首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light curves of six comets, C/1999 S4 (LINEAR), C/2001 Q4 (NEAT), C/2002 T7 (LINEAR), C/2002 V1 (NEAT), C/2004 Q2 (Machholz), and 153P/2002 C1 (Ikeya-Zhang), were built and investigated. The photometric parameters H 0, H 10, and n were calculated for these comets, and they were found to change both before and after perihelion. The shift of light curve peak with respect to perihelion passage moment was determined for each comet. Our white-light curves are compared to the results of polarimetric and electrophotometric observations of the comets C/2002 T7 (LINEAR) and C/2004 Q2 (Machholz).  相似文献   

2.
The ortho-to-para ratio (OPR) of a cometary molecule is one of primordial character in comets. The OPR which is characterized by a spin temperature, is thought to reflect the formation conditions of the molecule. In this paper we show the high-dispersion spectrum of cometary NH2 in Comet C/2001 A2 (LINEAR), from which the OPR of NH2 is determined based on the fluorescence excitation model. Since the NH2 is a photodissociation product of cometary ammonia, we applied the permutation group theory to the whole reaction system (i.e. the photodissociation reaction of ammonia to NH2 and H) in order to derive the OPR of ammonia from that of NH2. The derived OPR of ammonia is 1.12 ± 0.03 in Comet C/2001 A2 (LINEAR). This value corresponds to a spin temperature of 30+3 -2 K. If this reflects the temperature where the comet formed in the protosolar nebula, our result indicates that thiscomet was formed in the region of the giant planets between Jupiter and Neptune.  相似文献   

3.
The coma morphology and short-term evolution was investigated of three non-periodic comets in retrograde orbits, C/2001 Q4 (NEAT), C/2002 T7 (LINEAR), and C/2003 K4 (LINEAR). All three comets display distinct coma features, which were very different from one comet to the next and remained rather constant in shape during the observational period. A single, broad feature perpendicular to the sun-tail direction dominated the coma of C/2003 K4 in all used filters (B,V,R,I), whereas the coma of Comet C/2002 T7 exhibited different features in blue and red filters. C/2001 Q4 showed rather complex coma morphology with clear short-term variability in coma brightness. Therefore, these non-periodic comets neither show a featureless coma nor any similarities of the features detected. The overall distribution of coma material was investigated from the shape of radial coma profiles averaged around the comet nucleus. For C/2001 Q4 and C/2002 T7, the slopes fitted to the linear part of these profiles are flatter in the blue than in the red, which can be explained by the presence of coma gas. For C/2003 K4 no such difference is indicated in the May observations (r = 2.3 AU), while in July (r = 1.7 AU) the profiles in the B-filter are flatter than in V, R, and I, hence gas contamination was relevant at least in the B filter. The R and I filter images were used to determine approximate Afρ values of each comet as a function of time.  相似文献   

4.
We used the NIRSPEC instrument on the Keck-2 telescope atop Mauna Kea, HI to observe Comet C/2001 A2 (LINEAR) in a Target of Opportunity campaign on UT 2001 July 9.5, 10.5 August 4.4, 10.5. We measured seven organic parent volatiles (C2H6, C2H2, HCN, CH4, CO, CH3OH, H2CO) simultaneously with H2O. We obtained absolute production rates and relative abundances for parent volatiles, and also measured rotational temperatures for several of these species. The chemical composition of C/2001 A2 differs substantially from any comet we have observed to date. The abundances we measure (relative to H2O) for C2H6, C2H2, HCN, and CH3OH are enriched by a factor of ∼2 to 3 in C/2001 A2 compared with most comets in our database. Other molecular species were detected within the typical range of measured abundances. C/2001 A2 presented a unique opportunity to study the chemistry of a fragmenting comet where pristine areas are exposed to the Sun.  相似文献   

5.
Our polarimetric database contains six comets, C/1975 V1 (West), 16P/Brooks 2,C/1988 A1 (Liller), D/1996 Q1 (Tabur), C/1999 S4 (LINEAR), and C/2001 A2(LINEAR), which can be related to the group of split comets. Comets West, S4(LINEAR) and A2 (LINEAR) were observed during splitting. We compare thepolarimetric measurements of the dust particles in these comets, sometimes togetherwith available photometric and colorimetric data, with those in normal comets. Weconclude that there is no significant evidence for differences of polarization betweentidally split comets (e.g., Brooks 2), dissipating comets (e.g., Tabur), non-tidally splitcomets (e.g., West) and normal comets. The total disintegration of Comet S4 (LINEAR), however, did produce significant changes in the observed properties of dust.  相似文献   

6.
We present the results of polarimetric and photometricobservations of split Comet C/2001 A2 (LINEAR), which wereobtained at the 70-cm telescope of the Astronomical Observatoryof Kharkiv National University between 30 June and 31 July 2001.The brightest fragment of the comet, nucleus B, was observed.Eight narrowband cometary filters in the continuum and in emissionbands and a wideband red filter have been used. The comet wasobserved through apertures of 88, 33, and 19 arcsec. Polarizationphase curves were obtained for the continuum and for the firsttime, for NH2(0, 7, 0) emission. The degree of polarization ofthe light scattered by the dust decreases with the increase ofaperture size. An important temporal variation of the polarizationwith a rotation of the polarization plane was observed at twophase angles (26.5° and 36.2°). Molecular column densities and production rates of CN, C2,C3, and NH2 species are calculated in the framework of theHaser model. A comparative analysis of the temporal variations ofthe visual magnitudes, gas and dust production rates, dust colorand polarization are presented.  相似文献   

7.
E.L. Gibb  M.J. Mumma  M.A. DiSanti 《Icarus》2003,165(2):391-406
We detected CH4 in eight Oort cloud comets using high-dispersion (λλ∼2×104) infrared spectra acquired with CSHELL at NASA's IRTF and NIRSPEC at the W.M. Keck Observatory. The observed comets were C/1995 O1 (Hale-Bopp), C/1996 B2 (Hyakutake), C/1999 H1 (Lee), C/1999 T1 (McNaught-Hartley), C/1999 S4 (LINEAR), C/2000 WM1 (LINEAR), C/2001 A2 (LINEAR), and 153/P Ikeya-Zhang (C/2002 C1). We detected the R0 and R1 lines of the ν3 vibrational band of CH4 near 3.3 μm in each comet, with the exception of McNaught-Hartley where only the R0 line was measured. In order to obtain production rates, a fluorescence model has been developed for this band of CH4. We report g-factors for the R0 and R1 transitions at several rotational temperatures typically found in comet comae and relevant to our observations. Using g-factors appropriate to Trot as determined from HCN, CO and/or H2O and C2H6, CH4 production rates and mixing ratios are presented. Abundances of CH4/H2O are compared among our existing sample of comets, in the context of establishing their place of origin. In addition, CH4 is compared to native CO, another hypervolatile species, and no correlation is found among the comets observed.  相似文献   

8.
The paper presents the results of the spectral observations of comet C/2001 Q4 (NEAT) acquired with the Zeiss-600 telescope of the Andrushevka astronomical observatory in May 2004. The spectrum of the comet was obtained in the range of 3600–8200 Å. We identified a number of emission features in the spectrum of comet C/2001 Q4 (NEAT). The emission bands of C2, C3, CN, CH, NH2, H2O+ were detected in the spectrum of the comet, and their intensities were determined. The ratios of gas-production rates Q(C2)/Q(CN) = 0.23, Q(C3)/Q(CN) = ?0.79, and Q(NH2)/Q(CN) = ?0.029 were determined with the Haser model.  相似文献   

9.
We investigated three comets, which are active at large heliocentric distances, using observations obtained at the 6-m BTA telescope (SAO RAS, Russia) in the photometric mode of the focal reducer SCORPIO. The three comets, 29P/Schwassmann-Wachmann 1, C/2003 WT42 (LINEAR), and C/2002 VQ94 (LINEAR), were observed after their perihelion passages at heliocentric distances between 5.5 and 7.08 AU. The dust production rates in terms of Afρ was measured for these comets. Using the retrieved values, an average dust production rate was derived under different model assumptions. A tentative calculation of the total mass loss of the comet nucleus within a certain observation period was executed. We calculated the corresponding thickness of the depleted uppermost layer where high-volatile ices completely sublimated. The results obtained in our study strongly support the idea that the observed activity of Comet SW1 requires a permanent demolition of the upper surface layers.  相似文献   

10.
We obtained spectra of comet C/1999 S4 (LINEAR) with the UAGS spectrograph(long slit and CCD) installed on the 1-m Zeiss reflector of the SAO of the RAS(Northern Caucuses, Nizhny Arkhyz) on July 23/24, 26/27 and 27/28, 2000. OnJuly 22/23, before the splitting of the cometary nucleus, several emission lines,such as C2, C3, CN, NH, CH, NH2, CO+, H2O+ wereclearly identified in the spectra. The inspections of the CCD spectra obtainedon July 27/28, 2000 reveals only very weak emission lines superimposed on thesolar reflection spectrum. From analyzing the surface brightness profile of C2 along the slit the velocity of separation of two secondary fragments (V = 10 km/h) and the energy of the fragment separation (E = 8.7 × 1015 erg) were estimated. A luminescence cometary continuum of 26% of the total continuum level is detected in the spectra of the comet at 5000 Å. Possible mechanisms of nucleus splitting are discussed.  相似文献   

11.
Arecibo S-band () radar observations of Comet C/2001 A2 (LINEAR) on 2001 July 7-9 showed a strong echo from large coma grains. This echo was significantly depolarized. This is the first firm detection of depolarization in a grain-coma radar echo and indicates that the largest grains are at least λ/2π or 2 cm in radius. The grains are moving at tens of m s−1 with respect to the nucleus. The nondetection of the nucleus places an upper limit of 3 km on its diameter. The broad, asymmetric echo power spectrum suggests a fan of grains that have a steep (differential number ∼a−4) size distribution at cm-scales, though the observed fragmentation of this comet complicates that picture.  相似文献   

12.
We made polarimetric observations of comet Hale–Bopp covering awide phase angle range, from 18.8 to 47°. At certain phase angles the heliocentricdistance of the comet was less than 1 AU during its pre and post perihelion passages. Oneof the important findings, based on the data in the visual bands, is the higher polarizationwith stronger wavelength dependence compared to comet Halley, indicating the presenceof much finer grains in comet Hale–Bopp. It may also be noted that comet Hale–Bopphas shown highest degree of polarization known so far for any comet and hence fallsin the class of high polarization comets. Polarimetric observations were made of cometC/2000 WM1 (LINEAR)using narrow band (IHW) filters 4845 Å and 7000 Åand broad bands filters BVR during November 23–26, 2001 when the phase angle rangedfrom 15 to 22°. Some of the results based on these observations are presented anddiscussed.  相似文献   

13.
Splitting events affect cometary nuclei to a different level of severity ranging from complete disruption of the nucleus (e.g., C/1999 S4 LINEAR) to separation of major fragments (e.g., 73P/Schwassmann-Wachmann 3) and spill-offs of smaller boulders (e.g., C/2001 A2 LINEAR).Fragmentation of comets produces secondary products over a wide range of sizes (from cometesimals to sub-micron dust). It is detectable through the presence of fragments (with own comae and tails) in the coma of the parent nucleus, through outbursts in its activity and through arc-lets (“coma wings”)associated with fragments. The secondaries have different life times and show different non-gravitational forces. Nucleus splitting is also considered to generate whole families of comets (Kreutz group) or — if gravitational bound — multiple nuclei (e.g., C/1995 O1 Hale-Bopp). It may explain the striae phenomena seen in dust tails of bright comets (C/1995 O1 Hale-Bopp) and the detection of chains of impact craters onother bodies in the solar system. As process of significant mass loss it is relevant for the scenario of nucleus extinction, at the same time it also plays a role for the number statistics of existing (observable) comets and for the size distribution of comet nuclei. Various model scenarios for nucleus splitting are proposed: tidal disruption, rotational splitting, break-up due to internal gas pressure, fragmentation due to collision with other bodies. Only in one case, Comet D/1993 F1Shoemaker-Levy 9, the physical process of fragmentation could be undoubtedly identified. In any case, comet splitting provides important insights inthe internal structure, surface layering and chemistry of comet nuclei.  相似文献   

14.
Comet C/1999 S4 (LINEAR) was exceptional in many respects. Its nucleus underwent multiple fragmentations culminating in the complete disruption around July 20, 2000. We present circular polarization measurements along the cuts through the coma and nucleus of the comet during three separate observing runs, in June 28-July 2, July 8-9, and July 21-22, 2000. The circular polarization was detected at a rather high level, up to 0.8%. The left-handed as well as right-handed polarization was observed over the coma with the left circularly polarized light systematically observed in the sunward part of the coma. During our observations the phase angle of the comet varied from 61 up to 122°, which allowed us to reveal variations of circular polarization with the phase angle. Correlation between the degree of circular polarization, visual magnitude, water production rate, and linear polarization of Comet C/1999 S4 (LINEAR) during its final fragmentation in July 2000 was found. The mechanisms that may produce circular polarization in comets and specifically in Comet C/1999 S4 (LINEAR) are discussed and some tentative interpretation is presented.  相似文献   

15.
We present an analysis of the results of photometric investigations of two distant comets, C/2002 VQ94 (LINEAR) and 29P/Schwassmann-Wachmann-1, obtained with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. The comets under study demonstrate sufficient activity out of the zone of water ice sublimation (at heliocentric distances longer than 5 AU). In the spectra of the investigated comets, we found the CO+ and N2+ emission. The presence of this emission may say that the comets were formed in the outer parts of the Solar System, in a protoplanetary cloud at a temperature ≤25 K. We found that the photometric maximum of the ionosphere (in the CO+ filter) of the comet C/2002 VQ94 (LINEAR) is shifted relative to the photometric center of the dust coma by 1.4″ (7.44 × 103 km) in the direction deflected by 63° from the direction to the Sun. Using special filters to process the images, we picked out active structures (jets) in the dust coma of the 29P/Schwassmann-Wachmann-1 comet.  相似文献   

16.
We present a preliminary analysis of medium resolution optical spectra of comet C/2000 WM1 (LINEAR) obtained on 22 November 2001. Theemission lines of the molecules C2, C3, CN, NH2,H2O+ and presumably CO (Asundi and triplet bands) and C2 -were identified in these spectra. By analysing the brightnessdistributions of the C2, C3, CN emission lines along theslit of the spectrograph we determined some physical parameters of theseneutrals, such as their lifetimes and expansion velocities inthe coma. The Franck–Condon factors for the CO Asundi bands and C2 - bands were calculated using a Morse potential model.  相似文献   

17.
18.
The evolution of the morphology of C/1999 S4 (LINEAR) is examined from aseries of images taken from shortly before the disruption of the nucleus until10 days afterwards. This is combined with light curve data to provide a uniquedocumentation of the early evolution of the disruption event. Neither imagesfrom the 1-m Jacobus Kapteyn Telescope nor the 2.5-m Isaac Newton Telescopeat the Roque de los Muchachos Observatory (La Palma, Canary Islands, Spain)show no evidence of bright sub-nuclei, although the presence of a well-definedstable lance-point structure in the head of the comet indicates that a dust and gasproducing source remained active in this region. The centre of brightness of thecoma moved in the anti-solar direction at a few tens of metres per second afterdisruption indicating that it was a mainly dust structure. The contrast in thefragmentation history of comets such as C/1999 S4, C/2001 A2 and 141P/Machholz2 suggests that there is a wide variation in nucleus properties from highly unstableand loosely bound rubble piles to relatively consolidated conglomerates.  相似文献   

19.
Micha? Drahus  Wac?aw Waniak 《Icarus》2006,185(2):544-557
The article presents results of CCD photometry in R-band of a dynamically new Comet C/2001 K5 (LINEAR), obtained at a heliocentric distance of about 5.6 AU, after the perihelion passage. Being so distant from the Sun, this comet was extremely active (Afρ close to 2000 cm), exhibiting quite well developed dust coma and tail. During the observations, general photometric behavior of the comet with heliocentric distance r was well described by the 2.5nlog(r) function with coefficient n=5. The radial profiles of the coma were found to be undulated, with mean slope of the dependence between cometary magnitude and 2.5log of aperture radius (at comet distance) equal to . The light curve of Comet LINEAR exhibited short-term variability which we attributed to cyclic changes of dust emission, induced by nucleus rotation. Model computations by some authors have revealed that active comets can change their spin status quite substantially even during a single orbital revolution. Thus, attempting to search for a rotation frequency, we have modified the classical PDM approach by including the spin acceleration term. Such DynamicalPDM (DPDM) method revealed the most reliable solution for the frequency f0=0.019048±0.000013 h−1 and its first time-derivative (index “zero” denotes reference to the mid time of the whole observing run), indicating a rapid spin-down of the nucleus. These parameters are equivalent to the rotation period of 52.499±0.036 h and its relative increment of 0.02729±0.00013. We present the most probable evolution of the rotation frequency of Comet LINEAR, based on the results of periodicity analysis and a simple, almost parameter independent, dynamical model of nucleus rotation. It is also shown that the DPDM may be an effective tool for determination of a nucleus radius, which provided us with the value of 1.53±0.25 km for Comet LINEAR.  相似文献   

20.
Comet C/1999 S4 was observed with the 2m-telescopes of the Bulgarian National Observatory and Pik Terskol Observatory, Northern Caucasus, Russia, at the time of its disintegration. Maps of the dust brightness and color were constructed from images obtained in red and blue continuum windows, free from cometary molecular emissions. We analyze the dust environment of Comet C/1999 S4 (LINEAR) taking into account the observed changes apparent in the brightness images and in plots of Afρ profiles as function of the projected distance ρ from the nucleus. We also make use of the syndyne-synchrone formalism and of a Monte Carlo model based on the Finson-Probstein theory of dusty comets. The brightness and color of individual dust particles, which is needed to derive theoretical brightness and color maps of the cometary dust coma from the Monte Carlo model, is determined from calculations of the light scattering properties of randomly oriented oblate spheroids. In general, the dust of Comet C/1999 S4 (LINEAR) is strongly reddened, with reddening values up to 30%/1000 Å in some locations. Often the reddening is higher in envelopes further away from the nucleus. We observed two outbursts of the comet with brightness peaks on July 14 and just before July 24, 2000, when the final disintegration of the comet started. During both outbursts an excess of small particles was released. Shortly after both outbursts the dust coma “turns blue.” After the first outburst, the whole coma was affected; after the second one only a narrow band of reduced color close to the tail axis was formed. This difference is explained by different terminal ejection speeds, which were much lower than normal in case of the second outburst. In particular in the second, final outburst the excess small particles could originate from fragmentation of “fresh” larger particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号