首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoelectric Vilnius photometry of the B-type stars HD 29 647 and HDE 283 809 in the direction of the Taurus molecular cloud indicates their brightness and energy distribution to be constant within 1–2%. The interstellar extinction law is determined for the star HDE 283 809 from the photometry data in the Vilnius andUBVRJHKL systems, which yield the ratioR=A V/EB-V=3.5 and grain sizes exceeding the average by approximately 10%. The interstellar extinction law for the two stars is found to be the same in the infrared, however, it is very different in the near ultraviolet. The new spectra of HDE 283 809 confirm the earlier classification and indicate an absence of emission in the hydrogen lines. The interstellar band at 443 nm is observed but its intensity is a half of what is expected forE B-V=1.61. The observed peculiarities of the energy distribution in the spectrum of HDE 283 809 apparently originate in interstellar or circumstellar dust, not in the star itself.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

2.
This paper corrects and completes a previous study of the shape of the extinction curve in the visible and the value of RV. A continuous visible/infrared extinction law proportional to 1/λp with p close to 1 (± 0.4) is indistinguishable from a perfectly linear law (p = 1) in the visible within observational precision, but the shape of the curve in the infrared can be substantially modified. Values of p slightly larger than 1 would account for the increase of extinction (compared to the p = 1 law) reported for λ > 1 μ m and deeply affect the value of RV. In the absence of gray extinction RV must be 4.04 if p = 1. It becomes 3.14 for p = 1.25, 3.00 for p = 1.30, and 2.76 for p = 1.40. Values of p near 1.3 are also attributed to extinction by atmospheric aerosols, which indicates that both phenomena may be governed by similar particle size distributions. A power extinction law may harmonize visible and infrared data into a single, continuous, and universal interstellar extinction law (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Multicolor photometry from the Tycho-2 and 2MASS catalogues for 11 990 OB and 30 671 K-type red giant branch stars is used to detect systematic large-scale variations of the interstellar extinction law within the nearest kiloparsec. The characteristic of the extinction law, the total-to-selective extinction ratio Rv, which also characterizes the size and other properties of interstellar dust grains, has been calculated for various regions of space by the extinction law extrapolation method. The results for the two classes of stars agree: the standard deviation of the “red giants minus OB” Rv differences within 500 pc of the Sun is 0.2. The detected Rv variations between 2.2 and 4.4 not only manifest themselves in individual clouds but also span the entire space near the Sun, following Galactic structures. In the Local Bubble within about 100 pc of the Sun, Rv has a minimum. In the inner part of the Gould Belt and at high Galactic latitudes, at a distance of about 150 pc from the Sun, Rv reaches a maximum and then decreases to its minimum in the outer part of the Belt and other directions at a distance of about 500 pc from the Sun, returning to its mean values far from the Sun. The detected maximum of Rv at high Galactic latitudes is important when allowance is made for the interstellar extinction toward extragalactic objects. In addition, a monotonic increase in Rv by 0.3 per kpc toward the Galactic center has been found near the Galactic equator. It is consistent with the result obtained by Zasowski et al. (2009) for much of the Galaxy. Ignoring the Rv variations and traditionally using a single value for the entire space must lead to systematic errors in the calculated distances reaching 10%.  相似文献   

4.
The stellar field centred close to theh and Per double cluster is one of the 123 fields recorded in the galactic plane at 2000 Å by the balloon-borne stratospheric gondola of the SCAP-2000 programme. The analysis of the frame allows us to determine an ultraviolet colour indexU 1-V for more than 600 stars. Among these are stars belonging to theh and Per and Tr 2 clusters and to the PER OB1 association. The prevailing extinction law is found to produce greater extinction at 1965 Å than predicted by the mean extinction law. Moreover, the clouds responsible for the extinction are situated in the local arm and distributed in two layers with a very transparent interval. The comparison of theA v extinction and theHI and CO abundances leads us to assume the presence of a H2 cloud in front ofh and Per, in the second absorbing layer and, therefore, in the local arm. The two absorbing layers and the molecular cloud are perhaps in the plane of the Gould belt and associated with the expanding gas detected by Lindblad. A group of hot stars centred at the same distance as this molecular cloud has been detected and could form an association of OB stars in the local arm. Other, much more distant OB stars belonging to the Perseus arm of Efremov's list. Several stars which must have a very hot companion are detected in the field.  相似文献   

5.
We relate the equivalent widths of the major diffuse interstellar bands (DIBs) near 5797 and 5780 Å with different colour excesses, normalized by E ( B − V ) , which characterize the growth of interstellar extinction in different wavelength ranges. It is demonstrated that the two DIBs correlate best with different parts of the extinction curve, and the ratio of these diffuse bands is best correlated with the far-ultraviolet (UV) rise. A number of peculiar lines of sight are also found, indicating that the carriers of some DIBs and the far-UV extinction can be separated in certain environments, e.g. towards the Per OB2 association.  相似文献   

6.
The 2200 Å bump is a major figure of interstellar extinction. However, extinction curves with no bump exist and are, with no exception, linear from the near‐infrared down to 2500 Å at least, often over all the visible‐UV spectrum. The duality linear versus bump‐like extinction curves can be used to re‐investigate the relationship between the bump and the continuum of interstellar extinction, and answer questions as why do we observe two different kinds of extinction (linear or with a bump) in interstellar clouds? How are they related? How does the existence of two different extinction laws fits with the requirement that extinction curves depend exclusively on the reddening E (BV) and on a single additional parameter? What is this free parameter? It will be found that (1) interstellar dust models, which suppose the existence of three different types of particles, each contributing to the extinction in a specific wavelength range, fail to account for the observations; (2) the 2200 Å bump is very unlikely to be absorption by some yet unidentified molecule; (3) the true law of interstellar extinction must be linear from the visible to the far‐UV, and is the same for all directions including other galaxies (as the Magellanic Clouds). In extinction curves with a bump the excess of starlight (or the lack of extinction) observed at wavelengths less than λ = 4000 Å arises from a large contribution of light scattered by hydrogen on the line of sight. Although counter‐intuitive this contribution is predicted by theory. The free parameter of interstellar extinction is related to distances between the observer, the cloud on the line of sight, and the star behind it (the parameter is likely to be the ratio of the distances from the cloud to the star and to the observer). The continuum of the extinction curve and the bump contain no information on the chemical composition of interstellar clouds. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Interstellar extinction curves obtained from the ‘extinction without standard’ method were used to constrain the dust characteristics in the mean ISM (R V = 3.1), along the lines of sight through a high latitude diffuse molecular cloud towards HD 210121 (R V = 2.1) and in a dense interstellar environment towards the cluster NGC 1977 (R V = 6.42). We have used three-component dust models comprising silicate, graphite and very small carbonaceous grains (polycyclic aromatic hydrocarbons) following the grain size distributions introduced by Li & Draine in 2001. It is shown that oxygen, carbon and silicon abundances derived from our models are closer with the available elemental abundances for the dust grains in the ISM if F & G type stars atmospheric abundances are taken for the ISM than the solar. The importance of very small grains in modelling the variation of interstellar extinction curves has been investigated. Grain size distributions and elemental abundances locked up in dust are studied and compared at different interstellar environments using these three extinction curves. We present the albedo and the scattering asymmetry parameter evaluated from optical to extreme-UV wavelengths for the proposed dust models.  相似文献   

8.
Using the results of observations of the Carina nebula made with the space telescope Glazar, it is shown that the extinction law for the nebula is abnormal and that there is a single OB star complex within the nebula at a distance of about 2200 pc. It is suggested that the observed distribution of OB stars in the nebula and also the appearance of the nebula itself is due to a specific structure of the absorbing clouds within the nebula, and that the absorbing clouds may have such structure as a result of an explosion in the center of the nebula.  相似文献   

9.
We investigate the plausibility of using diffuse interstellar band at862 nm for tracing interstellar extinction with the ESA's astrometric space mission GAIA. For this purpose we perform numerical tests to simulate the conditions of real observations, covering a wide range of stellar parameters and different amounts of interstellar extinction. Our simulations indicate that with the present Radial Velocity Spectrometer setup the uncertainty in color excess of σE(B-V)≤ 0.05 can be achieved only for the interstellar reddening tracers brighter than V ∼ 13. None of the plausible tracers can provide accurate color excesses (σ E(B-V) ≤ 0.05) at the distances beyond 2 kpc. We therefore conclude that with the currently planned instrumentation onboard GAIA this method can not be used as a stand-alone approach for probing interstellar extinction on the Galactic distance scales within the framework of the GAIA mission. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
We have applied the method of investigating extinction curves using statistically meaningful samples that was proposed by us 25 years ago. The extensive data sets of the ANS (Astronomical Netherlands Satellite) and 2MASS (Two Micron All Sky Survey) were used, together with UBV photometry to create average extinction curves for samples of OB stars. Our results demonstrate that in the vast majority of cases the extinction curves are very close to the mean galactic extinction curve. Only a few objects were found to be obviously discrepant from the average. The latter phenomenon may be related to nitrogen chemistry in translucent interstellar clouds (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We investigate the possibilities for tracing interstellar extinction with the ESA's astrometric space mission GAIA. The analysis is based on detailed simulations of the GAIA photometry, which are used to derive the distribution of interstellar matter in a modelled Galaxy. We find that `small' diffuse clouds (diameter D = 4 pc, E B-V = 0.06) will be easily traced with GAIA up to the distances of ∼ 800 pc. `Large' diffuse interstellar clouds (D = 10 pc, E B-V = 0.13) will be located up to the distances of ∼ 2.5 kpc. This holds for the reddening tracers of spectral types O – K2 brighter than V = 17. Inmost cases, due to their low spatial density, the early type stars (O– A2) cannot provide reliable information about the distribution of interstellar matter. None of the reddening tracers measured by GAIA will provide reliable identification of the individual interstellar clouds beyond the distances of ∼ 3 kpc. Therefore, we conclude that the information available from photometric observations will be not sufficient for the detailed reconstruction of the 3-D distribution of Galactic interstellar matter. It is therefore extremely important to define the new strategies which would allow to combine all the available information, including the earlier space- and/or ground-based investigations, together with the information which will be provided by GAIA itself (parallaxes, E B-V etc.). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
A comparison of observed stellar distributions with a three-component model of the Galaxy is presented. The analysis is based on photometric and photoelectric data obtained along the main Galactic meridian and in two fields near the North Galactic pole (programme MEGA). The assumed model considers the Galaxy as composed of the disk (main sequence and disk red giants), the thick disk and spheroid populations. To model the observed colour distribution, we distinguish main sequence stars and disk red giants as the disk subsystem; white dwarfs, subdwarfs and intermediate giants as the thick disk subsystem; extreme subdwarfs, spheroid giants and horizontal branch stars as the spheroid subsystem. A statistical relation between the apparent and absolute magnitudes of stars which make the maximum contribution to the star counts for a given disk subsystem is derived. In order to achieve the best agreement between the model and observations, we fit the values of the ‘dip’ (aw) of the disk luminosity function, the correction to the absolute magnitude of disk red giants (ΔMVRG) and the expression for interstellar extinction. As the main result, we obtained aw = 0.6 (logarithmic scale) and ΔMVRG = 0.5 mag; the interstellar extinction has to be taken into account by the modified Sandage law.  相似文献   

13.
We describe Bayesian probabilistic approach to estimating the properties of stars and the interstellar extinction law based on photometric observations and using prior data about the parameters of the stars. The accuracy of the resulting estimates is analyzed in the case of SDSS and 2MASS surveys. We found that our estimates have no systematic deviations in the case of photometric accuracy typical of the surveys considered and errors of prior data of ΔT eff = ±150 K and Δlog g = ±0.5. Note that the error of the estimated interstellar extinction A 0 is of about 0. m 3, and the error of the R 0 estimate depends on extinction and is close 0.2 for moderate A0 values. The fractional error of the estimated stellar angular diameters is close to 10%. A possible application of our approach is to determine the dependence of interstellar extinction on distance using stars closely located in the same sky area.  相似文献   

14.
We have mapped 16 molecular clouds toward a new OB association in the Pup-CMa region to derive their physical properties. The observations were carried out in the 12CO (J = 1 – 0) line with the Southern millimetre-wave Telescope at Cerro Tololo, Chile. Distances have been determined kinematically using the rotation curve of Brand with R = 8.5 kpc and V = 220 km/s. Masses have been derived adopting a CO luminosity to H2 conversion factor X = 3.8 . 1020 molecules cm-2 (K km/s)-1. The observed mean radial velocity of the clouds is comparable with the mean radial velocity of stars composing an OB association in Pup-CMa; it is in favor of the close connection of clouds with these stars. __________ Published in Astrofizika, Vol. 48, No. 4, pp. 491–501 (October–December, 2005).  相似文献   

15.
Narrow-band infrared and optical images of the Keyhole Nebula in NGC 3372 reveal which structures are caused by extinction, and show the underlying morphology of photoionized and shock-excited gas. Dark clouds conspire with ionized gas to create the apparent keyhole shape, which is prominent at blue wavelengths and less apparent in the infrared. The  Pa β /H α   line ratio shows the spatial distribution of foreground extinction. The wavelength dependence of this extinction indicates a reddening law with   R ≈4.8  , different from the normal interstellar medium. This confirms previous estimates of reddening toward the Carina Nebula determined from stellar photometry, and reveals that the anomalous extinction is patchy and within the H  ii region. The morphology of the ionized gas is different from the extinction clouds; it shows an edge-on ionization front running NE to SW, with a limb-brightened indentation that forms the upper outline of the keyhole shape. A fast polar wind from η Carinae may have punctured the ionization front, since the indentation is directly along a projection of the polar axis of the star. This is supported by the morphology of shock-excited gas revealed by a high  [S  ii ]/H α   ratio. High-excitation gas emitting [O  iii ] and He  i has a smoother distribution. Molecular clumps in the region are also discussed.  相似文献   

16.
Accurate two-colour photometry and proper motions of 7096 young X-ray stars in the ROSAT All-Sky Survey Bright Star Catalogue, version 1RXS, are extracted from the Tycho-2 Catalogue. The sample is dominated by red main-sequence and possibly pre-main-sequence stars. On a global proper motion convergence map, two features are very prominent: the nearby section of the Gould Belt and the Hyades convergent point. The appearance of the Gould Belt feature with its peak at ( l =2443, b =−126) is quite similar to that of Hipparcos OB stars. When only stars with proper motions drawing close to that point are selected, strong concentrations of stars in the direction of the Sco–Cen complex are found. Another concentration, not corresponding to any known OB association, is detected between the position of the Lower Centaurus Crux and Vela OB2 associations. It is a new young moving group located in Carina and Vela, and a near extension of the Sco–Cen complex. Contrary to the classical Gould Belt OB associations, the Carina–Vela moving group has a considerable geometric depth, the closest members being as near as 30 pc from the Sun. IC 2391, one of the youngest and closest open clusters on the sky, is a part of the Carina–Vela moving group. The Carina–Vela moving group does not link the Sco–Cen complex with the Vela OB associations, because the latter is much more distant than the outer limit of the sample. It is more likely that the young late-type population of the Scorpio–Centaurus–Carina moving group stretches towards the Sun and possibly beyond it.  相似文献   

17.
Photometry from the Tycho-2, 2MASS, andWISE catalogues for clump and branch giants at a distance up to 25 kpc toward the Galactic poles has allowed the variations of various characteristics of the infrared interstellar extinction law with distance to be analyzed. The results obtained by the extinction law extrapolation method are consistent for different classes of stars and different characteristics as well as with previous studies. The conventional extinction law with a low infrared extinction is characteristic of only a thin layer no farther than 100 pc from the Galactic plane and of two thin layers near Z = ?600 and +500 pc. Far from the Galactic plane, in the Galactic halo, the infrared extinction law is different: the extinction in the Ks, W1, W2, W3, and W4 bands is, respectively, 0.17, 0.16, 0.16, 0.07, and 0.03 of the extinction in the V band. The accuracy of these coefficients is 0.03. If the extinction law reflects primarily the grain size distribution, then the fraction of large dust grains far from the Galactic plane is greater than that in the circumsolar interstellar medium.  相似文献   

18.
Large ( > 100 pc) interstellar magnetic bubbles are necessary in the cosmic-ray-driven fast galactic dynamo, as pioneered by Parker in 1992. In a first part, a look is made at the available data on nearby (< 1000 pc) large interstellar magnetic bubbles. Here the magnetic field strengthB in a large shell of densityn around an OB association is found to be a few times greater than that outside in the general interstellar medium, varying typically likeB ~n, as expected for a shocked medium. In a second part, some tests are made of the predictions about interstellar magnetic bubbles made by the theory of a cosmic-ray driven fast galactic dynamo. The bubble tests generally support the idea of a cosmic-ray-driven fast galactic dynamo for the Milky Way.  相似文献   

19.
We have measured the interstellar extinction in the region of ultradeep Galactic-field observations by the Chandra telescope (l II, b II) ≈ 0.1–1.42 using photometric data from the 2MASS infrared allsky survey. The angular resolution of our interstellar extinction map is 1′.8. We show that the interstellar extinction has a minimum, A V ~ 3.4, near the center of the Chandra field of view and increases to A V ~ 5.8–6 at the edge of the field of view. In addition, we show that the bulk of the extinction is gained in the Galactic disk and is approximately the same for all bulge stars. Our results will be subsequently used to process the Chandra data and to estimate the properties of the stellar population in this region.  相似文献   

20.
A number of variable stars of the Orion population has been identified with IRAS point sources by us. This finding supports the conclusion that the prominent Algol-like minima in the lightcurves of these stars originate from obscurations by dust clouds in a circumstellar shell. The discussion of the existingUBVR data leads to the remarkable conclusion that the extinction properties of the grain populations contained in individual dust clouds moving in one and the same circumstellar shell are quite different.From the multicolour photometric data of the different Algol-like minima we derived individual values of the reddening parameterR = A v /E(B - V). It covers a remarkable wide range of values from that one typical of the interstellar extinction law up to 7. In the case of SV Cep one of the grain populations produces a virtually neutral extinction. The large values ofR speak in favour of larger than normal (interstellar) dust grains, which may have grown by coagulation processes. The cloudy circumstellar dust shell provides a natural explanation for the observed infrared excess. The properties derived from the optical light variations are fully compatible with the properties deduced from the infrared radiation. The irregularity of the light variations indicates that many clouds are involved and may sometimes superimpose themselves.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号