首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
Understanding the thermal regime of rivers is a key issue for predicting ecosystem change in the context of global warming. However, water temperature is not only influenced by air temperature. To better highlight relative contribution of factors controlling water temperature, we used satellite thermal infrared (TIR) images from Landsat ETM+ to investigate longitudinal and temporal variations in thermal patterns of the French Rh?ne River. Because satellite TIR remote sensing is limited to large rivers, we used an automated water extraction technique to remove pixels contaminated by terrestrial surfaces. We calculated water surface temperatures of the 500?km long reach for 83 dates between 1999 and 2009. The average accuracy and uncertainty of our data, ±1.1 and ±0.4°C for reaches with more than 3?pixels across and ±1.4 and ±0.5°C for reaches with one to 3?pixels across, are comparable to other satellite TIR studies of rivers. Our results confirmed previous studies on the thermal impacts of tributaries and nuclear power plants on the Rh?ne, providing an understanding of their seasonal pattern and their longitudinal impact. We showed temperature differences of 0?C2°C within the largest hydroelectric bypass facilities between the bypass section and the canal, with Montélimar and Caderousse showing the most pronounced differences. Discussion points concern the potential impacts of tributaries and nuclear power plants on the spatio-temporal thermal patterns, as well as the factors responsible for thermal differences in the bypass facilities: length and minimum flow of the bypass section, and tributaries coming into this reach.  相似文献   

2.
The Unzen geothermal field, our study area, is situated in the Shimabara Peninsula of Kyushu Island in Japan and is an area of active fumaroles.. Our prime objectives were (1) to estimate radiative heat flux (RHF), (2) to calculate approximately the heat discharge rate (HDR) using the relationship of RHF with the total heat loss derived from two geothermal field studies, and (3) finally, to monitor RHF as well as HDR in our study area using seven sets of Landsat 7 ETM + images from 2000 to 2009. We used the normalized differential vegetation index (NDVI) method for spectral emissivity estimation, the mono-window algorithm for land surface temperature (LST), and the Stefan–Boltzmann equation analyzing those satellite TIR images for RHF. We estimated that the maximum RHF was about 251 W/m2 in 2005 and minimum was about 27 W/m2 in 2001. The highest total RHF was about 39.1 MW in 2005 and lowest was about 12 MW in 2001 in our study region. We discovered that the estimated RHF was about 15.7 % of HDR from our studies. We applied this percentage to estimate HDR in Unzen geothermal area. The monitoring results showed a single fold trend of HDR from 2000 to 2009 with highest about 252 MW in 2005 and lowest about 78 MW in 2001. In conclusion, TIR remote sensing is thought as the best option for monitoring heat losses from fumaroles with high efficiency and low cost.  相似文献   

3.
The problem of two-dimensional mathematical modelling of heated cooling water discharges into running waters is considered in the paper. Two models — one for the evaluation of 2D turbulent velocity field and the other, developed by authors of the study, for 2D heat transport in open-channels — were used in the calculations. Relevant scenarios of the spread of heated water discharged from a designed gas-stem power plant to be constructed at the Vistula River were presented. Environmentally most friendly variant of the discharge of the thermal pollution was selected from among four various variants.  相似文献   

4.
5.
《水文科学杂志》2013,58(5):1038-1050
Abstract

Universal kriging is applied to the command area of a set of canal irrigation projects in north-western India to show its applicability for optimal contour mapping of groundwater levels. This command area faces the problem of a rising groundwater table and manifestation of waterlogging over the years at many places. With the use of measured elevations of the water table in September 1990 at 143 observation sites in an area of 4500 km2, an omni-directional experimental semivariogram was constructed. The concave upward shape of omni-directional experimental semivariogram indicated the non-stationarity of the data and so the need for universal kriging. Directional semivariograms were calculated to find out the direction along which there is least drift. This directional semivariogram was considered as the underlying semivariogram and various theoretical semivariogram models were fitted to it. The drift order was estimated from the cross-validation procedure. The model and drift order finally selected were used to estimate the groundwater levels and corresponding estimation variances at the nodes of a square grid of 2 km × 2 km, and to develop the corresponding contour map.  相似文献   

6.
With the potentially devastating consequences of flooding, it is crucial that uncertainties in the modelling process are quantified in flood simulations. In this paper, the impact of uncertainties in design losses on peak flow estimates is investigated. Simulations were carried out using a conceptual rainfall–runoff model called RORB in four catchments along the east coast of New South Wales, Australia. Monte Carlo simulation was used to evaluate parameter uncertainty in design losses, associated with three loss models (initial loss–continuing loss, initial loss–proportional loss and soil water balance model). The results show that the uncertainty originating from each loss model differs and can be quite significant in some cases. The uncertainty in the initial loss–proportional loss model was found to be the highest, with estimates up to 2.2 times the peak flow, whilst the uncertainty in the soil water balance model was significantly less, with up to 60 % variability in peak flows for an annual exceedance probability of 0.02. Through applying Monte Carlo simulation a better understanding of the predicted flows is achieved, thus providing further support for planning and managing river systems.  相似文献   

7.
Accretionary lapilli are common in fine-grained pyroclastic flow and surge deposits and related co-ignimbrite/co-surge ash layers of Laacher See volcano. Two morphologically different types are distin-guished: (1) Rim-type lapilli are composed of a coarse-grained core surrounded by a fine-grained rim. Rims are internally graded or made up of several layers of alternating fine and very-fine grained ash. (2) Core-type lapilli lack fine-grained rims. Field relationships, internal, and grain-size characteristics are specific to accretionary lapilli from different types of tephra deposits. Accretionary lapilli may therefore be a helpful tool to infer the origin of tephra of different origin. In co-ignimbrite ashfall, accretionary lapilli are generally concentrated at the base, whereas pyroclastic flow and surge deposits contain lapilli in the upper parts of individual, thin-bedded layers. Rim-type lapilli are found in pyroclastic flow and surge deposits up to 4 km from the source. Core-type lapilli occur at greater distances or are associated with vesiculated tuffs where they are within 1 km from the vent. Accretionary lapilli from co-ignimbrite/co-surge ash show open framework textures and edge-to-face contacts of individual ash particles. Vesicularity is generally low but the overall porosity of 40% to 50% results in an average density of 1200 kg/m3. Accretionary lapilli in pyroclastic flow and surge deposits are more densely packed and platy particles are often in face-to-face contacts. Vesicularity of those from pyroclastic flow deposits is significantly higher; the overall porosity is about 30% to 40% and the average density 1600 kg/m3. Grain-size analyses show that the accretionary lapilli in co-ignimbrite/co-surge ashfall deposits are the most fine-grained with a median (Md) of 20 to 30 m and a maximum grain size of 250 to 350 m. Accretionary lapilli from pyroclastic flow deposits have intermediate Md-values of 30 to 50 m and a maximum grain size of 350 to 500 m. Those of surge deposits are the coarsest grained with Md-values of 30 to >63 m and a maximum grain size up to 2 mm.  相似文献   

8.
9.
Managing environmental and social systems in the face of uncertainty requires the best possible forecasts of future conditions. We use space–time variability in historical data and projections of future population density to improve forecasting of residential water demand in the City of Phoenix, Arizona. Our future water estimates are derived using the first and second order statistical moments between a dependent variable, water use, and an independent variable, population density. The independent variable is projected at future points, and remains uncertain. We use adjusted statistical moments that cover projection errors in the independent variable, and propose a methodology to generate information-rich future estimates. These updated estimates are processed in Bayesian Maximum Entropy (BME), which produces maps of estimated water use to the year 2030. Integrating the uncertain estimates into the space–time forecasting process improves forecasting accuracy up to 43.9% over other space–time mapping methods that do not assimilate the uncertain estimates. Further validation studies reveal that BME is more accurate than co-kriging that integrates the error-free independent variable, but shows similar accuracy to kriging with measurement error that processes the uncertain estimates. Our proposed forecasting method benefits from the uncertain estimates of the future, provides up-to-date forecasts of water use, and can be adapted to other socio-economic and environmental applications.  相似文献   

10.
The fitness of animals inhabiting highly unpredictable intermittent ponds depends on the effectiveness of the production of their resting stages. Daphnia living in such an environment produce sexual eggs as well as the males needed to fertilize them. We hypothesize that the strategy of permanent male presence should coexist with the synchronization of the production of males with that of sexual eggs. To test this hypothesis, we collected plankton samples from a model urban pond, two times a week, throughout the growing season. We analyzed in detail a number of environmental factors and the population dynamics of two Daphnia populations. The percentage of ephippial females and males periodically reached c.a. 50 % of the population. Depending on the moment of the growing season, this proportion was primarily influenced by population crowding, the richness of invertebrate predators in the habitat, extreme high temperatures and the occurrence of the autumnal photoperiod. Our results confirm the hypothesis that Daphnia produce simultaneously long-living males and males synchronized with receptive females. Additionally, we have shown that the number of resting eggs deposited by temporally-isolated populations varied significantly; thus the fitness of a particular genotype depends on the season and on the particular timing of its activation.  相似文献   

11.
Agriculture crop residue burning in tropics is an important source of atmospheric aerosols and monitoring their long-range transport is an important element in climate change studies. Synchronous measurements using micro-pulsed lidar, MICROTOPS-II sun photometer, multi-filter rotating shadow band radiometer (MFRSR) on aerosol optical depth and ground reaching solar irradiance were carried at an urban location in central region of India. Aerosol backscatter profiles obtained from micro-pulse lidar showed elevated aerosol layers up to ~3 km on certain days during October 2007. Satellite data observations on aerosol properties suggested transport of particles from agriculture crop residue burning in Indo-Gangetic Plains over large regions. Radiative forcing of aerosols estimated from SBDART model with input information on aerosol chemical properties, aerosol optical depth and single scattering albedo and broadband solar irradiance measurements using MFRSR showed good correlation (R=0.98).  相似文献   

12.
After analyzing the regulation of overflow ecological water consumption in the Canmrik ecological area of mainstream zone of the Tarim River, in this paper a model of ecological bifurcation is developed, the dynamic overflow process of ecological bifurcation is simulated, and the quantitative relationships between the volume of ecological water consumption and the ecological conservation extent and overflow time are analyzed using GIS, advance of freshet and RS means. The results reveal that the effects of discharge and time of ecological bifurcation on the efficiency of ecological water consump-tion are significant, there is a geometrical exponential relationship between the efficiency of ecological bifurcation and the water supply with different discharges and different times under the same eco-logical water consumption, hypsography plays an important role in ecological water consumption, the regulation of ecological water consumption cannot be equated with the ordinary farming irrigation system, a serious water waste will result and the prospective ecological benefits will not be able to be achieved if an ordinary ecological bifurcation is implemented. The efficiency of ecological water con-sumption can be increased by 30% by selecting the bifurcation schemes in an optimized way, which is of the utmost importance for arid areas with shortage of water resources.  相似文献   

13.
A critical issue in urban cellular automata (CA) modeling concerns the identification of transition rules that generate realistic urban land use patterns. Recent studies have demonstrated that linear methods cannot sufficiently delineate the extraordinary complex boundaries between urban and non-urban areas and as most urban CA models simulate transitions across these boundaries, there is an urgent need for good methods to facilitate such delineations. This paper presents a machine learning CA model (termed MachCA) with nonlinear transition rules based on least squares support vector machines (LS-SVM) to simulate such urban growth. By projecting the input dataset into a high dimensional space using the LS-SVM method, an optimal hyper-plane is constructed to separate the complex boundaries between urban and nonurban land, thus enabling the retrieval of nonlinear CA transition rules. In the MachCA model, the transition rules are yes–no decisions on whether a cell changes its state or not, the rules being dynamically updated for each iteration of the model implementation. The application of the MachCA for simulating urban growth in the Shanghai Qingpu–Songjiang area in China reveals that the spatial configurations of rural–urban patterns can be modeled. A comparison of the MachCA model with a conventional CA model fitted by logarithmic regression (termed LogCA) shows that the MachCA model produces more hits and less misses and false alarms due to its capability for capturing the spatial complexity of urban dynamics. This results in improved simulation accuracies, although with only less than 1 % deviation between the overall errors produced by the MachCA and LogCA models. Nevertheless, the way MachCA model use in retrieving the transition rules provides a new method for simulating the dynamic process of urban growth.  相似文献   

14.
Flooding risk in polders is dictated by not only rainfall, topography, and land use, but also massive pumping. Unfortunately, existing models are inadequate for resolving floods as water transfer due to pumping is insufficiently accounted for. Here an improved hydrological model (MGB-MP) is proposed under the framework of the large-scale hydrological model (MGB) based on the principle of water balance, explicitly incorporating massive pumping within a polder and also out to external rivers. The proposed model is calibrated and validated for the Lannihu basin, a typical polder with an area of 1353 km2 and 126 pumping stations in the Dongting Lake District, China and surrounded by Xiangjiang River and Zishui River. The model performs fairly well, with Nash-Sutcliffe efficiencies concerning water levels over 0.76 for the calibration and over 0.73 for the validation. The model is applied to the Lannihu basin under different pumping station settings and rainfall scenarios to unravel how and to what extent massive pumping affects the flood processes as characterized by water levels and discharge hydrographs. It is shown that massive pumping considerably alters the discharge hydrographs and accordingly leads to substantial decrease in the water levels of rivers, which are independent unit-polders, due to water transfer between unit-polders within the basin and out of the basin. The closer the unit-polders are to pumping stations, the more the water levels in unit-polders decrease. The water levels in unit-polders away from a pumping station is affected by the pumping station capacity to a greater extent than the pumping station's threshold water level for initiating pumping.  相似文献   

15.
In this study, two different historical structures built in Trabzon have been processed by ambient vibrations and seismic refraction measurements. One of the investigated historical structures is the Atatürk Pavilion built in the nineteenth century, and the other one is Hagia Sophia which was built in the thirteenth century. These two buildings are among the most important historical buildings in Trabzon and are very important for the tourism of the city. In order to determine peak/s frequency and amplitude from the horizontal-to-vertical spectral ratios (HVSRs), we have performed several measurements of ambient vibrations both inside (at different floors) and outside (on the ground) of structures. We have also conducted seismic prospecting to evaluate the vertical 1D and 2D profile of longitudinal and shear seismic waves, Vp and Vs, respectively. To this purpose, we have performed seismic refraction tomography and MASW. Ambient vibrations and seismic measurements were compared with each other. The results show that average predominant frequencies and HVSR amplitudes of inside and outside of Atatürk Pavilion are 4.0 Hz, 7.8 Hz and 2.6, 2.3, respectively. The Vp values vary from 300 to 2070 m/s, and the Vs for maximum effective depth is up to 790 m/s in Atatürk Pavilion. On the other hand, average predominant frequencies and HVSR amplitudes of inside and outside of Hagia Sophia and its tower are 4.7, 4.4 and 2.4 Hz and 1.6, 1.8 and 6.9, respectively. Vp values range from 450 to 2200 m/s, and Vs for maximum effective depth is also up to 1000 m/s in Hagia Sophia. The frequency values (F0?=?Vs/4 h) calculated from the velocities up to the maximum effective depth for Atatürk Pavilion are in good agreement with the predominant frequency values determined from ambient vibrations. Atatürk Pavilion and Hagia Sophia soils have been classed according to Eurocode 8 by using VS30 values. The class was defined as “B.” Moreover, the bedrock in studied area is basalt. The high Vp and Vs values are also compatible with the lithology. The HVSR curves measured at the Hagia Sophia show the presence of clear peaks when compared to the Atatürk Pavilion. At the same time, there are marked velocity changes in the Vs sections calculated in both areas. As a result, in both areas there are significant impedance contrasts in the subsoil. However, this impedance contrast is more evident in Hagia Sophia. This could be also compatible with a lithological transition. The possible soil–structure interaction was investigated by using all the results and evaluated in terms of resonance risk. It is thought that the probability of resonance risk at Atatürk Pavilion is low according to the ambient vibrations measurements. However, resonance risk should be taken into consideration at Hagia Sophia site since the predominant frequency values are very close to each other. Finally, this site should be investigated in detail and necessary precautions should be taken against the risk of resonance.  相似文献   

16.
Atmospheric particulate matter (PM) is one of the pollutants that may have a significant impact on human health. Data collected over 7 years from the air quality monitoring station at the LD-III steelworks, belonging to the Arcelor-Mittal Steel Company, located in the metropolitan area of Avilés (Principality of Asturias, Northern Spain), is analyzed using four different mathematical models: vector autoregressive moving-average, autoregressive integrated moving-average (ARIMA), multilayer perceptron neural networks and support vector machines with regression. Measured monthly, the average concentration of pollutants (SO2, NO and NO2) and PM10 (particles with a diameter less than ?10 μm) is used as input to forecast the monthly average concentration of PM10 from one to 7 months ahead. Simulations showed that the ARIMA model performs better than the other models when forecasting 1 month ahead, while in the forecast from one to 9 months ahead the best performance is given by the support vector regression.  相似文献   

17.
《水文科学杂志》2013,58(5):949-960
Abstract

A geographical information system (GIS) was used for the integration of hydrological data acquired using remote sensing and geoelectrical techniques to understand the groundwater condition of Bakhar watershed, Mirazpur District, UP, India. Indian remote sensing IRS-1D, LISS—III data were used to prepare a geomorphological and lineament map of the Bakhar watershed. Vertical electrical sounding (VES) was carried out in different geomorphic units, and ranges of electrical resistivity values were assigned to the different formations by calibrating electrical resistivity with borehole data. Based on these, a subsurface resistivity map and an aquifer thickness map were prepared. Several layers were superimposed using GIS techniques. Each theme was assigned a weight, depending on its influence on groundwater recharge. Each class or unit in the map was assigned a knowledge-based rank from one to four, depending on its significance in storage and transmittance of groundwater, and these were then multiplied by the layer weighting to produce a score. Based on these scores, the watershed was categorized into different groundwater potential zones. The results indicate that the eastern and northern parts of the study area have very good groundwater potential to meet the demands of water for irrigation and domestic purposes, whereas the southern region has poor groundwater potential zones. Such integrated analysis has not been attempted so far in this region for hydrogeological investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号