首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Based on the theory of Housner, the transverse seismic response of beam aqueduct considering fluid-structure cou-pling is established. With the variation of aqueduct cross-section ratio of depth to width, the aqueduct transverse seismic response change. The transverse seismic response of a large-scale aqueduct in several work condition are calculated. It shows that the transverse seismic response is greatly influenced by the water mass in the aqueduct, but the shaking water play a TLD role. If the whole water is appended aqueduct body, it will magnify seismic iner-tia action. When aqueduct cross-section is selected, the influence of ratio of depth and width to pier seismic re-sponse should be considered in order to reduce seismic action.  相似文献   

2.
In this study, the effect of soil–structure modeling assumptions and simplifications on the seismic analyses results of integral bridges (IBs) is investigated. For this purpose, five structural models of IBs are built in decreasing levels of complexity starting from a nonlinear structural model including close numerical simulation of the behavior of the foundation and backfill soil and gradually simplifying the model to a level where the effect of backfill and foundation soil is totally excluded. Nonlinear time history analyses of the modeled IBs are then conducted using a set of ground motions with various intensities representing small, medium and large intensity earthquakes. The analyses results are then used to assess the effect of modeling complexity level on the calculated seismic response of IBs. The nonlinear soil-bridge interaction modeling assumptions are found to have considerable effects on the calculated seismic response of IBs under medium and large intensity earthquakes.  相似文献   

3.
大跨度桥梁结构在地震发生时其支承点受到的地震动激励均不相同,使得在多级地震中其桥梁结构对于地震的响应程度也不同。通过分析多级地震作用下,水中结构的运动引起桥梁墩部周围水体辐射波浪运动对桥梁结构的影响,分析大跨度桥梁墩-水耦合边界。基于反应谱理论,计算大跨度桥梁结构承受的地震力最大值,得出多级地震响应曲线,以分析其多级地震响应;并以某地六跨桥为例,以多级地震下桥梁的位移、剪力、弯矩等响应时程为指标进行分析,得出有效结论。  相似文献   

4.
A numerical study on the influence that cracks and discontinuities (closed cracks) can have on the seismic response of a hypothetical soil–structure system is presented and discussed. A 2-D finite-difference model of the soil was developed, considering a bilinear failure surface using a Mohr–Coulomb model. The cracks are simulated with interface elements. The soil stiffness is used to characterize the contact force that is generated when the crack closes. For the cases studied herein, it was considered that the crack does not propagate during the dynamic event. Both cases, open and closed cracks, are considered. The nonlinear behavior was accounted for approximately using equivalent linear properties calibrated against several 1-D wave propagation analyses of selected soil columns with variable depth to account for changes in depth to bed rock. Free field boundaries were used at the edges of the 2-D finite-difference model to allow for energy dissipation of the reflected waves. The effect of cracking on the seismic response was evaluated by comparing the results of site response analysis with and without crack, for several lengths and orientations. The changes in the response obtained for a single crack and a family of cracks were also evaluated. Finally, the impact that a crack may have on the structural response of nearby structures was investigated by solving the seismic-soil–structure interaction of two structures, one flexible and one rigid to bracket the response. From the results of this investigation, insight was gained regarding the effect that discontinuities may have both on the seismic response of soil deposits and on nearby soil–structure systems.  相似文献   

5.
The essence of performance-based design of gravity earth-retaining structures lies in the estimation of the residual (i.e. permanent) displacements after a seismic event. The accomplishment of this task however can be very complicated due to two interacting phenomena: the coupled sliding and tilting rigid body motion of the wall on an inelastic base and the formation of failure surfaces in the soil backfill. In this study a large number of fully non-linear, time-history analyses of gravity retaining walls (GRW) were performed using advanced numerical modelling. Different types of soil parameters and varying wall geometry within a practical range were investigated. The influence of different ground motion parameters was discussed and the results were compared with some of the most common limit equilibrium Newmark׳s sliding block procedures, including the recommendations by Eurocode 8, Part 5 [20]. Lastly, some recommendations for fast preliminary assessment of the seismic permanent displacements of GRW were provided.  相似文献   

6.
Using the Hill estimator,general multifractal characteristics of events in the New Zealand area have been dis-cussed.Results show that the spatial distribution of shallow events has apparent clustering characteristics,inde-pendent of the threshold magnitude;but for deep events these characteristics are not clear.While the time interval distribution has obvious clustering characteristics both for deep and shallow events,although with a different scal-ing range,the Hill estimates tend to indicate that the time interval distribution has a unifractal rather than a multi-fractal nature.All above reveal that the seismicity nature for shallow and deepevents is apparently different.  相似文献   

7.
This paper presents a simple and stable procedure for the estimation of periods and dampings of piled shear buildings taking soil–structure interaction into account. A substructuring methodology that includes the three-dimensional character of the foundations is used. The structure is analyzed as founded on an elastic homogeneous half-space and excited by vertically incident S waves. The strategies proposed in the literature to estimate the period and damping are revised, and a modified strategy is proposed including crossed impedances and all damping terms. Ready-to-use graphs are presented for the estimation of flexible-base period and damping in terms of their fixed-base values and the system configuration. Maximum shear forces together with base displacement and rocking peak response are also provided. It is shown that cross-coupled impedances and kinematic interaction factors need to be taken into account to obtain accurate results for piled buildings.  相似文献   

8.
This paper presents an experimental investigation on semi-active seismic response control of a multistory building with a podium structure using multiple magnetorheological (MR) dampers manipulated by a logic control algorithm. The experiments are performed in three phases on a seismic simulator with a slender 12-story building model representing a multi-story building and a relatively stiff 3-story building model typifying a podium structure. The first phase of the investigation is to assess control performance of using three MR dampers to link the 3-story building to the 12-story building, in which seismic responses of the controlled two buildings are compared with those of the two buildings without any connection and with rigid connection. The second phase is to investigate reliability of the semi-active control system and robustness of the logic control algorithm when 2 out of 3 MR dampers fail and when the electricity supply to MR dampers is completely stopped. The last phase is to examine sensitivity of semi-active control performance of two buildings to change in ground excitation. The experimental results show that multiple MR dampers with the logic control algorithm can achieve a significant reduction in seismic responses of both buildings. The proposed semi-active control system is of high reliability and good robustness.  相似文献   

9.
Researchonseismicintensityzonationbyuseoftheresponseintensityofhistoricalearth┐quakeswiththecentralpartofShanxiProvinceasanex...  相似文献   

10.
Research on the seismic vulnerability of building structures is very important for the work of earthquake disaster preparedness and mitigation.On the basis of the related studies over a long time,this paper provides several seismic vulnerability matrices of building structure in different regions of Sichuan Province,Poor anti-seismic capability is one of the factors resulting in the earthquake disasters in the past.We can reduce economic losses caused by earthquake through improving the anti-seismic and prevention level of building structures in Sichuan Province.  相似文献   

11.
Seismic pounding between adjacent frames in multiple-frame bridges and girder ends in multi-span simply supported bridges has been commonly observed in several recent earthquakes. The consequences of pounding include damage to piers, abutments, shear keys, bearings and restrainers, and possible collapse of deck spans. This paper investigates pounding in bridges from an analytical perspective. A simplified nonlinear model of a multiple-frame bridge is developed including the effects of inelastic frame action and nonlinear hinge behavior, to study the seismic response to longitudinal ground motion. Pounding is implemented using the contact force-based Kelvin model, as well as the momentum-based stereomechanical approach, Parameter studies are conducted to determine the effects of frame period ratio, column hysteretic behavior, energy dissipation during impact and near source ground motions on the pounding response of the bridge. The results indicate that pounding is most critical for highly out-of-phase frames and is not significant for frame period ratios greater than 0.7. Impact models without energy dissipation overestimate the displacement and acceleration amplifications due to impact, especially for elastic behavior of the frames. Representation of stiffness degradation in bridge columns is essential in capturing the accurate response of pounding frames subjected to far field ground motion. Finally, it is shown that strength degradation and pounding can result in significant damage to the stiffer frames of the bridge when subjected to large acceleration pulses from near field ground motion records.  相似文献   

12.
城市桥梁地震碰撞反应研究与发展   总被引:8,自引:5,他引:8  
地震时城市桥梁会因邻跨之间的碰撞而发生灾害.本文从桥梁碰撞的模拟模型、发生条件、影响因素、碰撞对桥梁抗震性能的影响以及防止碰撞的措施等方面,对国内外有关城市桥梁碰撞地震反应研究的成果进行了系统的总结和分析,得出以下结论:桥梁碰撞是多因素共同作用所导致的,并使得桥梁的地震反应更加复杂、呈现非线性;要准确评价桥梁地震碰撞反应需要建立更精确的模拟模型;选择合理的邻跨间距和支座宽度以及安装合适的消能减震装置,可有效地减小桥梁的地震碰撞反应.  相似文献   

13.
基于随机振动理论确定桥梁地震碰撞的临界间隙   总被引:2,自引:1,他引:2  
确定梁桥邻跨间避免地震碰撞的最小间隙,对于梁桥地震碰撞危险性预测及防地震碰撞措施的设计有着显著意义。本文基于随机振动理论建立梁桥地震碰撞邻跨临界间隙的计算方法,分析模型采用跨径不等的两跨简支梁桥,且考虑隔震支座非线性恢复力的影响。文中首先建立了系统的非线性运动方程;随后运用随机等效线性化理论将其线性化;最后在复模态空间推导了临界碰撞间隙的均值与方差的计算方法。人工地震动的非线性时程分析结果验证了本文算法的正确性。参数分析表明,临界间隙随邻跨长度比增大而增大,随支座屈服力与上部结构重量比值减小而增大,随隔震支座屈服位移增大而增大,随桥墩振动周期增大而增大。隔震支座屈服前后刚度比值对临界间隙大小影响很小。  相似文献   

14.
In this paper the dynamic response of two and three pounding oscillators subjected to pulse‐type excitations is revisited with dimensional analysis. Using Buckingham's Π‐theorem the number of variables that govern the response of the system is reduced by three. When the response is presented in the dimensionless Π‐terms remarkable order emerges. It is shown that regardless of the acceleration level and duration of the pulse all response spectra become self‐similar and follow a single master curve. This is true despite the realization of finite duration contacts with increasing durations as the excitation level increases. All physically realizable contacts (impacts, continuous contacts, and detachments) are captured via a linear complementarity approach. The study confirms the existence of three spectral regions. The response of the most flexible among the two oscillators amplifies in the low range of the frequency spectrum (flexible structures); whereas, the response of the most stiff among the two oscillators amplifies at the upper range of the frequency spectrum (stiff structures). Most importantly, the study shows that pounding structures such as colliding buildings or interacting bridge segments may be most vulnerable for excitations with frequencies very different from their natural eigenfrequencies. Finally, by applying the concept of intermediate asymptotics, the study unveils that the dimensionless response of two pounding oscillators follows a scaling law with respect to the mass ratio, or in mathematical terms, that the response exhibits an incomplete self‐similarity or self‐similarity of the second kind with respect to the mass ratio. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Pounding between adjacent superstructures has been a major cause of highway bridge damage in the past several earthquakes. This paper presents an experimental and analytical study on pounding reduction of highway bridges subjected to earthquake ground motions by using magnetorheological (MR) dampers. An analytical model, which incorporates structural pounding and MR dampers, is developed. A series of shaking table tests on a 1:20 scaled base‐isolated bridge model are performed to investigate the effects of pounding between adjacent superstructures on the dynamics of the structures. Based on the test results, the parameters of the linear and the nonlinear viscoelastic impact models are identified. Performance of the semiactive system for reducing structural pounding is also investigated experimentally, in which the MR dampers are used in conjunction with the proposed control strategy, to verify the effectiveness of the MR dampers. Structural responses are also simulated by using the established analytical model and compared with the shaking table test results. The results show that pounding between adjacent superstructures of the highway bridge significantly increases the structural acceleration responses. For the base‐isolated bridge model considered here, the semiactive control system with MR dampers effectively precludes pounding. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
针对地震作用下公路桥梁的碰撞问题,采用接触单元法模拟桥梁之间的碰撞作用,并在此基础上研究了采用磁流变阻尼器的公路桥梁碰撞的半主动控制方法。通过对某公路桥梁的数值模拟发现,地震作用下桥梁之间的相互碰撞,将大幅增加桥梁的绝对加速度响应。采用磁流变阻尼器的半主动控制系统能够较好地降低结构的地震响应和消除地震作用下的碰撞。  相似文献   

17.
This paper conducts elaborate analyses to evaluate the effectiveness of pounding countermeasures and the serviceability of elevated bridges subject to severe ground motions using detailed 3‐dimensional non‐linear modeling of an entire bridge structure system. A three‐span elevated steel bridge is selected for a case study. The peak and residual magnitude of gaps between girders and the maximum shear deformations of bearings are computed and used in the serviceability evaluation. The results show that under proper configurations the mitigation devices work effectively in reducing pounding actions in both the longitudinal and rotational directions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
简述了地震中观察到的桥梁结构地震碰撞现象,以及已经发展的各种模拟地震碰撞现象的理论分析模型.在此基础上,对桥梁碰撞反应发生机理、碰撞对结构构件抗震能力的影响以及有关防止碰撞发生及防止落梁的有效措施等方面的研究进展进行了回顾和总结.展望了有待进一步研究的问题,包括开展大比例尺的实桥模型地震碰撞试验研究、空间地震动对长跨梁...  相似文献   

19.
Impact stiffness is an important parameter of the contact‐element models for the analysis and prediction of the pounding responses of highway bridges subjected to seismic excitations. This paper presents a pounding experiment to investigate the inconsistencies between the theoretical and experimental values of the impact stiffness both for the linear impact model and Kelvin impact model presented in literature. The analysis of the impact acceleration and acoustic emission signals indicates that accelerometer performance and the non‐uniform pounding are two important factors that affect the pounding responses. Based on this observation, a phenomenological contact‐element model is proposed based on the actual contact state of highway bridges during the impact. To evaluate the effectiveness of the proposed impact model, a numerical simulation is subsequently conducted. A comparison of the results indicates that the proposed impact model can effectively predict the pounding responses of highway bridges. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Horizontal curved bridges are very common at intersections and at the changing angle of bridge alignment. Almost in every previous earthquake report, it can be seen that the columns of a curved segment experience torsional damage, and the curved decks are unseated from the abutment support. The main reason behind that phenomenon is the in‐plane deck rotation which results because of the complex dynamic coupling between two longitudinal directional vibrations. The curved decks are susceptible to deck rotation because in a curved segment, the centre of mass and the centre of stiffness generally lie outside the bridge deck and are not located at the same point. The pounding with the abutment often increases the rotational tendency of the deck. In this paper, a classical mechanics‐based approach is adopted to analytically estimate the deck rotation potential of curved bridge considering the deck‐abutment pounding interaction. The deck‐abutment pounding is modelled using non‐smooth techniques considering the Newton's impact law in the normal and Coulomb's friction in the tangential direction. Within the scope of this paper, a parametric study is performed to get the ideal combination of the column and bent arrangement and the gap distance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号