are composed of magnetite, actinolite, chlorite, calcite, apatite, and other minerals.
Magnetit-Apatitlagerstätten (Kiruna-Typ) entlang der Sanandaj-Sirjan Zone und im Bafq Gebiet, Iran und ihre Beziehung zu ultramafischen, alkalischen und karbonatitischen Gesteinen
Zusammenfassung Die iranischen Apatit-führenden Magnetitlagerstätten von Gole Gohar und Hamadan liegen in der Sanandaj-Sirjan Zone und sind etwa 1200 km von einander entfernt. Sie zeigen auffällige mineralogische und texturelle Gemeinsamkeiten. Die Erzkörper sind magmatischen Ursprungs und als Erzmagmen intrudiert.Im Magnetit eingeschlossen finden sich neben Apatit weitere Mineralien wie z. B. Amphibole, Chlorite, Serpentin, Albit, Karbonate, Fluorit, Sulfide (Pyrrhotin mit Pentlandit, Chalkopyrit und Sphalerit) und in orientierter Verwachsung mit Magnetit Brucit und Spinell sowie zonar aufgebaute Spinelle, deren Kern aus einem ChromitHercynit-Magnetit-Mischkristall besteht, der oberhalb von 900°C synthetisiert werden kann.Außer in Gesteinen, die zum präkambrischen Basement gehören (wie z. B. Gneis, Amphibolit und Marmor), fehlen in den Erzkörpern und den begleitenden Gesteinen metamorphe Gefügemerkmale.Für die iranischen Erzkörper sind der hohe P2O5-Gehalt (in Form von Apatit, Holtedahlit, Rockbridgeit und Lipscombit) sowie erhöhte Gehalte an Fluiden (H2O, F, CO2, und B2O3) charakteristisch. Diese Bestandteile, die mineralisiert in Form von Wasserbzw. Fluor-haltigen Mineralien (z. B. Chlorit, Amphibole, Brucit und Apatit), Fluoriden (Fluorit), Karbonaten (Magnesit, Dolomit, Ankerit und Calcit) und Boraten (Turmalin, Asharit und Vonsenit) vorliegen, sind vermutlich die Voraussetzung dafür, daß ungewöhnlich stark ausgeprägte Differentiationsvorgänge auftreten können. Diese führen zur Bildung und schließlich zur Abtrennung einer mobilen Magnetit schmelze von einem Magmenkörper unbekannter Zusammensetzung. Hinweise für eine derartige Trennung sind Kumulusgefüge von Forsterit im Magnetit, Pyroxen im Pyrrhotin, Magnetit im Pyrrhotin und umgekehrt.Die Erzkörper sind mit ultramafischen, calcalkalischen und anderen, meist stark metasomatisch alterierten Gesteinen sowie Karbonaten assoziiert. Hinweise, die für Karbonate auf einen karbonatitischen Ursprung schließen lassen, sind: verschiedene Karbonatgenerationen mit unterschiedlicher chemischer Zusammensetzung, Verheilung von brecciiertem Magnetit bzw. Nebengestein mit Karbonaten, Wabengefüge der Karbonate, Dolomit-Amygdales und die Zusammensetzung der stabilen Isotope von Karbonaten, metasomatische Alterationen, Fenitisierung und Karbonatisierung der Nebengesteine; das Auftreten von Apatit, Fluorit, Phlogopit, Valleriit und Baddeleyit.Ein ultramalisches environment wird durch häufig auftretende Chlorite angezeigt sowie durch andere vorwiegend Mg-reiche Mineralien wie z. B. Phlogopit, Brucit, Forsterit und Chondrodite. Hornblendite treten in drei Typen auf: Typ 1 besteht aus Ca-reichen, Alkali-führenden Hornblenden, Typ 11 aus Aktinolith, während Typ 111, für den ein Fließgefüge charakteristisch ist, ebenfalls aus Ca-reichen und Alkali-führenden Hornblenden besteht. Aktinolith-Hornblendit wird auf durch überkritische Lösungen veränderte Pyroxenite zurückgeführt, während Diorite epidotisiert und vermutlich ehemalige Peridotite chloritisiert oder auch teilweise serpentinisiert sind.Die Eisenerzlagerstätten des Bafq Distrikts der Zentraliranischen Mikroplate haben einen vergleichbaren Ursprung und sind daher ebenfalls dem Kiruna Typ zuzuordnen. Erstmals untersuchtes Bohrkernmaterial dieses Gebietes (von der Nord-Anomalie stammend) besteht aus vorwiegend Magnetit, Aktinolith, Chlorit, Calcit und Apatit.


With 11 Figures  相似文献   

3.
Summary Native Ru has been found in several samples of tantalum carbide collected in the Urals before 1914. Ru crystallized with a rectangular habit but now has hexagonal symmetry. The chemical composition is Ru-Ta alloy (Ta = 7.56 ± 0.7 wt%) and it is entirely devoid of other PGEs. This unusual composition, the fact that PGMs are not found intergrown with the Ru, and that magnetite and ilmenite, rather than chromite, are found among the associated placer minerals, indicates that the petrological affinity of the Ru is pyroxenitic, rather than dunitic or peridotitic. It is suggested that pure native Ru is more widespread than hitherto observed and that identification may be impeded by specific detection difficulties which were met with during this study (i.e., extremely small sizes, strong adhesive properties, unfavourable optical properties).
Gediegenes Ruthenium in Tantalcarbid-Konzentraten aus dem Ural, USSR
Zusammenfassung Gediegenes Ruthenium wurde in einigen Tantalcarbidproben, die vor 1914 im Ural aufgesammelt wurden, gefunden. Ruthenium kristallisierte mit rechteckigem Habitus, zeigt nun aber hexagonale Symmetrie. Es handelt sich um eine Ru-Ta Legierung (Ta = 7.56 ±0.7 Gew.%). Andere PGE's fehlen vollständig. Diese ungewöhnliche chemische Zusammensetzung, die Tatsache, daß andere Platingruppenminerale nicht mit Ruthenium verwachsen vorkommen und das Vorherrschen von Magnetit und Ilmenit, gegenüber Chromit, in den begleitenden Seifenmineralen, weisen darauf hin, daß Ruthenium eher von pyroxenitischen als von dunitischen oder peridotitischen Gesteinen stammt. Vermutlich ist gediegenes Ruthenium weiter verbreitet als bisher beobachtet. Es wurde aber wegen seiner schwierigen Bestimmung (extrem kleine Korngröße, starke adhäsive Eigenschaften, ungünstige optische Eigenschaften) bisher selten beschrieben.


With 5 Figures  相似文献   

4.
Zusammenfassung Schichtgebundene Mn-Anreicherungen sind in den Nördlichen Kalkalpen nahezu ausschließlich auf feinschichtige Tonmergelsteine (Manganschiefer) des oberen Toarcian und unter-bis mitteljurassische Rotkalke beschränkt.Die primären Mn-Minerale in der Manganschiefer-Fazies sind Mischkarbonate der Reihe CaCO3–MnCO3–FeCO3 und geringe Mengen von Braunit und Pyrolusit. Die Fe-Mineralisation charakterisiert eine Faziesreihe, die von schwach oxidierenden Ablagerungsbedingungen (Goethit, Hämatit) an der Basis der Mn-führenden Serie, zu reduzierenden (Siderit, Chamosit, Pyrit) führt. In den Rotkalken sind Pyrolusit und Goethit bzw. Hämatit in calcitreichen Knollen und Krusten konzentriert.Die chemische Zusammensetzung der Mn-reichen Gesteine ist bei hohen Ca- und SiO2-Gehalten von korrelierbaren Mn- und Fe-Anteilen in gleicher Größenordnung bestimmt. Gegenüber der durchschnittlichen Zusammensetzung faziell vergleichbarer Schwarz- und Tonschiefer und marin-sedimentärer Mn-bzw. Fe-Lagerstätten sind auch die Spurenelement-Gehalte deutlich erhöht und zumindest im Falle des Co mit den Mn-Gehalten korreliert.Nach ihrer mineralogischen und chemischen Zusammensetzung sind die Manganschiefer zu den vulkanogen-sedimentären Lagerstätten zu rechnen. Unmittelbare Hinweise auf vulkanische Aktivität im oberen Lias sind in Form von Seladonit-führenden Tuffen, die mit Mn-Karbonaten wechsellagern, erstmals in den Nördlichen Kalkalpen aufgefunden worden.
Distribution and genetic significance of jurassic manganese deposits in the Northern Limestone Alps
Summary In the Northern Limestone Alps strata-bound deposits of manganese are concentrated in laminated marls (manganese shales) of the lower Toarcian and lower to upper Jurassic red limestones.Carbonates of the system CaCO3–MnCO3–FeCO3, and minor quantities of braunite and pyrolusite are the prevailing primary manganese minerals. Characteristically they are associated with sedimentary iron minerals (hematite, goethite, Mn-siderite, chamosite, pyrite) showing a vertical sequence leading from weakly oxidzing to anaerobic conditions. In the red limestones pyrolusite and goethite are concentrated in carbonate-rich nodules and crusts. The manganese shale facies besides its elevated contents of Ca and SiO2 is characterized by Mn and Fe values which are closely correlated. In contrast to the average composition of comparable black shale and normal marine Mn and Fe deposits the trace element contents, partly correlated with manganese, are raised, as well.According to their mineralogical and chemical composition the manganese shales must be classed with volcanogenic sedimentary deposits. Volcanic activity during manganese deposition in the Northern Limestone Alps could be proved for the first time by celadonite-bearing tuffaceous layers in manganese carbonate sediments.


Mit 8 Abbildungen  相似文献   

5.
Zusammenfassung Ausgeprägte Wechselbeziehungen existieren zwischen zahlreichen Erzen und den sie umhüllenden Gesteinen. Zum Beispiel sind sulfidische Eisen-Nickel-Kupfeterze fast ausschließlich an basische Gesteine gebunden, wie Norite, während Molybdänsulfidlagerstätten, oder auch Blei-Zink-Vererzungen, in sauren Gesteinen, etwa Graniten und Monzoniten, anzutreffen sind. Experimentelle Untersuchungen an entsprechenden silikatisch-sulfidischen Stoff-systemen zeigen in augenfälliger Weise eine weitgehende Unmischbarkeit im Schmelzfluß. Die Löslichkeit von Sulfiden in Silikatschmelzen ist gering selbst bei niedriger Sauerstoffugazität und nimmt mit steigender f02 noch weiter ab. Zufuhr von Schwefel zu einer homogenen Schmelze noritischer Zusammensetzung, mit kleinen Nickel- und Kupfergehalten, führt zur Bildung einer sulfidisch-oxidischen Schmelze, die mit der Silikatschmelze koexistiert. Die Silikatschmelze puffert die Zusammensetzung der sulfidisch-oxidischen Schmelze, welche bei der Abkühlung zu einem Gemisch aus Magnetit und monosulfidischen Mischkristallen, (Fe, Ni, Cu) 1–x S, kristallisiert. Bei weiterer Temperaturerniedrigung zerfällt die Mischkristallphase zu Pyrrhotin, Kupferkies und Pentlandit, gemäß der charakteristischen Erzparagenese vom Typus Sudbury. Bereiche von miteinander unmischbaren Schmelzen existieren auch in Systemen, welche granitische oder monzonitische und auch sulfidische Komponenten beinhalten. Reaktionen zwischen Schwefeldampf und silikatischen Mineralien führen zur Bildung von Sulfiden und Oxiden, welche gewöhnlich in metamorphen Gesteinen zu beobachten sind.
Pronounced correlations exist between many ores and the rock types in which they occur. For instance, iron-nickel-copper sulfide ores are almost exclusively located in mafic rocks, such as norites and molybdenum sulfide deposits and vein-type lead-zinc sulfide deposits occur in silicic rocks, such as granites and monzonites. Experimental investigations of pertinent systems containing sulfide as well as silicate components have demonstrated the presence of wide fields of liquid immiscibility. The solubilities of sulfides in liquid silicates are low (<1000 ppm) even at low oxygen fugacities and diminish further with increase in f02. Addition of sulfur to homogeneous noritic-type liquid which contains small amounts of nickel and copper produces a sulfide-oxide liquid which coexists with the silicate liquid. The silicate liquid buffers the composition of the sulfide-oxide liquid. The latter crystallizes on cooling to a mixture of magnetite and a (Fe, Ni, Cu)1–x S solid solution wich in turn decomposes to the pyrrhotite, chalcopyrite, pentlandite assemblages characteristic of Sudbury-type deposits. Liquid immiscibility fields containing coexisting silicate and sulfide-oxide liquids exist also in systems containing granitic or monzonitic as well as the sulfide components. Reactions between sulfur vapor and silicate minerals produce sulfides and oxides commonly observed in metamorphosed rocks.
  相似文献   

6.
Zusammenfassung Die subvulkanisch-hydrothermalen Erzvorkommen der Sierra de Cartagena in Spanien enthalten neben Siderit, Quarz, Magnetit und sulfidischen Erzmineralien in großer Menge eine feinkörnig-dichte, grüne Substanz, die makroskopisch chamo sitischen Erzen sehr ähnlich ist. Durch chemische, röntgenographische und optische Untersuchungen konnte nachgewiesen werden, daß es sich um ein Mineral mit Zweischichtanordnung (diphormische Familie = Gruppe der 7 Å-Chlorite) handelt.Das Mineral hat einen hohen Si- und Fe2+-Gehalt bei niedrigem Al-Gehalt. Da die Si-Ionen restlos zur Besetzung der Tetraederplätze ausreichen, muß angenommen werden, daß die Al-Ionen Oktaederplätze besetzen. Damit ergibt sich zwangsläufig eine Zuordnung zur Serpentingruppe (Silikatgruppe der 7 Å-Chlorite). Die Oktaederplätze sind bevorzugt von Fe2+, untergeordnet von Fe3+, Al; Mg, Mn und Ca besetzt. Die 3/3-Besetzung in den Oktaederschichten ist beinahe erreicht. Die Alkalien haben vermutlich Zwischenschichtbesetzung oder besetzen Oktaederplätze. Das Cartagena-Mineral hat die Formel:Es unterscheidet sich von dem reinen Fe-Serpentin (Greenalit) im wesentlichen durch seinen Al-Gehalt und das Vorhandensein von Alkalien.Die Entstehungsbedingungen sind denen des Mg-Serpentins sehr ähnlich, der durch die Umwandlung von Dolomit durch heiße, SiO2-haltige Lösungen gebildet werden kann. Der Cartagena-Fe-Serpentin entstand durch hydrothermale Umwandlung von Siderit.
The subvolcanic-hydrothermal ore deposits of the Sierra de Cartagena in Spain contain a fine grained, green mineral beside siderite, quartz, magnetite and sulphide ore minerals. Macroscopically the mineral looks like chamositic ore. The material was investigated by chemical, X-ray and optical methods. It belonges to the septechlorites.The mineral has a high Si- and Fee+-content, and a low Al-content. It can be supposed, that the Al ions occupy octahedral positions, because the Si ions suffice for the occupation of the tetrahedral positions. Hence the mineral is necessarily allocated to the serpentine group. The octahedral positions are mainly occupied by Fe2+, subordinately by Fe3+, Al, Mg, Mn and Ca. Na and K ions occupy positions between the layers or octahedral positions. The Cartagena mineral has the following formula:It differs from the pure Fe-serpentine (greenalite) by the presence of Al and alkalies.The genesis of the mineral is similar to the genesis of Mg-serpentine, which can be originated from dolomite hydrothermally by hot SiO2 containing solutions. The Cartagena Fe-serpentine is formed by hydrothermal transformation of siderite.


Auszugsweise vorgetragen während der DMG-Tagung 1961 in Tübingen.  相似文献   

7.
Magnetite coexisting with sulphides from an iron ore formation in northern Sweden has been investigated with micro-probe and X-ray methods. The Mg/Mg + Fe ratio in magnetite can be correlated with the presence or absence of coexisting pyrite, indicating varying sulphur pressure in the rocks. Sulphurization of magnetite is assumed to be responsible for the introduction of Mg into the magnetite structure.
Zusammenfassung Magnetit aus einem Eisenerz Nordschwedens, der zusammen mit Eisensulfiden vorkommt, wurde mittels Elektronen-Mikrosonde und Röntgenbeugung untersucht. Das Mg/Mg + Fe Verhältnis des Magnetits wurde zu der Anwesenheit oder dem Fehlen von Pyrit in Beziehung gesetzt. Es zeigt sich, daß unterschiedliche Schwefeldampfdrucke in den Gesteinen geherrscht haben müssen. Die Sulfidisierung des Magnetits wird für den Einbau des Mg in die Magnetit-Struktur verantwortlich gemacht.
  相似文献   

8.
Summary Iron-formations occur as massive to compositionally layered, Fe oxide-rich, concordant bodies in the Palaeoproterozoic Willyama Supergroup of the Olary Domain, South Australia. They have constitutional similarities to those occurring in the neighbouring Broken Hill Domain. The most abundant iron-formations are in the Quartzofeldspathic Suite and comprise magnetite-quartz assemblages (± hematite, barite, actinolite, apatite). Hematite, magnetite, albite, quartz, Ca(Na) amphibole(s), CaNaFe clinopyroxene and andraditic garnet are major constituents of rare calc-silicate iron-formations in the Bimba and Calcsilicate Suites, whereas magnetite, quartz, almandine-spessartine, manganoan fayalite, manganoan grunerite and apatite form manganiferous iron-formations in the Pelite Suite. The pronounced differences in mineralogy of the three iron-formation types are the result of regional metamorphism of diverse hydrothermal precipitates with variable elastic components, together with the local effects of high-temperature metasomatic alteration. Metasomatic fluids were produced as a result of devolatilisation of the evaporite-bearing volcanosedimentary sequence, during and following amphibolite grade metamorphism and deformation, which led to localised and regional-scale hydrothermal alteration. In places, there was extensive metasomatic reconstitution (veining, brecciation, replacement) of iron-formations and associated rocks, caused by high-temperature (350°–650°C), oxidising, saline fluids. The resulting epigenetic ironstones are dominated by magnetite-hematite-quartz with minor sulfides and display enrichment in Fe, Ti, Cu, Au, Sc, U, V, Y, Zn and HREE relative to parental iron-formations.
Eisenformationen und epigenetische Eisensteine in der Paläoproterozoischen Willyama Supergroup, Olary Domäne, Südaustralien
Zusammenfassung Eisenformationen kommen als massige bis in der Zusammensetzung geschichtete, Eisenoxidreiche, konkordante Körper in der paläoproterozoischen Willyama Supergroup der Olary Domäne, Südaustralien, vor. Sie haben konstitutionelle Ähnlichkeiten mit Vorkommen in der benachbarten Broken Hill Domäne. Die häufigsten Eisenformationen befinden sich in der Quartzofeldspathic Suite and bestehen aus Magnetit und Quarz (± Hämatit, Baryt, Aktinolit, Apatit). Hämatit, Magnetit, Albit, Quarz, Ca(Na) Amphibol(e), CaNaFe Klinopyroxen und andraditischer Granat sind Hauptbestandteile von seltenen Kalksilikat-Eisenformationen in den Bimba und Calcsilicate Suites, während Magnetit, Quartz, Almandin-Spessartin, manganhaltiger Fayalit, manganhaltiger Grunerit und Apatit manganhaltige Eisenformationen in der Pelite Suite bilden. Die ausgeprägten Unterschiede in der Mineralogie der drei Typen von Eisenformationen sind durch Regionalmetamorphose von diversen hydrothermalen Ausfällungen mit variablen klastischen Komponenten verursacht worden, zusammen mit lokalen Wirkungen einer hock-Temperatur metasomatischen Alteration. Metasomatische Fluide wurden während und nach der Amphibolitmetamorphose und Deformation durch Devolatilisation der evaporithaltigen vulkanosedimentären Abfolge produziert, die sowohl zu lokaler, wie auch zu weiträumiger hydrothermaler Alteration führten. Örtlich kam es zu umfangreicher metasomatischer Rekonstitution (Gangbildung, Brekkzierung, Verdrängung) von Eisenformationen und assoziierten Gesteinen verursacht durch hoch-Temperatur (350°–650°C), oxidierte, saline Fluide. Die resultierenden epigenetischen Eisensteine bestehen hauptsächlich aus Magnetit, Hämatit, und Quarz mit Sulfiden und weisen eine Anreicherung in Fe, Ti, Cu, Au, Sc, U, V, Y, Zu und SREE relativ gegenüber den ursprünglichen Eisenformationen auf.
  相似文献   

9.
Mineralogy, size distribution of grains, and variation in chemical composition of chromitite occurring in four successive layers in serpentinite, near Kalrangi (85°45 E:21°0 N), Cuttack district, Orissa, have been studied to decipher the mode of formation of the ore bodies. The parent rocks are dunite-peridotite with olivine, olivine-enstatite and minor chromite, the minerals being completely altered to serpentine or talc-serpentine near the surface. The ore bodies are of bedded nature, composed entirely of chromite, and are confined to the top of the dunite-peridotite sheet. Grain-size variation of chromite in different layers in the vertical section shows straight line character which suggests accumulation of chromite grains by the process of magmatic sedimentation. The normal distribution of size variation of the chromite grains probably means that they are the products of a single magmatic cycle. Cr2O3 and MgO in chromitite decrease and FeO and Al2O3 increase in the vertical direction, which is expected when chromite crystallize from an ultrabasic magma in an undisturbed condition. Ideas of repeated injection and convection currents are negated by the absence of rhythmic layering and cyclic repetition of ultrabasics and chromite.
Zusammenfassung Die Mineralogie, die Korngrößenverteilung und die Variation der chemischen Zusammensetzung der Chromititvorkommen in vier übereinanderliegenden Lagen im Serpentinit bei Kalrangi (85°45 E:21°0 N), Cuttack District, Orissa, wurden untersucht, um die Bildung der Erze zu verstehen. Die Muttergesteine sind Dunit-Peridotit mit Olivin, Olivin-Enstatit und wenig Chromit, wobei die Mineralien an der Oberfläche vollständig zu Serpentin oder Talk-Serpentinit verändert sind. Die Erzkörper sind geschichtet, bestehen fast völlig aus Chromit und sind auf den obersten Teil der Dunit-Peridotit-Platte beschränkt, die im Hangenden von präkambrischen Mahagiri-Quarziten einer itabiritischen Serie intrudiert ist. Die Korngrößenverteilung im Chromit in den verschiedenen Lagern des Profils zeigt geradlinigen Charakter, was auf die Anlagerung der Chromitkörner durch magmatische Sedimentation hinweist. Die lognormale Korngrößen-Häufigkeits-Verteilung der Chromitkörner spricht für einen einmaligen magmatischen Zyklus. Während Cr2O3 und MgO in den Chromititen systematisch nach oben abnehmen, nehmen FeO und Al2O3 zu, was zu erwarten ist, wenn die Chromitausscheidung in ungestörtem, ultramafischem Magma vor sich geht. Vorstellungen von wiederholten Injektionen und Konvektionsströmen sind zu widerlegen durch das Fehlen von rhythmischen Schichten und von zyklischen Wiederholungen der ultramafischen Gesteine und des Chromits.
  相似文献   

10.
Summary Quaternary calc-alkaline andesites erupted form three neighboring volcanoes along the Guatemalan volcanic front have mineralogic compositions and textures which show varying degrees of disequilibrium. Basaltic andesites and andesites (SiO2 % = 50–59), erupted from Atitlán volcano located nearer to the trench, have the lowest degree of disequilibrium. These lavas contain an anhydrous phenocryst assemblage of mildly bimodal plagioclase, olivine, augite opx, and magnetite. Orthopyroxene occurs at the expense of olivine with increasing whole rock SiO2. Most pyroxene phenocrysts show a trend of Fe enrichment.Andesites from Tolimán (SiO2% = 53–62) and San Pedro (Si02% = 54–67) volcanoes, located further away from the trench, show comparatively high and moderate degrees of disequilibrium, respectively. Tolimán andesites have bimodal plagioclase compositions and textures. Olivine persists with increasing whole rock Si02 and lacks clear modal relations with coexisting orthopyroxene and hornblende phenocrysts. When compared to Atitlán andesites, Toliman olivines are more forsteritic and pyroxenes contain higher proportions of Mg-rich rims, though normal zoned phenocrysts occur within the same rock. Tolimán andesite also have lower proportions of phenocrysts to microphenocrysts, more calcic plagioclase groundmass compositions, and higher modal phenocrystic magnetite. San Pedro andesites have disequilibrium assemblages similar to Tolimán andesites but are not as striking.Magma mixing is proposed as the dominant cause for observed disequilibrium. Disequilibrium features are preserved best in Tolimán and San Pedro andesites because inferred durations between mixing and eruption are shortest, and consequently, these mixed andesites more clearly record mafic and silicic endmember compositions. The mafic component is a relatively high temperature, high-Al basalt containing phenocrysts of Mg-rich olivine (Fo = 78–80), calcic plagioclase (An 70–80), augite and titanomagnetite. The silicic component contains quartz, sodic plagioclase (An 40–50), Fe-rich orthopyroxene and titanomagnetite. Short durations between mixing and eruption produce petrographic features which, in part, mimic the effects of increasing PH20 in a fractionating magma. Inferred mixing durations for Atitlánn andesites are longer and involve a less-silicic composition. The intervolcano disequilibrium relations suggest that as Si02 in a silicic endmember increases, the duration and efficiency of mixing decreases.
Mineral-Reaktionen und Magma-Mixing in Kalk-Alkali-Andesiten vom Atitlan See, Guatemala
Zusammenfassung Quartäre Kalk-Alkali-Andesite von drei benachbarten Vulkanen aus dem Guatemala Vulkan-Gürtel zeigen anhand ihrer mineralogischen Zusammensetzung und ihrer Textur variierende Bedingungen des Ungleichgewichts. Basalt-Andesite und Andesite (SiO2% = 50–59), die aus dem dem Trench am nächsten gelegenen Vulkan Atitlan eruptierten, lassen den niedrigsten Grad an Ungleichgewicht erkennen. Diese Laven führen eine Phenokristall-Assoziation bestehend aus leicht bimodalem Plagioklas, Olivin, Augit, Orthopyroxen und Magnetit. In Gesteinen mit steigendem GesamtgesteinsSiO2, tritt Orthopyroxen auf Kosten des Olivins auf. Die meisten Pyroxene zeigen einen Trend zur Fe-Anreicherung. Andesite vom Toliman (Si02% = 53–62) und vom Vulkan San Pedro (Si02% = 54-67), die beide weiter vom Trench entfernt liegen, zeigen hohen bzw. mittleren Grad an Ungleichgewicht. Die Toliman Andesite sind durch bimodale Zusammensetzung der Plagioklase und Textur gekennzeichnet. Olivin bleibt auch bei steigendem SiO2-Gehalt bestehen, und zeigt hinsichlich seiner Zusammensetzung keine Verbindung mit koexistierenden Phenokristallen von Orthopyroxen und Hornblende. Im Vergleich zu den Atitlan Andesiten, weisen Toliman Olivine höheren Forsteritgehalt auf, die Pyroxene zeigen häufiger Mg-reiche Ränder, obwohl normal zonierte Phenokristalle auch im selben Gestein auftreten. Die Toliman Andesite sind durch ein kleineres Verhältnis von Phenokristalle/Mikrophenokristalle, höheren Ca-Gehalt der Matrix-Plagioklase und höheren Gehalt an Magnetit-Phenokristallen gekennzeichnet. Die San Pedro Andesite zeigen Ungleichgewichts-Paragenesen vergleichbar mit denen der Toliman Andesite, jedoch nicht so auffallend. Es ist zu vermuten, da\ Magma-Mixing vorwiegend für die UngleichgewichtsParagenesen verantwortlich ist. Die Toliman- und San Pedro Andesite zeigen die best erhaltenen Anzeichen für Ungleichgewicht, da vermutlich der Zeitraum zwischen Magma-Mixing und Eruption am kürzesten gewesen ist, weshalb diese Andesite die gemischten mafischen bzw. salischen Endglieder am besten widerspiegeln. Das mafische Endglied ist ein Al-reicher Hoch-Temperatur-Basalt, der sich aus Phenokristallen von Mg-reichem Olivin (Fo = 78–80), Ca-reichem Plagioklas (An 70–80), Fe-reichem Orthopyroxen und Titanomagnetit zusammensetzt. Das salische Endglied besteht aus Quarz, Na-reichem Plagioklas (An 40–50), Fe-reichem Orthopyroxen und Titanomagnetit. Aufgrund des kurzen Zeitabstandes zwischen Magma-Mixing und Eruption entstehen petrographische Strukturen, die den Effekt von steigendem PH20 in einem fraktionierenden Magma widerspiegeln. Es wird vermutet, da\ bei den Atitlan-Andesiten mehr Zeit zwischen Mixing und Eruption vergangen ist; dies manifestiert sich in einem geringeren Anteil der salischen Komponente. Die Zusammenhänge der Ungleichgewichts-Bedingungen innerhalb eines Vulkans lassen vermuten, daß die Dauer und Intensität des Mixing mit zunehmender salischer Komponente abnimmt.
  相似文献   

11.
Summary Upper amphibolite facies gneisses in the southern Indian Shield show local transformation into veins, clots and patches of orthopyroxene-bearing dry granulites (incipient charnockites). Depending upon the protolith composition, these desiccated zones are classified into ortho- and para-charnockites and have developed within rocks of distinct mineralogy and chemistry at different time intervals through the structurally-controlled influx of carbon dioxide-rich fluids. Our geochemical investigations at five critical quarry sections indicate that the incipient charnockites have undepleted chemistry and very low K/Rb values. In the paracharnockite localities, where granulite formation is characterized by consumption of garnet, biotite and quartz to produce orthopyroxene, loss of Rb and Ba and enrichment of Ti are observed. In contrast, the orthocharnockite localities show marked LILE enrichment with gain of K, Rb and Ba and loss of CaO, suggesting extensive replacement of plagioclase in the gneisses by K-feldspar in the charnockite through K-Na-Ca exchange reactions with influxing carbonic fluids. The marked depletion in Fe, Mg, Ti and P in these rocks correlates with progressive dissolution of hornblende, biotite, magnetite and accessory apatite. Our study indicates that gneiss to granulite transformation, even if on a local scale, is not an isochemical phenomenon, but attended by distinct element mobilities, although they are contrastingly different from the geochemical trends in some regional high grade terrains.
Geochemie von Gneiss-Granulit-Übergängen in den Incipient Charnockite Zonen von Süd-Indien
Zusammenfassung Gneise der oberen Amphibolit-Fazies im Südteil des Indischen Schildes zeigen lokal Umwandlungen in Adern, and unregelmäßigen Bereichen von orthopyroxen-führenden trockenen Granuliten (Incipient Charnockites). In Abhängigkeit von der Zusammensetzung des Ausgangsgesteins werden diese Zonen in Ortho- und Paracharnockite eingeteilt. Sie entwickelten sich in Gesteinen von charakteristischer mineralogischer und chemischer Zusammensetzung zu verschiedenen Zeit-Intervallen durch die tektonisch kontrollierte Zufuhr von kohlendioxid-reichen Fluiden. Unsere geochemischen Untersuchungen an fünf strategisch ausgewählten Steinbruchen zeigen, daß die Incipient Charnockite eine nicht verarmte chemische Zusammensetzung und sehr niedrige K/Rb Werte haben. In den Paracharnockit-Lokalitäten, wo Granulitbildung charakterisiert wird durch das Verschwinden von Granat, Biotit und Quartz, aus denen Orthopyroxene gebildet werden, ist Verlust von Rb und Ba und Anreicherung an Ti zu beobachten. Im Gegensatz dazu zeigen die Orthocharnockite eindeutige LILE Anreicherung mit Zunahme von K, Rb, und Ba und Verlust von Ca0. Dies weist auf extensiven Ersatz von Plagioklas in den Gneisen durch K-Feldspat in den Charnockiten durch K-Na-Ca Austausch-Reaktionen mit zugeführten C02-Fluiden hin. Die deutliche Verarmung an Fe, Mg, Ti und P in diesen Gesteinen wird mit zunehmender Auflösung von Hornblende, Biotit, Magnetit und akzessorischem Apatit erKlärt. Unsere Untersuchungen zeigen, daß die Gneis-Granulit Transformation auch im lokalen Maßstab nicht ein isochemisches Phänomen ist, sondern durch charakteristische Elementtransporte charakterisiert wird. Diese unterscheiden sich jedoch deutlich von den geochemischen Trends, die in einigen regional-metamorphen high grade terrains zu beobachten sind.[/p]
  相似文献   

12.
Summary Early Proterozoic ultrapotassic dikes, lava flows, and pyroclastic rocks of the Christopher Island Formation (CIF) erupted throughout an area 600 × 300 km within the Churchill Province of the Canadian Shield at 1.84 Ga. The rocks range from mafic lamprophyres (mg # 60; SiO2 47–54%, mean K2O/Na2O > 4) with phenocrysts of phlogopite + diopside + apatite ± olivine ± magnetite, to phenocryst-poor felsic rocks and sanidine porphyries (SiO255–69%). All samples have high incompatible element contents and display large depletions of high field strength elements relative to K, Rb, Sr, Ba, and Th. The CIF has geochemical and petrographic characteristics of both minettes and lamproites, but overall most closely resembles young Mediterranean lamproites. Felsic rocks of the CIF were produced by crystal fractionation and crustal contamination of mafic ultrapotassic magma, and include both high-silica lamproites strongly enriched in Zr, U, and Th, and weakly potassic to sodic rocks of trachytic composition. Flows and feeder dikes have relatively homogeneous Nd, 1840 Ma (–6 to –11) but highly variable ES., 1840 Ma (–40 to + 100); samples classified as lamproites have higher average Sr. Dike samples have highly variable present-day Pb isotope compositions, ranging from moderately to strongly nonradiogenic. Geochemical and isotopic data are consistent with contributions from depleted Archean lithospheric mantle, and OIB-type convecting mantle, both metasomatized by subduction-related processes during the Early Proterozoic. The lithospheric mantle probably contained Archean enriched domains as well. Proterozoic enrichment may have accompanied shallow underplating of subducted oceanic lithosphere beneath the Churchill Province during amalgamation of the Laurentian supercontinent. There are strong analogies in isotopic composition, and interpreted source region history, between the CIF and lamproites and minettes of the Wyoming Province and western Greenland, which suggest the existence of a Laurentian ultrapotassic superprovince.
Geochemie und Entstehung der Proterozoischen ultrapotassischen Gesteine der Churchill Provinz, Kanada
Zusammenfassung Altproterozoische, ultrapotassische Gänge, Lavaströme und pyroklastische Gesteine der Christopher Island Formation (CIF), eruptierten in einem Gebiet von 600 × 300 km in der Churchill Provinz des Kanadischen Schildes vor 1.84 Ga. Die Zusammensetzung dieser Gesteine variiert von mafischen Lamprophyren (mg > 60; SiO2 = 47–54%, durchschnittliches K2O/Na2O > 4) mit Phänokristallent von Phlogopit + Diopsid + Apatit + Olivin + Magnetit, bis zu phänokristallarmen felsischen Gesteinen und Sanidinporphyren (SiO2 = 55–69%). Alle Proben zeigen hohe Gehalte an inkompatiblen Elementen und zeigen beträchtliche Verarmung an high field strength Elementen relativ zu K, Rb, Sr, Ba und Th. Die CIF hat geochemische und petrographische Eigenschaften sowohl von Minetten wie von Lamproiten, aber im allgemeinen ähnelt sie am stärksten jungen mediterranen Lamproiten. Felsische Gesteine der CIF wurden durch Fraktionierung und Krustenkontamination aus mafischen ultrapotassischen Magmen gebildet. Letztere umfassen sowohl siliziumreiche Lamproite, die deutlich an Zr, U und Th angereichert sind und schwach potassische bis sodische Gesteine von trachytischer Zusammensetzung. Lavenergüsse und zufuhrgänge zeigent ein relativ homogenes Nd, 1840 Ma (–6 bis –11) aber ein sehr variables Sr, 1840 Ma (-40 bis + 100); Proben die als Lamproite klassifiziert wurden, zeigent höhere durchschnittliche Sr-Werte. Proben von Gängen haben sehr variable Bleiisotopen-Zusammensetzungen, die von mäßig bis stark nichtradiogen variieren. Geochemische und Isotopendaten weisen auf Beiträge aus verarmtem archaischen lithosphärischen Mantel und aus konvektierendem OIB-Typ Mantel hin, die beide während des Alproterozoikums durch Subduktions-Vorgänge metasomatisiert wurden. Der lithosphärische Mantel enthielt wahrscheinlich auch angereicherte archaische Domänen. Proterozoische Anreicherungsvorgänge dürften seichtes Underplating subduzierter ozeanischer Lithosphäre unter der Churchill Provinz während der Amalgamation des laurentischen Superkontinentes begleitet haben. Es gibt starke Analogien in der Isotopenzusammensetzung und in der interpretierten Geschichte der Ursprungsregion, zwischen den CIF und Lamproiten und Minetten der Wyoming Provinz, und des westlichen Grönland. Diese weisen auf die Existenz einer laurentischen ultrapotassischen Superprovinz hin.


With 7 Figures  相似文献   

13.
On the basis of microscopic studies a new mode of formation of monoclinic pyrrhotite (from Norilsk) is proposed whereby the monoclinic polymorph formed through a leakage of solutions which, upon seepage along micro-fissures in an oxidizing environment, affected the hexagonal polymorph by carrying away a certain amount of iron. Experimental evidence is considered to be insufficient for using monoclinic pyrrhotite as a geologic thermometer; we only can say that it formed below 300° to 325°C. A similar interpretation is proposed for the formation of troilite and hexagonal pyrrhotite at Voronezh where troilite is replaced by hexagonal pyrrhotite and the process involves partial substitution of ferric for ferrous ions. Replacement during the hydrothermal stage of Cu-Ni ore deposition includes the following changes: pentlandite and chalcopyrite to mackinawite (Norilsk ores); cubanite and magnetite to valleriite. At Norilsk and Monchegorsk, valleriite and mackinawite were formed during late stages of serpentinization of the country rock. A relation between replacement effects in sulfide ore-bodies and serpentinization processes in basic and ultra-basic country rocks is shown to exist. The bearing of alterations involving olivine, secondary silicates, rutile, magnetite and the sulfides is considered.
Zusammenfassung Auf Grund mikroskopischer Studien wird eine neue Bildungsweise für den monoklinen Magnetkies von Norilsk vorgeschlagen: Er soll sich beim Durchsickern von Lösungen in Mikrospalten in einer oxidierenden Umgebung aus der hexagonalen Modifikation gebildet haben. Die Verwendung des monoklinen Magnetkieses als geologisches Thermometer auf Grund experimenteller Resultate ist unzulänglich; wir können nur sagen, daß er sich unter 300°–325°C bildete. Eine ähnliche Interpretation wird vorgeschlagen für die Bildung von Troilit und hexagonalem Magnetkies in Voronezh, wo hexagonaler Magnetkies an die Stelle von Troilit tritt und der Vorgang eine partielle Ablösung von zweiwertigem Eisen durch dreiwertiges Eisen nach sich zieht. Folgende Umwandlungen fanden während des hydrothermalen Stadiums der Cu-Ni-Erzablagerung statt: Pentlandit und Chalcopyrit zu Mackinawit (Norilsk Erze); Cubanit und Magnetit zu Valleriit. In Norilsk und Monchegorsk bildeten sich Valleriit und Mackinawit während der letzten Phasen der Serpentinbildung in Nebengesteinen. Es wird bewiesen, daß eine Verbindung besteht zwischen den Umwandlungen der sulfidischen Erzkörper und der Serpentinisierung der basischen und ultra-basischen Nebengesteine. Auch werden Wirkung und Ausmaß der Umwandlungen von Olivin, sekundären Silikaten, Rutil, Magnetit und Sulfiden untersucht.
  相似文献   

14.
Summary A variety of LREE-rich minerals are associated with late magmatic-stage platinum-group element (PGE) mineralization [(PGE + Au) = 300 ppb) in unsheared clinopyroxenite and gabbro proximal to sheared amphibolite in the Boston Creek Flow (BCF) Al-depleted komatiitic basalt, Archean Abitibi greenstone belt, Ontario. The LREE-rich minerals are LREE-rich apatite (La2O3 + Ce2O3 1.5 wt%), LREE-rich epidote (Ce, La: 12 wt% REE), and bastnaesite [(Ce,La)(CO3)(F,OH)]. The LREE-rich apatite forms rare zones in altered apatite grains and discrete, multifaceted micrometric-sized grains. LREE-rich epidote forms large (up to 100 ,m), compositionally zones grains in amphibolitized plagioclase. Bastnaesite forms areas marginal to and veinlets within the LREE-rich epidote and analyses are characterized by up to 0.4 wt% Cl. Compared to other unsheared rocks from the flow, the REE-rich mineral host rocks contain: intermediate REE contents (REE = 38 to 71 ppm), Ba contents (up to 240 ppm), and U/Th values (0.3 to 7.2); variable Cl contents (21 to 60 ppm); and slightly elevated 34S values (up to 3.3). In contrast, the sheared amphibolite is characterized by low contents of REE (REE = 25 ppm), Cl (15 ppm), Ba (20 ppm), U (0.5 ppm), and Th (0.4 ppm), and a distinctive chondrite-normalized whole-rock REE pattern profile [(La/Sm)n = <2 and (Tb/Yb)n = < 1).The restricted occurrence, textures and chemical compositions of the LREE-rich minerals are interpreted as the result of mobilization and localized concentration of the LREE by hydrothermal fluids during greenschist facies contact metamorphism. LREE-rich epidote represents LREE redistribution accompanying the breakdown of plagioclase during abnormally intense amphibolitization and shear deformation within the flow at the peak of greenschist facies contact metamorphism. LREE-rich apatite and bastnaesite represent LREE mobilization and very localized reprecipitation during later stage, retrogressive amphibolitization. The low chlorine contents of the LREE-rich minerals and their host rocks suggest that complexing with Cl was only of minor importance in the concentration of LREE.The spatial association of the LREE-rich minerals with the PGE mineralization reflects concentration of shear deformation and amphibolitization at this stratigraphic level within the flow. The attendant hydrothermal fluid activity induced limited mobilization and reconcentration of PGE in veinlets and fractures within the mineralization. The low Cl suggests that complexing with Cl was not of importance in the PGE mobilization, nor in the late magmatic-stage mineralization process.
Seltene Erd-Minerale in Assoziation mit Platinvererzung im Archaischen Boston Creek Flow, Ontario
Zusammenfassung Verschiedene LSEE-reiche Minerale kommen zusammen mit spätmagmatischer Platinvererzung (PGE + Au = 300 ppb) in Klinopyroxeniten und Gabbro, in engster Nachbarschaft mit zerschertem Amphibolit im Al-verarmten, komatiitischen Basalt des Boston Creek Flow (BCF), im archaischen Abitibi Grünstein-Gürtel, Ontario, vor. Die LSEE- reichen Minerale sind LSEE-reicher Apatit (La2O3 + Ce2O3 > 1.5 Gew.%), LSEE-reicher Epidot (Ce, La: 12 Gew.% SEE), und Bastnaesit ((Ce, La) (CO3)(F, OH)). Der LSEE-reiche Apatit bildet Zonen in umgewandelten Apatitkörnern und auch individuelle, flächenreiche Körner, die einige Mikron groß sind. LSEE-reicher Epidot bildet große (bis zu 100 m) Körner mit zonierter Zusammensetzung in amphibolitisierten Plagioklasen. Bastnaesit bildet randliche Bereiche von, und Gängchen in LSEE-reichem Epidot. Analysen zeigen bis zu 0.4 Gew.%. Cl. Verglichen mit anderen unzerscherten Gesteinen aus dem BCF, enthalten die Wirtsgesteine der SEE-reichen Minerale: intermediäre SEE-Gehalte (SEE = 38 bis 71 ppm), Ba-Gehalte von bis zu 240 ppm und U/Th-Werte von 0.3 bis 7.2. Wechselnde Cl-Gehalte (21 bis 60 ppm) und etwas erhöhte 34S-Werte (bis zu 3.3). Im Gegensatz dazu zeigt der zerscherte Amphibolit niedrige Gehalte von SEE (SSE = 25 ppm), Cl (15 ppm), Ba (20 ppm), U(0.5 ppm), und Th (0.4 ppm), sowie charakteristische Chondrit-normalisierte SEE-Verteilungsmuster ((La/Sm)n = <2 und (Tb/Yb)n = < 1).Das beschränkte Vorkommen, die Texturen und die chemische Zusammensetzung der LSEE-reichen Minerale werden als Ergebnis der Mobilisierung und örtlichen Konzentration von LSEE durch hydrothermale Fluide während einer Kontaktmetamorphose unter Bedingungen der Grünschiefer-Fazies interpretiert. LSEE-reicher Epidot ist das Ergebnis von LSEE Umverteilung im Zusammenhang mit dem Zerfall von Plagioklas während besonders intensiver Amphibolitisierung und Scherungsdeformation innerhalb des Basalt-Ergusses zum Höhepunkt der Kontaktmetamorphose. LSEE-reicher Apatit und Bastnaesit gehen auf LSEE-Mobilisierung und sehr lokale Wiederausfällung während retrograder Amphibolitisierung während eines späteren Entwicklungsstadiums zurück. Die niedrigen Chlorgehalte der LSEE-reichen Minerale und ihrer Wirtsgesteine weisen darauf hin, daß die Bildung von Chlorid-Komplexen bei der Konzentration von LSEE nur eine geringe Rolle gespielt hat.Die räumliche Verbindung von LSEE-reichen Mineralen mit der PGE-Vererzung dürfte auf die Verbindung von Scher-Deformationen und Amphibolitisierung in diesem stratigraphischen Niveau innerhalb des Basaltes zurückgehen. Die begleitende hydrothermale Fluid-Aktivität führt zu beschränkter Mobilisierung und Anreicherung von PGE in Gängen und Sprüngen innerhalb der Vererzung. Die niedrigen Chlorgehalte weisen darauf hin, daß Chlorid-Komplexe weder bei der PGE-Mobilisierung, noch bei der spätmagmatischen Vererzung von Bedeutung gewesen sind.


With 4 Figures  相似文献   

15.
The large jacupirangite dyke at Kodal was first found by W.C. Brögger (1933) who published one chemical analysis of the rock. Recent investigations of the dyke as a potential ore body, including diamond-drilling operations, have shown that it is about 20 m wide and 2 km long. It strikes approximately E–W and has a general dip of 80 °S, cutting through larvikite and nordmarkite of the Oslo Permian Igneous Province. The jacupirangite has an average modal composition (volume percent): apatite 24, magnetite 37, ilmenite 9, pyroxene 25, amphibole and biotite 5. The iron-titanium oxides and apatite cement the pyroxene in a typical igneous texture. The Kodal dyke and other jacupirangites in adjoining areas of the Oslo Igneous Province all show a eutectic mixture of iron-titanium oxides and apatite which is assumed to form an immiscible liquid with silicate melts of monzonitic composition. This is assumed to be a possible explanation for the formation of the jacupirangites in the Oslo region.
Zusammenfassung Der große Jacupirangit-Gang in Kodal wurde erstmals von C. W. Brögger (1933) gefunden, der eine chemische Analyse von diesem Gestein publiziert hat. Neuere Untersuchungen an diesem Gang im Hinblick auf eine potentielle Erzlagerstätte, bei denen auch Diamant-Bohrungen eingesetzt worden sind, haben ergeben, daß der Gang etwa 20 m mächtig und 2 km lang ist. Er streicht bei einem durchschnittlichen Fallen von 80 °S annähernd O–W, wobei er Larvikite und Nordmarkite der permischen Oslo-Eruptivprovinz durch-schneidet. Die durchschnittliche modale Zusammensetzung des Jacupirangites besteht (in Volumenprozent) aus: Apatit 24%, Magnetit 37%, Ilmenit 9%, Pyroxen 25%, Amphibol und Biotit 5%. Die Eisen-Titan-Oxide und der Apatit verkitten die Pyroxene unter Bildung einer typischen Eruptivstruktur. Der Kodal-Gang und die anderen Jacupirangite der angrenzenden Oslo-Eruptivprovinz lassen alle ein eutektisches Gemenge von Eisen-Titan-Oxiden und Apatit erkennen, von dem wir annehmen, daß es eine unlösliche Schmelze neben Silikatschmelzen monzonitischer Zusammensetzung bildete. Aus dieser Annahme ergibt sich eine Deutungsmöglichkeit für das Auftreten der Jacupirangite im Oslo Gebiet.
  相似文献   

16.
Summary The Tunaberg copper deposits, SE Bergslagen, Central Sweden, locally contain tellurium and selenium minerals not previously reported from this locality. Hessite, tellurobismutite, tellurium, tetradymite, kawazulite, clausthalite and selenian galena are found as inclusions in bornite and chalcopyrite in a skarn sulphide ore with Cd-rich sphalerite, cobaltite and cobalt pentlandite (assemblage A), and in a skarn iron ore with magnetite (assemblage B). Accessory minerals included in bornite and chalcopyrite are auriferous silver, electrum, carrollite, stannoidite, mawsonite, parkerite, aikinite, emplectite, wittichenite and two unidentified Cu-Ag-Bi sulphosalts.The tellurides, selenides and associated minerals in assemblage A occur, in part, as early crystallites and, in part, as segregations from a high-temperature bornite solid solution, which presumably crystallized from metamorphogenic skarn-forming ore solutions, about contemporaneous with the formation of diopside above 475°C and of retrogressive tremolite above 420°C. Minerals of Bi-Te-Se-Pb-Ag in assemblage B presumably crystallized at lower aS2 and higher aCu+ from residual hydrothermal solutions of similar metamorphogenic origin.
Telluride, Selenide und assoziierte Minerale in der Tunaberg Kupfer-Lagerstätte, SE Bergslagen, Zentralschweden
Zusammenfassung Die Kupferlagerstätten von Tunaberg, SE Bergslagen, Zentral-Schweden enthalten stellenweise Tellur-und Selen-Minerale, die hier bisher nicht bekannt waren. Hessit, Tellurobismutit, gediegen Tellur, Tetradymit, Kawazulit, Clausthalit und selen führender Bleiglanz kommen als Einschlüsse in Bornit und Kupferkies in einem Skarn-Sulphiderz mit cadmiumreichem Sphalerit, Cobaltit und Cobalt-Pentlantit (Paragenese A), und in einem Eisenskarnerz mit Magnetit (Paragenese B) vor. Akzessorische Minerale in Bornit und Calcopyrit sind goldführendes Silber, Electrum, Carrollit, Stannoidit, Mawsonit, Parkerit, Aikinit, Emplektit, Wittichenit und zwei noch nicht identifizierte Cu-Ag-Bi Sulphosalze.Die Telluride, Selenide, und assoziierte Minerale in der Paragenee A kommen teils als frühe Kristalliten und teils als Segregationen aus einer Hoch-Temperatur Bornit-solid solution vor, die auf metamorphogene skarnbildende Erzlösungen zurückgehen. dürfe. Diese Vorgänge fallen zeitlich mit der Bildung von Diopsid oberhalb von 475°C und von retrogradem Tremolit oberhalb von 420°C zusammen. Bi-Te-Se-Pb-Ag-Minerale der Paragenese B kristallisierten bei niedrigerem aS2 und höherem aCu+ aus residualen hydrothermalen Lösungen metamorphen Ursprunges.
  相似文献   

17.
In the West Shasta district, California, flat-lying deposits of massive pyrite containing chalcopyrite, sphalerite, galena, and tetrahedrite occur within a section of unmineralized rhyolites and tuffs. Mercury was determined in residual soils derived from apparently unmineralized rocks at stratigraphic levels from 50 to 200 feet over known ore at the Early Bird, Keystone, and Mammoth mines. In each case, pronounced mercury anomalies were found. The mercury content of anomalous soils ranges up to 340 ppb (parts per billion, 10–9 g/g) over a background of 20 to 60 ppb.
Zusammenfassung Geochemische Untersuchungen im West-Shasta-Distrikt (California/USA) zeigten, daß über den bekannten, aber verborgenen Erzkörpern der Early Bird, der Keystone-und der Mammoth-Mine Quecksilber-Anomalien in Residualböden auftreten. Die flach liegenden, linsenförmigen Erzkörper bestehen aus massivem Pyrit, kleineren Mengen Kupferkies und untergeordnet Bleiglanz, Zinkblende, Fahlerz, Magnetkies und Magnetit. Sie werden von unmineralisierten Rhyolith- und Tuffhorizonten überlagert, die im Bereich der untersuchten Vorkommen etwa 20 bis 70 m mächtig sind. Anomale Bodenproben enthalten bis zu 340 ppb Quecksilber. Die Untergrund-Werte liegen in einem Bereich zwischen 20 und 60 ppb Hg.
  相似文献   

18.
The iron ore deposits of Cuadrilatero Ferrifero de San Isidro represent the largest iron ore reserves in Venezuela. The district is a part of the iron metallogenic province of northern Guayana, one of the richest iron-bearing regions of the world. All presently known iron ore deposits of Venezuela are situated within this province: Cerro Bolivar, Altamira, Rondon, San Isidro, María Luisa, El Pao and others. Their total ore reserves amount to 2,000 million tons (disregarding the unenriched or slightly enriched iron-formation). The Imataca belt to which the iron ore deposits are confined consists of metamorphosed sedimentary and igneous rocks of Early Precambrian age, the oldest rocks presently known in South America. This belt extends some 450 km from the Orinoco delta southwesterly to the Cauro River. Iron ore is formed from banded iron-formation, a member of the Imataca complex, by removal of silica. The process of supergene enrichment is controlled to a certain degree by structural elements. There are five ore bodies in the San Isidro district, extremely varied in shape and size. Single bodies extend up to 3–4 km in length, approximately parallel to the regional structure pattern, and a few hundred meters in width. The morphology of the bottom of the ore bodies is rather irregular, particularly in transversal sections. Contacts between ore and the unaltered iron-formation beneath are gradational. Maximum vertical section through ore is 260 m; the average is 60 m approximately. The stratigraphic thickness of iron formation has been magnified by structural deformations. The primary stratigraphic thickness is estimated to be some 50–150 m. The iron ore is classified into two main types: a) hard, crustal ore, b) soft, friable ore. Hematite grains which remained after the leaching of silica, and goethite (as cement) are the two main constituents of crustal ore. Hematite and magnetite and a minor amount of quartz are almost the only constituents of friable ore. The crustal ore forms a 15–60 m thick mantle covering friable ore. The overall volume ratio between the friable and the crustal ore is about 2:1. However, it varies in different zones. The mean composition of iron ore on the basis of 10,800 chemical analyses is 64.41% Fe, 2.62% SiO2, 0.6% Al2O3. The ore contains a minor amount of Mn, P, Ti (no S, As, Ba). The ore reserves amount to 750 million tons; in addition, 180–300 million tons of possible ore reserves are estimated.
Zusammenfassung Die Eisenerzlagerstätten der Cuadrilatero Ferrifero de San Isidro beinhalten die größten Eisenerzreserven in Venezuela. Der Erzbezirk ist ein Teil der reichsten Eisenerzregionen der Welt. Alle bekannten Eisenerzvorkommen Venezuelas befinden sich in dieser Provinz (Cerro Bolivar, Altamira, Rondon, San Isidro, Maria Luisa, El Pao und andere). Die Gesamtvorräte werden auf etwa zwei Milliarden Tonnen geschätzt (ohne die nichtangereicherten oder nur wenig angereicherten Eisenquarzite). Die Imataca-Zone, an die die Eisenerzvorkommen angrenzen, besteht aus metamorphosierten sedimentären und magmatischen Gesteine des Archaikums, die ältesten bisher in Südamerika bekannten Gesteine. Die Imataca-Zone erstreckt sich ungefähr 450 km vom Delta des Orinoco in südwestlicher Richtung bis Rio Cauro. Die Eisenerze entstanden aus feingeschichteten (gebänderten) Eisenquarziten (Itabirite). Die Prozesse der deszendenten Anreicherung werden teilweise durch strukturelle Elemente bedingt. Fünf Erzkörper des San Isidro-Bezirks sind bekannt. Die Lagerstätten sind 3 bis 4 km lang und einige Hunderte Meter breit. Sie sind den regionalen Strukturen vorwiegend parallel gelagert. Die Morphologie der Erzkörperunterlage ist ziemlich unregelmäßig, besonders senkrecht zum Streichen. Der Kontakt zwischen dem Erz und den unterliegenden unveränderten Eisenquarziten ist stufenförmig. Das Erz ist durchschnittlich etwa 60 m mächtig, mit maximalen vertikalen Mächtigkeiten von 260 m. Die primäre stratigraphische Mächtigkeit des Eisenquarzites wurde durch strukturelle Deformationen vergrößert. Man kann die primäre Mächtigkeit auf 50–150 m schätzen. Das Eisenerz wird in zwei Typen klassifiziert: a) hartes Krustenerz, b) weiches, bröckeliges Erz. Die Hämatitkörner, die nach der Entfernung der Kieselsäure übrig blieben nebst Goethit (als Zement), sind die zwei wichtigsten Komponenten des Krustenerzes. Das weiche Erz enthält Hämatit, Magnetit und etwas Quarz. Das Krustenerz bildet eine 15–60 m mächtige Decke über dem bröckeligen, weichen Erz. Das Gesamtvolumenverhältnis zwischen dem weichen und harten Erz ist ungefähr 2:1. In anderen Zonen ist es jedoch unterschiedlich. Die durchschnittliche Zusammensetzung des Eisenerzes ist: Fe 64,41%, SiO2 2,62%, Al2O3 0,6%; das Erz enthält auch etwas Mn, P, Ti (kein S, As, Ba). Die Eisenerzvorräte wurden auf 750 Millionen Tonnen berechnet, wozu wahrscheinlich weitere 180–300 Millionen Tonnen kommen.
  相似文献   

19.
Zusammenfassung In der vorliegenden Arbeit wurden tonig-kalkig-kieselige Proben des Flammenmergels aus einem Profil von Wrisbergholzen sowie Einzelproben von der Hohen Schanze und von Othfresen-Liebenburg hauptsächlich optisch und röntgenographisch untersucht.Als wesentliche Komponenten treten auf: verschiedene Modifikationen der Kieselsäure (Quarz, Chalcedon, Opal), Calcit, Muskovit, Montmorillonit und Glaukonit. Es wurde festgestellt, daß der Flammenmergel sehr verschieden ausgebildet sein kann: neben Kalkbänken gibt es mehr kieselige Partien, daneben auch lockere tonig-mergelige Schichten.Es wurde versucht, das Vorhandensein von Opal, Chalcedon und neugebildetem Quarz zu erklären. Dabei wurde angenommen, daß die im Flammenmergel häufig vorkommenden Kieselorganismen unter hohem pH-Wert aufgelöst und die dadurch gelöste Kieselsäure bei niedrigem pH-Wert wieder ausgeflockt wurde. Nach seiner Zusammensetzung ist der Flammenmergel ein chemisch-biogenes Sediment mit klastischem Anteil (maximal 30%).
Argillaceous-calcareous-siliceous samples of the flammenmergel from a section at Wrisbergholzen and some samples from Hohe Schanze and Othfresen-Liebenburg were investigated mainly with optical and X-ray methods.The essential components are: different modifications of SiO2 (quartz, chalcedony, and opal), muscovite, montmorillonite, and glauconite.It can be seen that the flammenmergel occurs in different forms: limestone beds change to more siliceous parts or loose, argillaceous-marly beds.An explanation for the occurence of opal, chalcedony, and newly formed quartz is given. It was assumed that siliceous organisms, abundant in the flammenmergel, were dissolved under a high pH-value and that the so-formed SiO2-solution coagulated under a low pH-value.According to its composition, the flammenmergel is a chemical-biogenetic sediment containing clastic components up to 30%.


Diese Arbeit wurde hauptsächlich im Rahmen des Studiums als Vorarbeit im Jahr 1962/63 ausgeführt. Herrn Prof. Dr. Dr. h. c. C. W. Correns möchte ich für die Überlassung des Themas und sein förderndes Interesse sehr danken. Für sehr anregende Diskussionen danke ich Frau Dr. P. Schneiderhöhn und Herrn Prof. Dr. O. Braitsch. Für freundliche Unterstützung bei der Probenbeschaffung und einige Hinweise möchte ich Herrn Dr. F. Schmid vom Niedersächsischen Landesamt für Bodenforschung und Herrn Dr. H. Kolbe vom Erzbergbau Salzgitter danken. Fräulein Uebach sei für die Ausführung der chemischen Vollanalysen gedankt.  相似文献   

20.
Summary Many small podiform chromitite deposits occur within two alpine-type serpentinite belts (of uncertain age) in southern NSW. Most of these deposits are enclosed in massive serpentinised chromite-rich dunite which cross-cuts primary layering within the main harzburgite body. In the western belt, the chromitites are all Cr-rich, whereas in the eastern belt there is a spectrum from Cr-rich to highly Al-rich chromitites, all of which have a fairly Complex geographic distribution. All of the chromitites are ophiolitic in character and the chemistry of both the chromitites and discrete chromite grains is reasonably Constant within a deposit, but varies widely between deposits. The REE concentrations are very low and lack any systematic geographic distribution. Most of the hromitites have an opholitic PGE signature, although some exceptions do occur and this is ascribed to localised remobilisation during serpentinisation. PIXE proton probe results show that the chromite grains are enriched, relative to the. serpentine fracture-fill, in Mn, Ni, Zn and Ga and depleted in As and Cu. Inclusions Completely enclosed within the chromite grains include Al-rich chromite, PGE-bearing nickel sulphides, palladian gold, forsteritic olivine, pargasitic amphiboles and a member of the gedrite/anthophyllite group. PGE-bearing fracture-fill phases include millerite, heazlewoodite, polydymite, chalcopyrite, trevorite, native gold, ruthenium, palladium and Ni3Pt(?). Other fracture-fill phases include awaruite, magnetite, pentlandite, lizardite 6T, chrysotile 2M, antigorite, talc, clinochlore IIb, uvarovite garnet, diopside and ferritchromit. The chromitites were derived from a different magma than the peridotite and the present distribution of low Al, intermediate Al and high Al Chromitites reflects the spatial distribution of a progressively fractionating parental magma rather than different magmatic sources. Both the trace element and REE Chemistries of the chromitites yield little insight into the genesis of the chromitite pods and their distribution Could reflect either an inhomogeneous distribution in the parental magma or localised remobilisation during serpentinisation. During serpentinisation, PGE within the chromities and hostrock dunites and harzburgites were released, and precipitated within the crack seal breccia environment of the chromitites. Provided that the inclusions enclosed within the chromite grains formed in the presence of the same fluid as the chromite, this magmatic chromite and olivine forming liquid must have had a minor concentrated volatile-rich component. Subsequent serpentinisation of the chromitites was responsbile for the localised remobilisation of metals, PGE, S and the REE.
Chemismus und Mineralogie von podiformen Chromitlagerstätten, Süd-NSW, Australien: Ein Schlüssel zu ihrer Entstehung und Entwicklung
Zusammenfassung Zahlreiche kleinere podiforme Chromitlagerstätten treten in zwei alpinotypen Serpinitingürteln unsicherer Altersstellung im südlichen NSW auf. Die meisten dieser Lagerstätten sind an serpentinisierte chromitreiche Dunite, die den primären Lagenbau der Harzburgitkörper durchsetzen, gebunden. Im westlichen Gürtel sind die Chromite Cr-reich, im östlichen reicht das Spektrum von Cr- bis Al-reichen Chromititen mit komplexer geographischer Verbreitung. Alle Chromitite zeigen ophiolitischen Charakter und die Zusammensetzung der Chromitite aber auch einzelner Chromitkörner ist relativ konstant innerhalb einer Lagerstätte. Sie variiert allerdings von Lagerstätte zu Lagerstätte. Die SEE Gehalte sind sehr niedrig. Eine systematische geographische Verteilung ist nicht erkennbar. Die meisten Chromitite zeigen ophiolitische PGE Verteilungsmuster, obwohl es auch Ausnahmen, die lokaler Remobilisation im Zuge der Serpentinisierung zugeschrieben werden müssen, beobachtbar sind. Ergebnisse von PIXE Protonensondenanalysen zeigen, daß die Chromitkörner im Vegleich zu den Serpentinitrißfüllungen an Mn, Ni, Zn und Ga angereichert und an As und Cu angereichert sind. Al-reiche Chromite, PGE-führende Nickelsulfide, Gold mit Palladium, Forsterit und pargasitische Amphibole, sowie Gedrit/Antophyllit sind als Einschlüsse in Chromit nachgewiesen. In PGE-führenden Rissen kommen Millerit, Heazlewoodit, Polydymit, Kupferkies, Trevorit, gedigenes Gold, Ruthenium, Palladium und Ni3Pt(?) vor. Andere Phasen in diesen Rißfüllungen sind Awaruit, Magnetit, Pentlandit, Lizardit 6T, Chrysotil 2M, Antigorit, Talk, Klinochlor IIb, Uvarovit, Diopsid und Ferritchromit.Die Chromitite sind von einem anderen Magma als die Peridotite abzuleiten und die nunmehrige Verteilung von Al-armen bis Al-reichen Chromititen spiegelt die räumliche Verteilung eines fraktionierenden Ausgangsmagmas eher wider als unterschiedliche Magmenquellen. Spuren- und REE-Geochemie erlauben kaum Einblicke in die Genese der Chromititkörper. Ihre unregelmäßige Verteilung könnte entweder auf Inhomogenitäten des Ausgangsmagmas oder auf lokale Remobilisation im Zuge der Serpentinisierung zurückzuführen sein. Während der Serpentinisierung wurden PGEs in den Chromititen und dunitischen und harzburgitischen Nebengesteinen freigesetzt und in den ehromititischen crack-seal Brekzien wiederausgefällt. Unter der Annahme, daß sich die Einschlüsse in den Chromitkörnen in Gegenwart desselben Fluids wie die Chromite selbst gebildet haben, müssen die magmatischen Chromit- und olivinführenden Schmelzen mit einer volatilreichen Komponente koexistiert haben. Nachträgliche Serpentinisierung der Chromitite war für die lokale Remobilisation der Metalle, der PGEs, S und der REE verantwortlich.


With 4 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号