首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physical properties of young stellar objects are studied as functions of the initial spatial distributions of the gas surface density Σ and angular velocity Ω in pre-stellar cores using numerical hydrodynamic simulations. Two limiting cases are considered: spatially homogeneous cores with Σ = const and Ω = const and centrally concentrated cores with radius-dependent densities Σ ∝ r −1 and Ω ∝ r −1. The degree of gravitational instability and protostellar disk fragmentation is mostly determined by the initial core mass and the ratio of the rotational to the gravitational energy, and depends only weakly on the initial spatial configuration of pre-stellar cores, except for the earliest stages of evolution, when models with spatially homogeneous cores can be more gravitationally unstable. The accretion of disk matter onto a protostar also depends weakly on the initial distributions of Σ and Ω, with matter from the collapsing core falling onto the disk at a rate that is slightly higher in models with spatially homogeneous cores. An appreciable dependence of the disk mass, disk radius, and the disk-to-protostar mass ratio on the initial density and angular velocity profiles of the parent core is found only for class 0 young objects; this relationship is not systematic in the later I and II stages of stellar evolution. The mass of the central protostar depends weakly on the initial core configuration in all three evolutionary stages.  相似文献   

2.
Using 3D gas dynamics, we numerically simulate accretion-disk formation in typical cataclysmic variable intermediate polars with dipolar magnetic fields (B a = 105?5 × 105 G) and misaligned white-dwarf magnetic and rotation axes. Our simulations confirm that a significant misalignment of the axes results in a significant misalignment of the disk to the orbital plane. However, over time, this disk tilt disappears: early in the simulation, the initial particle positions in the rarefied tilted disk are governed solely by the magnetic field of the white dwarf. Due to the increasing disk mass and hence increasing disk gas pressure, the tilted disk eventually becomes decoupled from the magnetic field. The tidal action of the donor leads to a retrograde (i.e., nodal) precession of the tilted disk’s streamlines, and the disk becomes twisted. When the disk tilt is greater than 4°, the incoming gas stream no longer strikes the disk rim (i.e., bright shocked region). Matter is now transported over and under the disk rim to the inner regions of the disk. Over time, the increased mass of inner parts of the disk due to the action of the colinear gas stream returns the inner-disk regions to a colinear configuration. Meanwhile, the outer regions of the tilted, twisted disk become warped. Our simulations suggest that the lifetime of an intermediate polar’s tilted disk could be several tens to thousands of orbital periods.  相似文献   

3.
We have carried out numerical simulations of hydrodynamical processes occurring in the disks of spiral galaxies. The initial state of the disk is an equilibrium stellar-gaseous configuration. The spherical component is described by a standard analytical model for the gravitational potential. The behavior of the modeled disk in the presence of an external perturbation is analyzed. The results of numerical simulations of stellar-gaseous galactic disks aimed at studying the formation of polygonal structures in spiral galaxies are presented. The possible influence of spur-like formations on the appearance of polygonal structure is studied.  相似文献   

4.
The conditions for the formation of planets and brown dwarfs around single main-sequence stars are considered in two scenarios. The formation of planets and brown dwarfs requires that the initial specific angular momentum of a solar-mass protostar be (0.32)×1018 cm2/s. The accreted matter of the protostar envelope forms a compact gas ring (disk) around the young star. If the viscosity of the matter in this ring (disk) is small, increasing its mass above a certain limit results in gravitational instability and the formation of a brown dwarf. If the viscosity of the gas is sufficiently large, the bulk of the protostar envelope material will be accreted by the young star, and the gas disk will grow considerably to the size of a protoplanetary dust disk due to the conservation of angular momentum. The formation of dust in the cool part of the extended disk and its subsequent collisional coalescence ultimately results in the formation of solar-type planetary systems.  相似文献   

5.
Numerical simulations of the chemical evolution of disk galaxies taking into account the influence of Population III stars are considered. The probability that stars with peculiar chemical compositions are present in the solar neigborhood is analyzed, and possibilities for their detection considered. For various assumptions about the slope of the initial mass function for Population III stars and the critical metallicity, the radius surrounding the Sun containing at least one such star is 10–12 pc. Such objects could be studied using modern large telescopes. The influence of Population III stars on the chemical evolution of disk galaxies is investigated. Taking into account the first stars in early stages leads to an earlier onset of chemical enrichment of the ISM and a characteristic chemical composition of the gas, but all traces of this enrichment have disappeared by the current epoch.  相似文献   

6.
We study the fragmentation properties in the protoplanetary disk and properties of the resultant self-gravitating clumps using our newly constructed disk model. Our disk model includes the mass inflall term from a molecular cloud core and the photoevaporation winds effect. We adopt the conventional fragmentation criterion to judge whether a protoplanetary disk can fragment. In this work, we follow our previous work to investigate the properties of the resultant self-gravitating clumps. In our calculation, the initial masses of the resultant self-gravitating clumps lie in the range of tens of MJ to more than one hundred of MJ, where MJ is the Jupiter mass. These initial masses can seemingly account for the masses of extrasolar planets in magnitude. We also calculate the subsequent gas accretion of clumps in 1.27 × 104 yr after the formation of self-gravitating clumps. We find that the subsequent gas accretion of self-gravitating clumps is very efficient, and the clump masses grow to hundreds of MJ and the physical radii Rc of clumps increase to about 10 AU. Additionally, we also calculate the orbital migration of clumps. We find that most clumps have short migration timescale to be accreted onto the protostar, and only a small fraction of clumps have long migration timescale (>106 yr) to successfully become gas giant planets. These results are consistent with previous studies.  相似文献   

7.
The three-dimensional evolution of an ensemble of N particles (N = 8 × 105) in the external gravitational field of a galaxy perturbed by a spiral density wave is considered. The particles simulate clouds of interstellar gas, and inelastic two-body collisions between them are taken into account. The three-dimensional structure of the gaseous galactic layer and the vertical profile of the spiral arms are computed. It is shown that: (1) the local thickness of the gaseous galactic disk has a minimum where the volume gas density has a maximum (the maximum density of the interstellar medium is shifted downstream relative to the galactic shock front), (2) the configuration of the vertical profile of the spiral arms changes radically when the corotation region is crossed. Our first result explains the negative correlation between the thickness of the gas layer and the density derived from neutral-hydrogen observations. The second result can be used in the next generation of neutral-hydrogen observations to localize the corotation radius in the Galaxy.  相似文献   

8.
The dynamical, thermal, and chemical evolution of gas in protogalaxies with non-zero angular momentum is considered. It is shown that, in protogalaxies with a total mass (dark and baryonic) of M = 107 M⊙ at redshifts z = 12 whose gas has rotational angular momentum (spin parameter λ ≳ 0.005), a disk-like structure forms during the initial collapse of the galaxy, in contrast to non-rotating protogalaxies, whose collapse is spherically symmetric. The existence of initial angular momentumfor gas in protogalaxies increases the cooling time of the gas, delaying the formation of the first stars. Increasing the rotational angular momentum of the gas leads to cooling of the gas to lower temperatures (T < 100 K), at which HD molecules dominate in the cooling, while the total mass of cool gas (T < 1000 K) is decreased. The stability of disk-like structures in the central regions of protogalaxies is analyzed. It is shown that the disk that is formed is gravitationally unstable, and multiple fragmentation at various distances from the center is possible when the initial rotational angular momentum of the protogalaxy is increased. The possible birth of several stars in the first protogalaxies is discussed.  相似文献   

9.
We compare two-and three-dimensional modeling of gas-dynamical processes in the accretion disk of a binary system. The origin of spiral waves and the loss of the angular momentum related to them are considered. It is concluded that a steady state of the disk cannot exist without taking into account t he gas inflow from the donor star.  相似文献   

10.
Three-dimensional hydrodynamical modeling of the formation of the accretion disk in the SS 433 binary system is carried out with various types of cooling and numerical grids. These computations show that a thick accretion disk with a height of 0.25–0.30 (in units of the component separation) is formed around the compact object, from a flow with a large radius (0.2–0.3 in the same units) that forms in the vicinity of the inner Lagrangian point. This disk has the form of a flattened torus. The number of orbits of a particle of gas in the disk is 100–150, testifying to a minimal influence of numerical viscosity in these computations. The computations also show that the stream flowing from L1 is nearly conservative, and spirals in the disk are not formed due to the influence of the donor gravitation.  相似文献   

11.
The paper analyzes possible origins of stars located in intergalactic space that are not bound to specific galaxies, which comprise 15–50% of all stars in galaxy clusters. Some such stars can form in streams of intergalactic gas flowing around gas-rich disk galaxies moving in the cluster. Others may be the products of the decay of young, low-mass, spheroidal galaxies after the loss of their gaseous components during an initial burst of star formation. The decay of low-mass disk galaxies moving at high speeds after they have lost their gaseous components due to the pressure of the incident flow of dense intergalactic gas is possible in the cluster core. The largest fraction of intergalactic stars are probably produced by the partial disruption of galaxies as a result of close passages, collisions, or mergers. Collisions of low-mass, gas-rich galaxies are especially good suppliers of intergalactic stars. Both stars from decaying stellar components of galaxies and stars arising in the gaseous components of colliding galaxies can be supplied to the intergalactic medium. The merger of galaxies harboring supermassive black holes in their nuclei could lead to the partial or total disruption of these galaxies during the deceleration of the binary black hole that is formed during the merger. An enhanced density of intergalactic stars is observed in the cores of galaxy clusters, underscoring the role of galaxy collisions in the formation of the intergalactic stellar population, since the frequency of galaxy collisions grows with their density.  相似文献   

12.
We consider the origin and development of large-scale turbulence in a shear flow in a stellar accretion disk. The ratio of the kinetic energy of vortices originating in the turbulent flow and the total initial kinetic energy of the rotating disk is essentially constant. The large-scale structures that form are able to redistribute the angular momentum without any appreciable heating of the matter.  相似文献   

13.
Sytov  A. Yu.  Fateeva  A. M. 《Astronomy Reports》2019,63(12):1045-1055

Results of three-dimensional numerical simulations of the gas dynamics of the envelope of the young T Tauri binary star UZ Tau E are considered. The flow structure in the circumstellar envelope of the system is analyzed. It is shown that a regime with the impulsive accretion of matter from the circumstellar disk is realized in the binary system, in which there is a periodic transfer of matter to the accretion disk of the primary component through the accretion disk of the secondary.

  相似文献   

14.
Various origins for the formation of the heavy-element abundance gradients observed in nearly all disk galaxies are analyzed in the framework of evolutionary models. In an isolated galaxy, there is a radial gradient of the abundance of heavy elements only early in its evolution (the first several billion years), which subsequently practically disappears. The gradients of chemical compositions of young objects and the interstellar gas require that typical disk galaxies be open systems (i.e., that they eject some heavy elements into circumgalactic space and/or accrete intergalactic gas) and that the rates of both processes be dependent on galactocentric distance.  相似文献   

15.
The role of convection in the gas-dust accretion disk around a young star is studied. The evolution of a Keplerian disk is modeled using the Pringle equation, which describes the time variations of the surface density under the action of turbulent viscosity. The distributions of the density and temperature in the polar directions are computed simultaneously in the approximation that the disk is hydrostatically stable. The computations of the vertical structure of the disk take into account heating by stellar radiation, interstellar radiation, and viscous heating. The main factor governing evolution of the disk in this model is the dependence of the viscosity coefficient on the radius of the disk. The computations of this coefficient take into account the background viscosity providing the continuous accretion of the gas and the convective viscosity, which depends on the parameters of the convection at a given radius. The results of computations of the global evolution and morphology of the disk obtained in this approach are presented. It is shown that, in the adopted model, the accretion has burst-like character: after the inner part of the disk ($$R < 3$$ AU) is filled with matter, this material is transferred relatively rapidly onto the star, after which the process is repeated. Our results may be useful for explaining the activity of young FU Ori and EX Lup objects. It is concluded that convection may be one of the mechanisms responsible for the non-steady pattern of accretion in protostellar disks.  相似文献   

16.
We consider the interaction of interstellar dust grains with a galactic shock in the gaseous component. Typical parameters of dust grains and spiral density waves imply that the formation of large-scale dust lanes at the front of a galactic shock is possible only in models taking into account a self-focusing phenomenon. In the case of an isothermal flow of interstellar gas through a spiral arm in a model with a gaseous disk of variable thickness, dust lanes can be projected onto the region of increased gas density, although this is not associated with a galactic shock. The dust density peak derived from the classical model of a galactic shock (isothermal flow and a constant thickness of the gaseous disk) is appreciably shifted downstream of the gas flow, so that it does not outline the gas density maximum.  相似文献   

17.
We consider the evolution of galaxies in dense galactic clusters. Observations and theoretical estimates indicate that this evolution may be specified to a large extent by collisions between galaxies, as well as interactions between the gaseous components of disk galaxies and intergalactic gas. We analyze collisions between disk galaxies with gaseous components using a simple model based on a comparison of the duration of a collision and the characteristic cooling time for the gas heated by the collision, and also of the relative masses of stars and gas in the colliding disk galaxies. This model is used to analyze scenarios for collisions between disk galaxies with various masses as a function of their relative velocities. Our analysis indicates that galaxies can merge, lose one or both of their gaseous components, or totally disintegrate as a result of a collision; ultimately, a new galaxy may form from the gas lost by the colliding galaxies. Disk galaxies with mass M G and velocities exceeding ~300 (M G/1010 M )1/2 km/s in intergalactic gas in clusters with densities ~10?27 g/cm3 can lose their gas due to the pressure of inflowing intergalactic gas, thereby developing into E(SO) galaxies.  相似文献   

18.
Published data on rotation curves and the radial distribution of the surface density of neutral hydrogen (HI) in galaxies with a low gas content are used to calculate radial profiles of the volume density of HI in the planes of the galactic disks. A self-consistent model for the disks is used, taking into account the self-gravitation of the gas and the presence of a pseudo-isothermal, massive halo. Eleven low-surface-brightness (LSB) galaxies and three S0 galaxies in which HI is detected are considered. The gaseous and stellar disks are taken to be in equilibrium and axially symmetric, and the velocity dispersion in the stellar disk to be equal to the marginal value for gravitational perturbations; in general, this gives an upper limit for the gas density. It is shown that, on average, the gas volume densities are two orders of magnitude lower in LSB galaxies than in galaxies with normal brightnesses at the same R values, while the three S0 galaxies occupy an intermediate position. The volume density of gas observed at the galaxy peripheries are less than 10−27 g/cm3, even in the plane of the disk. The role of the UV background in ionizing outer regions is discussed. The obtained gas densities can be used to estimate the star-forming efficiency in regions of low density.  相似文献   

19.
The results of 3D modeling of the formation of the accretion disks of intermediate polars are presented. A model with misaligned rotation axes of accretor and the orbit is onsidered, in which it is assumed that the white dwarf has a dipolar magnetic field with its symmetry axis inclined to the whitedwarf rotation and orbital axes. The computations show that, in the early stages of formation of the disk, the action of magnetic field is able to create the initial (seed) inclination of the disk. This inclination is then supported mainly by the dynamical pressure of the flow from the inner Lagrangian point L1. As themass of the disk increases, the inclination disappears. Under certain conditions, the disk inclination does not arise in systems with misaligned white-dwarf rotation and orbital axes. The influence of the magnetic field and asynchronous rotation of the accretor may result in the formation of spiral waves in the disk with amplitudes sufficient to be detected observationally.  相似文献   

20.
The equilibrium thickness of the isothermal layers of interstellar gas and volume gas densities ρ gas in the plane of the disk as a function of galactocentric distance R are computed for seven spiral galaxies (including the Milky Way) using an axisymmetrical model. In this model, the thickness of the stellar disk varies with R and remains approximately equal to the minimum thickness of a stable equilibrium disk. We found the disk thickness to increase toward the periphery in at least five of the seven galaxies. The density of the stellar disk decreases with R faster than ρ gas , so that gas dominates at the disk peripheries in terms of density. A comparison of the azimuthally averaged star formation rate SFR and the gas density shows the absence of a universal Schmidt law SFR ~ρ gas n for galaxies. However, the SFRs in various galaxies are better correlated with the volume than the gas surface density. The parameter n in the Schmidt law formally calculated using the least-squares method lies in the interval 0.8–2.4, being, on average, close to 1.5. The values of n calculated separately for the molecular gas display substantial scatter, but are, on average, close to unity. The value of n appears to increase with decreasing ρ gas , so that the fraction of gas that actively participates in star formation decreases with n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号