首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We derive asymptotic formulae for the toroidal and spheroidal eigenfrequencies of a SNREI earth model with two discontinuities, by considering the constructive interference of propagating SH and P-SV body waves. For a model with a smooth solid inner core, fluid outer core and mantle, there are four SH and 10 P-SV ray parameters regimes, each of which must be examined separately. The asymptotic eigenfrequency equations in each of these regimes depend only on the intercept times of the propagating wave types and the reflection and transmission coefficients of the waves at the free surface and the two discontinuities. If the classical geometrical plane-wave reflection and transmission coefficients are used, the final eigenfrequency equations are all real. In general, the asymptotic eigenfrequencies agree extremely well with the exact numerical eigenfrequencies; to illustrate this, we present comparisons for a crustless version of earth model 1066A.  相似文献   

2.
Measured changes in the Earth's length of day on a decadal timescale are usually attributed to the exchange of angular momentum between the solid mantle and fluid core. One of several possible mechanisms for this exchange is electromagnetic coupling between the core and a weakly conducting mantle. This mechanism is included in recent numerical models of the geodynamo. The 'advective torque', associated with the mantle toroidal field produced by flux rearrangement at the core–mantle boundary (CMB), is likely to be an important part of the torque for matching variations in length of day. This can be calculated from a model of the fluid flow at the top of the outer core; however, results have generally shown little correspondence between the observed and calculated torques. There is a formal non-uniqueness in the determination of the flow from measurements of magnetic secular variation, and unfortunately the part of the flow contributing to the torque is precisely that which is not constrained by the data. Thus, the forward modelling approach is unlikely to be useful. Instead, we solve an inverse problem: assuming that mantle conductivity is concentrated in a thin layer at the CMB (perhaps D"), we seek flows that both explain the observed secular variation and generate the observed changes in length of day. We obtain flows that satisfy both constraints and are also almost steady and almost geostrophic, and therefore assert that electromagnetic coupling is capable of explaining the observed changes in length of day.  相似文献   

3.
This paper extends our earlier examinations of the utility of various approximations for treating the dynamics of the Earth's liquid core on time-scales of the order of 104 to 108 s. We discuss the effects of representing the response of the mantle and inner core by static (versus dynamic) Love numbers, and of invoking the subseismic approximation for treating core flow, used either only in the interior of the liquid core (SSA-1) or also at the boundaries (SSA-2). The success of each approximation (or combinations thereof) is measured by comparing the resulting surface gravity effects (computed for a given earthquake excitation), and (for the Slichter mode) the distribution of translational momentum, with reference calculations in which none of these approximations is made. We conclude that for calculations of the Slichter triplet, none of the approximations is satisfactory, i.e. a full solution (using dynamic Love numbers at elastic boundaries and no core flow approximation) is required in order to avoid spurious eigenfrequencies and to yield correct eigenfunctions (e.g. conserving translational momentum) and surface gravity. For core undertones, the use of static Love numbers at rigid boundaries is acceptable, along with SSA-1 (i.e. provided the subseismic approximation is not invoked at the core boundaries). Although the calculations presented here are for a non-rotating earth model, we argue that the principal conclusions should be applicable to the rotating Earth. Shortcomings of the subseismic approximation appear to arise because both SSA-1 and SSA-2 lower the order of the governing system of differential equations (giving rise to a singular perturbation problem), and because SSA-2 overdetermines the boundary conditions (making it impossible for solutions to satisfy all continuity requirements at core boundaries).  相似文献   

4.
A rotating incompressible fluid bounded by two concentric spherical rigid surfaces can exhibit purely toroidal free oscillations. The eigenfrequencies are fractions of the angular frequency of rotation. If the bounding surfaces are slightly ellipsoidal, secondary spheroidal fields become existent, and in general, a free mode splits into a doublet with one of which exists only when the inner bounding surface is present.
For the real earth, the compressibility of the outer core, the elasticity of the solid earth, and the self-gravitation of the entire earth modify the toroidal core oscillations. The present treatment gives explicitly the effects of these parameters on the eigenfrequencies.  相似文献   

5.
Internal oscillations in the Earth's fluid core   总被引:4,自引:0,他引:4  
  相似文献   

6.
This paper investigates possible long-period oscillations of the earth's fluid outer core. Equations describing free oscillations in a stratified, self-gravitating, rotating fluid sphere are developed using a regular perturbation on the equations of hydrodynamics. The resulting system is reduced to a finite set of ordinary differential equations by ignoring the local horizontal component of the earth's angular velocity vector, Ω, and retaining only the vertical component. The angular dependence of the eigensolutions is described by Hough functions, which are solutions to Laplace's tidal equation.
The model considered here consists of a uniform solid elastic mantle and inner core surrounding a stratified, rotating, inviscid fluid outer core. The quantity which describes the core's stratification is the Brunt—Väisälä frequency N , and for particular distributions of this parameter, analytical solutions are presented. The interaction of buoyancy, and rotation results in two types of wave motion, the amplitudes of which are confined predominantly to the outer core: (1) internal gravity waves which exist when N 2 > 0, and (2) inertial oscillations which exist when N 2<4Ω2. For a model with a stable density stratification similar to that proposed by Higgins & Kennedy (1971), the resulting internal gravity wave eigenperiods are all at least 8 hr, and the fundamental modes have periods of at least 13 hr. A model with an unstable density stratification admits no internal gravity waves but does admit inertial oscillations whose eigenperiods have a lower bound of 12hr.  相似文献   

7.
The period and Q of the Chandler wobble   总被引:3,自引:0,他引:3  
Summary. We have extended our calculation of the theoretical period of the Chandler wobble to account for the non-hydrostatic portion of the Earth's equatorial bulge and the effect of the fluid core upon the lengthening of the period due to the pole tide. We find the theoretical period of a realistic perfectly elastic Earth with an equilibrium pole tide to be 426.7 sidereal days, which is 8.5 day shorter than the observed period of 435.2 day. Using Rayleigh's principle for a rotating Earth, we exploit this discrepancy together with the observed Chandler Q to place constraints on the frequency dependence of mantle anelasticity. If Qμ in the mantle varies with frequency σ as σα between 30 s and 14 months and if Qμ in the lower mantle is of order 225 at 30 s, we find that 0.04 ρα≤ 0.11; if instead Qμ in the lower mantle is of order 350 near 200 s, we find that 0.11 ≤α≤ 0.19. In all cases these limits arise from exceeding the 68 per cent confidence limits of ± 2.6 day in the observed period. Since slight departures from an equilibrium pole tide affect the Q much more strongly than the period we believe these limits to be robust.  相似文献   

8.
Planetary topography can either be modelled as a load supported by the lithosphere, or as a dynamic effect due to lithospheric flexure caused by mantle convection. In both cases the response of the lithosphere to external forces can be calculated with the theory of thin elastic plates or shells. On one-plate planets the spherical geometry of the lithospheric shell plays an important role in the flexure mechanism. So far the equations governing the deformations and stresses of a spherical shell have only been derived under the assumption of a shell of constant thickness. However, local studies of gravity and topography data suggest large variations in the thickness of the lithosphere. In this paper, we obtain the scalar flexure equations governing the deformations of a thin spherical shell with variable thickness or variable Young's modulus. The resulting equations can be solved in succession, except for a system of two simultaneous equations, the solutions of which are the transverse deflection and an associated stress function. In order to include bottom loading generated by mantle convection, we extend the method of stress functions to include loads with a toroidal tangential component. We further show that toroidal tangential displacement always occurs if the shell thickness varies, even in the absence of toroidal loads. We finally prove that the degree-one harmonic components of the transverse deflection and of the toroidal tangential displacement are independent of the elastic properties of the shell and are associated with translational and rotational freedom. While being constrained by the static assumption, degree-one loads can deform the shell and generate stresses. The flexure equations for a shell of variable thickness are useful not only for the prediction of the gravity signal in local admittance studies, but also for the construction of stress maps in tectonic analysis.  相似文献   

9.
The concept of a deformation of a simple, non-rotating, spherically symmetric earth model with a fluid outer core, although it is a highly artificial physical situation, provides a useful computational algorithm that allows one lo determine analytically modes of vibration without any Love-number theory. In particular, on these analytically determined modes, we impose regularity conditions at the centre and boundary conditions at the surface, as well as conditions of continuity at the inner-core-outer-core boundary and at the core-mantle boundary. They lead to an eigenvalue equation for the frequency of oscillation. The range of frequencies obtained in this way for different earth models gives an indication of the influence of compressibility and non-homogeneity on the spectrum of eigenfrequencies.  相似文献   

10.
Experiments simulating flow in the Earth's liquid core induced by luni-solar precession of the solid mantle indicate, to a first approximation, that the core behaves like a rigidized fluid sphere spinning slower than the mantle and with its spin axis lagging the mantle spin axis in precession. Secondary flow patterns are always present. At low precession rates the fluid sphere is subdivided into a set of cylinders coaxial with the fluid spin axis, the cylinders rotating alternately at slightly faster and slower rates relative to the net retrograde motion of the fluid as a whole. Slow non-axisymmetric columnar wave patterns develop between the differentially rotating cylinders. Axial flows between the spheroidal cavity boundary and the interior are observed. Fluid motion becomes turbulent only at precession rates large enough to cause the fluid spin axis to align nearly with the precession axis. There is no evidence that the Earth's liquid spin axis direction departs more than a fraction of a degree from geographic north. Our observations suggest precession induces a complex variety of laminar flows, including slowly varying and/or periodic patterns, in the Earth's liquid core.  相似文献   

11.
Dissipative core–mantle coupling is evident in observations of the Earth's nutations, although the source of this coupling is uncertain. Magnetic coupling occurs when conducting materials on either side of the boundary move through a magnetic field. In order to explain the nutation observations with magnetic coupling, we must assume a high (metallic) conductivity on the mantle side of the boundary and a rms radial field of 0.69 mT. Much of this field occurs at short wavelengths, which cannot be observed directly at the surface. High levels of short-wavelength field impose demands on the power needed to regenerate the field through dynamo action in the core. We use a numerical dynamo model from the study of Christensen & Aubert (2006) to assess whether the required short-wavelength field is physically plausible. By scaling the numerical solution to a model with sufficient short-wavelength field, we obtain a total ohmic dissipation of 0.7–1 TW, which is within current uncertainties. Viscous coupling is another possible explanation for the nutation observations, although the effective viscosity required for this is 0.03 m2 s−1 or higher. Such high viscosities are commonly interpreted as an eddy viscosity. However, physical considerations and laboratory experiments limit the eddy viscosity to 10−4 m2 s−1, which suggests that viscous coupling can only explain a few percent of the dissipative torque between the core and the mantle.  相似文献   

12.
Novaya Zemlya nuclear test records at the seismic station DRV, Antarctica, are analysed in order to obtain further constraints on a possible differential rotation of the inner core with respect to the mantle. These data allow the sampling of the inner core along a nearly polar path in very stable conditions over more than two decades, from 1966 to 1990. The PKP (BC)– PKP (DF) traveltime residuals, which reflect the inner-core anisotropy and/or heterogeneities sampled along the path, exhibit a great stability through time. A computation of the residuals that are expected for various differential rotation rates and the same rotation axis as the mantle has been performed using the worldwide residual catalogue of Engdahl et al . (1997) for summary rays that include the time as an additional parameter in data stacking. Comparison of data and predictions shows that an eastward differential rotation with a rate as large as 3°  yr−1, as suggested by some authors, is not possible, but an eastward rotation at 1°  yr−1 or lower cannot be rejected.  相似文献   

13.
Summary. Numerical convection models are presented in which plates are simulated by imposing piecewise constant horizontal velocities on the upper boundary. A 4 × 1 box of constant viscosity fluid and two-dimensional (2-D) flow is assumed. Four heating modes are compared: the four combinations of internal or bottom heating and prescribed bottom temperature or heat flux. The case with internal heating and an isothermal base is relevant to lower mantle or whole mantle convection, and it yields a lower thermal boundary layer which is laterally variable and can be locally reversed, corresponding to heat flowing back into the core locally. When scaled to the whole mantle, the surface deflections and gravity and geoid perturbations calculated from the models are comparable to those observed at the Earth's surface. For models with migrating ridges and trenches, the flow structure lags well behind the changing surface 'plate'configurations. This may help to explain the poor correlation between the main geoid features and plate boundaries. Trench migration substantially affects the dip of the cool descending fluid because of induced horizontal shear in the vicinity of the trench. Such shear is small for whole mantle convection, but is large for upper mantle convection, and would probably result in the Tonga Benioff zone dipping to the SE, opposite to the observed dip, for the case of upper mantle convection.  相似文献   

14.
Summary. The method of phase correlation devised by Brune for the evaluation of overtone eigenfrequencies of the Earth from body-wave data involves the explicit use of a ray-mode duality for strictly continuous earth models. Consequently, investigation of the application of the ray-mode duality approach to models containing discontinuities is desirable.
McNabb, Anderssen & Lapwood have obtained an equation for the behaviour of overtone eigenfrequencies from discontinuous earth models. By means of a novel method for the decomposition of multiply-reflected body waves, it can be shown that, for earth models with a single discontinuity between the surface and the core—mantle boundary, the McNabb et al. formulation can be derived from an adaptation of Brune's formula to multiply-reflected SH body waves at small epicentral distances. This establishes a basis for a ray-mode duality for models with a single discontinuity.  相似文献   

15.
The free oscillations of an anelastic aspherical earth   总被引:1,自引:0,他引:1  
Summary. Some century-old results, due to Rayleigh and Routh, have been adapted to investigate the normal mode eigenfrequencies and eigenfunctions of an earth with laterally variable anelasticity and to determine the transient response of such an earth to earthquakes. Using degenerate perturbation theory, the eigenfrequencies are found to first order and the associated eigenfunctions to zeroth order in the small deviations of the Earth away from a spherical perfectly elastic reference earth model. Both the eigenfrequencies and the eigenfunctions are complex and, in addition, the latter are not mutually orthogonal, reflecting the non-Hermitian character of the normal mode eigenvalue problem. The effect of laterally heterogeneous attenuation on the shape of an unresolved multiplet spectrum has been investigated in the surface-wave geometrical-optics limit. Singlet cancellation leads in that limit to the appearance of a single resonance peak whose decay rate or apparent Q −1 depends only on the average attenuation structure underlying the source—receiver great-circle path.  相似文献   

16.
17.
A new nutation series for a more realistic model earth   总被引:1,自引:0,他引:1  
The frequency-dependent correction coefficients with respect to the forced nutations of a rigid earth are computed using the complex scalar gravitational-motion equations for an earth model with an anelastic mantle. Oceanic loads and tidal currents enter the model via outer boundary conditions. The ellipticity of the core-mantle boundary and the dynamical ellipticity are adjusted to observations. This requires the behaviour inside the model earth to be regarded as non-hydrostatic. Some relevant equations for the evaluation of boundary conditions and some terms in the equations of motion are expanded to second order in ellipticity. The computation of the equipotential-surface ellipticity profile is carried to second order as well. These second-order expansions lead to increased accuracy of the results in general. Moreover, one achieves a better reliability for the integration at frequencies close to a resonance. This allows the integration of the equations of motion at any relevant nutation period without the need for a normal-mode expansion. A complete new nutation series for a realistic model earth is presented.  相似文献   

18.
Summary. In examining the effect of discontinuities in the Earth's interior on free oscillations, McNabb, Anderssen & Lapwood derived an equation for the asymptotic behaviour of torsional overtone eigenfrequencies of a discontinuous earth model, the constants in their equation being explicitly determined only for the case of one internal discontinuity. Since Brune's phase correlation method for the evaluation of eigenfrequencies from body-wave data implies a ray-mode duality only for continuous earth models, it is desirable to justify the McNabb et al. formulation from the point of view of ray theory.
By a novel method of ray analysis, Wang, Cleary & Anderssen showed that, for earth models with a single discontinuity between the Earth's surface and the core—mantle boundary, the McNabb et al. formulation can be derived from an adaptation of Brune's method to multiply reflected SH body waves recorded at small epicentral distances. In this paper, the technique of Wang et al. is extended to derive the McNabb et al. formulation (with constants explicitly determined) for the general case of earth models with N discontinuities. This establishes a basis for a ray-mode duality for discontinuous earth models.  相似文献   

19.
Summary . We present a variety of examples, showing systematic fluctuations as a function of angular order of measured eigenfrequencies for given normal modes of the Earth. The data are single station measurements from the GEOSCOPE network. Such fluctuations are attributed to departures from the lowest order asymptotic expression of the geometrical optics approximation. We derive first-order asymptotic expressions for the location parameter for all three components of the Earth's motion, by a method based on the stationary phase approximation and geometric relations on the unit sphere.
We illustrate the sensitivity of the fluctuations to the different parameters involved (source parameters, epicentral distance, laterally heterogeneous earth model) with synthetic examples corresponding to GEOSCOPE observations. Finally, we show the results of first attempts at inversion, which indicate that, when the fluctuations are taken into account, more accurate estimates of the great circle average eigenfrequencies can be obtained, and additional constraints put on the structure in the neighbourhood of the great circle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号