首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Probabilistic seismic hazard analysis: Early history   总被引:1,自引:0,他引:1  
Probabilistic seismic hazard analysis (PSHA) is the evaluation of annual frequencies of exceedence of ground motion levels (typically designated by peak ground acceleration or by spectral accelerations) at a site. The result of a PSHA is a seismic hazard curve (annual frequency of exceedence vs ground motion amplitude) or a uniform hazard spectrum (spectral amplitude vs structural period, for a fixed annual frequency of exceedence). Analyses of this type were first conceived in the 1960s and have become the basis for the seismic design of engineered facilities ranging from common buildings designed according to building codes to critical facilities such as nuclear power plants. This Historical Note traces the early history of PSHA. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
A unified probabilistic seismic hazard assessment (PSHA) for the Pyrenean region has been performed by an international team composed of experts from Spain and France during the Interreg IIIA ISARD project. It is motivated by incoherencies between the seismic hazard zonations of the design codes of France and Spain and by the need for input data to be used to define earthquake scenarios. A great effort was invested in the homogenisation of the input data. All existing seismic data are collected in a database and lead to a unified catalogue using a local magnitude scale. PSHA has been performed using logic trees combined with Monte Carlo simulations to account for both epistemic and aleatory uncertainties. As an alternative to hazard calculation based on seismic sources zone models, a zoneless method is also used to produce a hazard map less dependant on zone boundaries. Two seismogenic source models were defined to take into account the different interpretations existing among specialists. A new regional ground-motion prediction equation based on regional data has been proposed. It was used in combination with published ground-motion prediction equations derived using European and Mediterranean data. The application of this methodology leads to the definition of seismic hazard maps for 475- and 1,975-year return periods for spectral accelerations at periods of 0 (corresponding to peak ground acceleration), 0.1, 0.3, 0.6, 1 and 2 s. Median and percentiles 15% and 85% acceleration contour lines are represented. Finally, the seismic catalogue is used to produce a map of the maximum acceleration expected for comparison with the probabilistic hazard maps. The hazard maps are produced using a grid of 0.1°. The results obtained may be useful for civil protection and risk prevention purposes in France, Spain and Andorra.  相似文献   

3.
Recent earthquakes such as the MJMA 7.2 Hyogo-ken Nambu earthquake and the M 7.4 Kocaeli earthquake demonstrate once again the need to include detailed soil investigation into hazard evaluation, that is the need of microzonation. Seismic hazard assessment evaluated at a regional scale generally does not consider soil effects but only in a limited way using an attenuation law that can be ‘soft soil’ or ‘rock’. However, the relevant role of seismic hazard in the assessment of seismic coefficients for the definition of the actions in seismic codes must be properly considered. That is to say, the level of protection of buildings is proportional to a definite level of hazard (generally considered to be the ground motion with 10% probability of exceedence in 50 years). When a microzonation is performed, this criterion cannot be ignored, therefore, a clear linkage must be established between hazard (regional scale) and microzonation. The crucial point is represented by the reference motion (or input motion) to be used for site effects analysis, that must be compatible with the regional seismic hazard. In this paper, three different approaches for reference motion evaluation are analysed: probabilistic; stochastic; and deterministic. Through the case history of Fabriano microzonation the three approaches are compared. It is shown that each approach presents advantages and disadvantages with respect to the others. For example, the probabilistic approach (the reference motion is directly derived from the expected response spectra for a given return period) is linked with hazard, but produces an overestimation in short periods range, while the deterministic approach correctly simulates the wave propagation, but it ends with a kind of conditional probability. Until now, clear criteria to choose the right approach do not appear to exist and the expert experience is of fundamental importance.  相似文献   

4.
Spectral ground motion (1 to 15 Hz) as a function of distance is modeled for events spanning 3.0 <Mw ≤ 7.0 in Switzerland. The parameters required to simulate ground motion with a stochastic approach are inverted from 2958 horizontal and vertical component waveforms of small to moderate size events (2.0 ≤ M{L} ≤ 5.2) in the distance range 10 to 300 km recorded on hard rock sites. Using a Monte Carlo simulation, we establish a significantly different amplification of about a factor of 1.9 between the Alpine Foreland and the Alps. To assess the trade-off between the free parameters of our stochastic model and their influence on the predictive ground motion relationship, we perform a grid search over the five-dimensional solution space. The uncertainties are separated into epistemic and aleatory parts; the main epistemic uncertainty is attributed to the lack of data forM > 5. To constrain the viable models at large magnitudes, results from worldwide scaling studies are evaluated in light of the Swiss data. The model that explains best the low observed stress drops at small magnitudes (Δσ ≅ 3 bar) yet matches observed intensities of historical earthquakes assumes a stress drop increasing with moment asM00.25. For three sites in Switzerland we evaluate the sensitivity of the epistemic uncertainty by computing probabilistic hazard curves. Our model offers the most comprehensive and detailed study of spectral ground motion for Switzerland to date.  相似文献   

5.
A new seismic hazard model for Cairo, the capital city of Egypt is developed herein based on comprehensive consideration of uncertainties in various components of the probabilistic seismic hazard analysis. The proposed seismic hazard model is developed from an updated catalogue of historical and instrumental seismicity, geodetic strain rates derived from GPS-based velocity-field of the crust, and the geologic slip rates of active faults. The seismic source model consists of area sources and active faults characterised to forecast the seismic productivity in the region. Ground motion prediction models are selected to describe the expected ground motion at the sites of interest. The model accounts for inherent epistemic uncertainties of statistical earthquake recurrence; maximum magnitude; ground motion prediction models, and their propagation toward the obtained results. The proposed model is applied to a site-specific hazard analysis for Kottamiya, Rehab City and Zahraa-Madinat-Nasr (hereinafter referred to as Zahraa) to the East of Cairo (Egypt). The site-specific analysis accounts for the site response, through the parameterization of the sites in terms of average 30-m shear-wave velocity (Vs30). The present seismic hazard model can be considered as a reference model for earthquake risk mitigation and proper resilience planning.  相似文献   

6.
A probabilistic seismic hazard analysis (PSHA) utilizes, in the conventional Cornell–McGuire approach, a quantitative model of the earthquake activity implying major simplifications which are important to assess in terms of their contributions to uncertainty. The goal is one of the basic principles in science, namely to establish a minimum parameter model that depicts nature with the optimum representativity (Occam's razor). All too often, underlying seismological issues remain obscure in PSHA analyses. On the basis of a specific analysis conducted in Norway we highlight how a combined seismicity analysis using both modern network data and historical data can be utilized in order to provide realistic insights into location precision and to establish magnitude homogeneity. All of this is aimed at improving the reliability of the seismic source models (i.e. the activity parameters), and to improve, without over-interpretation the earthquake catalog data, the spatial differentiation of the seismogenic zones.  相似文献   

7.
Seismic hazard analysis requires the estimation of the probabilities that earthquakes will take place within a region of interest, and the expected level of ground motion which will be received at a site during the nextt years. The earthquake magnitude has been used as a basic parameter, because it is available, under the assumption that the earthquake occurrence is a compound Poisson process with exponential or multinomial distribution of magnitude.For improving the hazard prediction, we used the seismic moment as a basic parameter to estimate the mean rate, , of occurrence of earthquakes in a function of seismic moment rate and slip rate released in a seismogenic region.As an illustration of the model, the seismic hazard analysis at different sites in and around the Gulf of Corinth, central Greece, is presented on the basis of the earthquake magnitude and the seismic moment. Comparison of the results shows that determination of the mean rate of earthquake occurrence, using the conventional Gutenberg-Richter recurrence model, underestimates the seismic hazard at a site.  相似文献   

8.
Probabilistic seismic hazard analysis in Nepal   总被引:3,自引:0,他引:3  
The seismic ground motion hazard for Nepal has been estimated using a probabilistic approach. A catalogue of earthquakes has been compiled for Nepal and the surrounding region (latitude 26% N and 31.7% N and longitude 79° E and 90° E) from 1255 to 2011. The distribution of catalogued earthquakes, together with available geological and tectonic information were used to delineate twenty-three seismic source seismic source information and probabilistic earthquake hazard prediction relationship, peak ground accelerations (PGAs) have zones in Nepal and the surrounding region. By using the parameters in conjunction with a selected ground motion been calculated at bedrock level with 63%, 10%, and 2% probability of exceedance in 50 years. The estimated PGA values are in the range of 0.07-0.16 g, 0.21 0.62 g, and 0.38-1.1 g for 63%, 10%, and 2% probability of exceedance in 50 years, respectively. The resulting ground motion maps show different characteristics of PGA distribution, i.e., high hazard in the far-western and eastern sections, and low hazard in southern Nepal. The quantified PGA values at bedrock level provide information for microzonation studies in different parts of the country.  相似文献   

9.
This article points out some particular features conditioning seismic hazard assessments (SHA) in Spain, a region with low–moderate seismicity. Although sized earthquakes occurred in the past, as evidenced by historical documents and neotectonic studies, no large events occurred during the last decades. The absence of strong motion records corresponding to earthquakes with magnitude larger than 5.5 is an important obstacle for the development of ground motion models constrained by local data, with the consequent difficulty in SHA studies. In this paper, some recent developments aiming at providing solutions to these difficulties are presented. Specifically, a strong motion databank containing a massive collection of accelerograms and response spectra from different configurations source-path-site corresponding to earthquakes all over the world is introduced, together with software utilities for its management. A first application of this databank is the development of specific ground motion models for Spain and for the Mediterranean region that predict peak ground accelerations as a function of several definitions of magnitude, distance and soil class. The predictive power of these ground motion models is tested by contrasting their estimates with recently recorded ground motions. The comparison between our ground-motion models with others proposed in the literature for other areas reveals a regular overestimation of the expected ground motions at Spanish sites by the non-local models. Consequently, SHA studies based in external models may overestimate the predicted hazard at the Iberian sites. In the last part of the paper a method for checking whether the response spectra proposed in the Spanish Building Code (NCSE-02) are consistent with actual accelerometric data from recent low magnitude earthquakes is applied. The spectral shapes of the Spanish Building Code NCSE-02 are compared with the response spectral shapes deduced from the available accelerograms by normalising the response spectra with the recorded PGA. It is appreciated that the NCSE-02 spectral shapes are exceeded by a large number of actual spectral shapes for short periods (around 0.2 s), a result to be taken into account in further revisions of the NCSE-02 code. The issues tackled in this work constitute not only an improvement for ground-motion characterisation in Spain, but also provide guidelines of general interest for potential applications in other regions with similar seismicity.  相似文献   

10.
This paper presents a methodological discussion of several issues involved with the development of maps of seismic hazard. The points made are illustrated with worked examples, using Scotland as an illustrative case. The issues treated are divided under three headings: matters relating to the difference between hazard maps and site studies; matters concerned with the technical issues of mapping, and matters relating to the use to which hazard maps will be put. It is concluded that a hazard map cannot be an all-purpose substitute for site-specific studies, owing to the impracticality of ensuring all-round conservatism in a hazard map, and the lower level of detail (more broad-brush approach) in a regional mapping study. Also, since users of a hazard map are not necessarily going to be engineers, consideration should be given to the provision of maps expressed in parameters other than physical measures of ground motion. Intensity is useful here, since it relates to actual earthquake experience and to damage. One can also move to making maps of generic seismic risk even before one has data on the distribution of exposure and vulnerability. Discussion is made of the issue of testing the validity of hazard maps against real experience, with examples. If a map can be shown to accord with real observations, then it can be treated with greater confidence by users.  相似文献   

11.
A global cross-section of the Earth parallel to the tectonic equator (TE) path, the great circle representing the equator of net lithosphere rotation, shows a difference in shear wave velocities between the western and eastern flanks of the three major oceanic rift basins. The low-velocity layer in the upper asthenosphere, at a depth range of 120 to 200 km, is assumed to represent the decoupling between the lithosphere and the underlying mantle. Along the TE-perturbed (TE-pert) path, a ubiquitous LVZ, about 1,000-km-wide and 100-km-thick, occurs in the asthenosphere. The existence of the TE-pert is a necessary prerequisite for the existence of a continuous global flow within the Earth. Ground-shaking scenarios were constructed using a scenario-based method for seismic hazard analysis (NDSHA), using realistic and duly validated synthetic time series, and generating a data bank of several thousands of seismograms that account for source, propagation, and site effects. Accordingly, with basic self-organized criticality concepts, NDSHA permits the integration of available information provided by the most updated seismological, geological, geophysical, and geotechnical databases for the site of interest, as well as advanced physical modeling techniques, to provide a reliable and robust background for the development of a design basis for cultural heritage and civil infrastructures. Estimates of seismic hazard obtained using the NDSHA and standard probabilistic approaches are compared for the Italian territory, and a case-study is discussed. In order to enable a reliable estimation of the ground motion response to an earthquake, three-dimensional velocity models have to be considered, resulting in a new, very efficient, analytical procedure for computing the broadband seismic wave-field in a 3-D anelastic Earth model.  相似文献   

12.
郎从  伍国春  高孟潭 《中国地震》2014,30(3):324-329
本文利用GIS技术,将全国地震重点监视防御区(重防区)县级行政单元边界分别与中华人民共和国地震动峰值加速度图和中国及邻区地震区带和潜在震源区划分图叠加,对各县分别计算了如下4个地震危险性指标:(1)县境内最高地震动峰值加速度等级;(2)县境内面积比例最大的地震动峰值加速度等级;(3)县境内最高潜在震源区震级上限等级;(4)县境内面积比例最大的潜在震源区震级上限等级.通过分类统计全国重防区县级行政单元的地震危险性分布,得到的结论是:虽然同为重防区但各地的地震危险性相差巨大.据此,建议根据地震危险性的不同在重防区采取如下措施:第一,不论是何种类型的重防区,均应按中国地震动参数区划图对新建工程做抗震设防,对已有建筑做抗震加固;第二,位于高地震危险性的区域,特别是位于具7级以上潜在地震危险的重防区,要加强与防灾有关的应急准备、城市规划、地震监测预报、地震应急响应等专门措施.  相似文献   

13.
Two key issues distinguish probabilistic seismic risk analysis of a lifeline or portfolio of structures from that of a single structure. Regional analysis must consider the correlation among lifeline components or structures in the portfolio, and the larger scope makes it much more computationally demanding. In this paper, we systematically identify and compare alternative methods for regional hazard analysis that can be used as the first part of a computationally efficient regional probabilistic seismic risk analysis that properly considers spatial correlation. Specifically, each method results in a set of probabilistic ground motion maps with associated hazard‐consistent annual occurrence probabilities that together represent the regional hazard. The methods are compared according to how replicable and computationally tractable they are and the extent to which the resulting maps are physically realistic, consistent with the regional hazard and regional spatial correlation, and few in number. On the basis of a conceptual comparison and an empirical comparison for Los Angeles, we recommend a combination of simulation and optimization approaches: (i) Monte Carlo simulation with importance sampling of the earthquake magnitudes to generate a set of probabilistic earthquake scenarios (defined by source and magnitude); (ii) the optimization‐based probabilistic scenario method, a mixed‐integer linear program, to reduce the size of that set; (iii) Monte Carlo simulation to generate a set of probabilistic ground motion maps, varying the number of maps sampled from each earthquake scenario so as to minimize the sampling variance; and (iv) the optimization‐based probabilistic scenario again to reduce the set of probabilistic ground motion maps. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A method for quantitatively assessing sinkhole susceptibility (spatial probability) and hazard (spatio‐temporal probability) has been developed and independently tested in a 50 km2 sector of the Ebro Valley evaporite karst. Three genetic types of sinkholes have been mapped in the floodplain and a terrace surface: 947 small cover‐collapse sinkholes (type 1, terrace), large collapse sinkholes (type 2, floodplain) and large subsidence depressions (type 3, floodplain). The type 1 sinkhole inventory includes two temporal populations: 447 sinkholes formed before 24 November 2005, and 500 between that date and 2 November 2006. Sinkhole susceptibility models have been elaborated analysing the statistical relationships between the sinkholes of the 2005 inventory and a set of potential conditioning factors. The independent evaluation (validation) of the susceptibility models by means of several strategies (random, sequentially excluded, and temporal) has allowed us to select the most significant variables for each sinkhole type and assess quantitatively the quality of models; which are reasonable for the three sinkhole types. Validation has also provided information on the contribution of specific variables and the effect of changing their accuracy to the prediction capability of models. Susceptibility models for type 3 sinkholes have been validated satisfactorily with the 2006 sinkhole inventory (temporal validation). The best susceptibility model has been transformed into a hazard map considering the frequency of sinkholes that occurred in each susceptibility class between 2005 and 2006, as well as their average size. The susceptibility and hazard models obtained could be used as an objective basis for the application of mitigation measures, either of preventive or corrective nature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.

川滇地区地处我国南北地震带南段,近百年来地震活动性持续较高,该地区未来强震预测研究备受关注.本文根据该区域百年时间内发生的30次MS>6.5历史地震,结合区域地质背景及GPS观测数据等,建立区域有限元准三维弹性模型,通过反演给定区域特定时刻合理的初始应力场.在此基础上,综合考虑地震孕育阶段和震后调整阶段的动力学过程,以库仑-摩尔破裂准则作为判断地震发生的条件,模拟单次地震过程和历史地震序列的发展过程.同时,对于数值模拟中的不确定性成分,通过大量Monte Carlo随机试验得到5000种初始应力场模型,确保所有模型均能重现历史地震的发震过程,最终得到现今应力场状态,并据此计算地震危险性系数,将不同模型的计算结果进行概率统计,初步得到研究区域2017年九寨沟地震后的地震危险性概率分布.结果显示历史地震破裂区的危险性概率大幅降低,相对安全;而龙门山断裂带东北段发震概率高达30%,主要是受2008年汶川地震震后应力扰动的影响;龙门山断裂带西南段(包括汶川地震破裂区与芦山地震破裂区的中间区域)与鲜水河断裂带交界处发震概率约为15%~20%;另外滇西南龙陵瑞丽断裂带及澜沧江断裂带附近发震概率约为10%~15%,近年来滇西南地区小震频发,该地区地震危险性同样值得注意.

  相似文献   

16.
The objective of this study is to evaluate the seismic hazard in Eastern Marmara Region using an improved probabilistic seismic hazard assessment methodology. Two significant improvements over the previous seismic hazard assessment practices are accomplished in this study: advanced seismic source characterization models in terms of source geometry and recurrence relationships are developed, and improved global ground motion models (NGA-W1 models) are employed to represent the ground motion variability. Planar fault segments are defined and a composite magnitude distribution model is used for all seismic sources in the region to properly represent the characteristic behavior of the North Anatolian Fault without the need for an additional background zone. Multi-segment ruptures are considered using the rupture model proposed by the Working Group on California Earthquake Probabilities (2003). Events in the earthquake catalogue are attributed to the fault zones and scenario weights are determined by releasing the accumulated seismic energy. The uniform hazard spectra at 10 % probability of exceedance in 50 years hazard level for different soil conditions (soil and rock) are revealed for specific locations in the region (Adapazar?, Düzce, Gemlik, Izmit, Iznik and Sapanca). Hazard maps of the region for rock site conditions at the selected hazard levels are provided to allow the readers perform site-specific hazard assessment and develop site-specific design spectrum for local site conditions.  相似文献   

17.
18.
A methodology is proposed to determine design earthquakes for site-specific studies such as the siting of critical structures (power plants, waste disposals, large dams, etc.), strategic structures (fire stations, military commands, hospitals, etc.), or for seismic microzoning studies, matching the results of probabilistic seismic hazard analyses. This goal is achieved by calculating the source contribution to hazard and the magnitude–distance deaggregation, showing that, varying the selected frequency and the level of hazard, the reference earthquakes are changed as a result. A procedure is then adopted to minimize the residuals between the uniform hazard spectrum (target motion) and the design earthquake spectrum, to provide a specific earthquake scenario encompassing all the frequencies of the target motion. Finally, some considerations on the use and the influence exerted by ground motion uncertainty (σ) on hazard deaggregation are outlined.  相似文献   

19.
20.
This paper presents a seismic hazard map for the southern part of Ghana prepared using the probabilistic approach, and seismic hazard assessment results for six cities. The seismic hazard map was prepared for 10% probability of exceedance for peak ground acceleration in 50 years. The input parameters used for the computations of hazard were obtained using data from a catalogue that was compiled and homogenised to moment magnitude (Mw). The catalogue covered a period of over a century (1615–2009). The hazard assessment is based on the Poisson model for earthquake occurrence, and hence, dependent events were identified and removed from the catalogue. The following attenuation relations were adopted and used in this study—Allen (for south and eastern Australia), Silva et al. (for Central and eastern North America), Campbell and Bozorgnia (for worldwide active-shallow-crust regions) and Chiou and Youngs (for worldwide active-shallow-crust regions). Logic-tree formalism was used to account for possible uncertainties associated with the attenuation relationships. OpenQuake software package was used for the hazard calculation. The highest level of seismic hazard is found in the Accra and Tema seismic zones, with estimated peak ground acceleration close to 0.2 g. The level of the seismic hazard in the southern part of Ghana diminishes with distance away from the Accra/Tema region to a value of 0.05 g at a distance of about 140 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号