首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Isotope tracers are widely used to study hydrological processes in small catchments, but their use in continental-scale hydrological modeling has been limited. This paper describes the development of an isotope-enabled global water balance and transport model (iWBM/WTM) capable of simulating key hydrological processes and associated isotopic responses at the large scale. Simulations and comparisons of isotopic signals in precipitation and river discharge from available datasets, particularly the IAEA GNIP global precipitation climatology and the USGS river isotope dataset spanning the contiguous United States, as well as selected predictions of isotopic response in yet unmonitored areas illustrate the potential for isotopes to be applied as a diagnostic tool in water cycle model development. Various realistic and synthetic forcings of the global hydrologic and isotopic signals are discussed. The test runs demonstrate that the primary control on isotope composition of river discharge is the isotope composition of precipitation, with land surface characteristics and precipitation-amount having less impact. Despite limited availability of river isotope data at present, the application of realistic climatic and isotopic inputs in the model also provides a better understanding of the global distribution of isotopic variations in evapotranspiration and runoff, and reveals a plausible approach for constraining the partitioning of surface and subsurface runoff and the size and variability of the effective groundwater pool at the macro-scale.  相似文献   

2.
The availability of global gridded precipitation and outgoing long-wave radiation (OLR) data after 1978 makes possible an investigation of the influence of the decadal solar oscillation in the tropics during three solar maxima and two solar minima. The NCEP/NCAR reanalyses starting in the 1950s allows the inclusion of an additional two solar maxima and minima to look for consistency of response across a longer time period. In the northern summer (July–August), the major climatological tropical precipitation maxima are intensified in solar maxima compared to solar minima during the period 1979–2002. The regions of this enhanced climatological precipitation extend from the Indian monsoon to the West Pacific oceanic warm pool and farther eastwards in the Intertropical Convergence Zone of the North Pacific and North American Monsoon, to the tropical Atlantic and greater rainfall over the Sahel and central Africa. The differences between solar maxima and minima in the zonal mean temperature through the depth of the troposphere, OLR, tropospheric vertical motion, and tropopause temperature are consistent with the differences in the rainfall. The upward vertical motion is stronger in regions of enhanced tropical precipitation, tropospheric temperatures are higher, tropopause temperatures are lower, and the OLR is reduced due to higher, colder cloud tops over the areas of deeper convective rainfall in the solar maxima than in the minima. These differences between the extremes of the solar cycle suggest that an increase in solar forcing intensifies the Hadley and Walker circulations, with greater solar forcing resulting in strengthened regional climatological tropical precipitation regimes. These effects are as strong or even more pronounced when warm and cold extremes in the Southern Oscillation are removed from the analyses. Additionally, lower stratospheric temperatures and geopotential heights are higher with greater solar forcing suggesting ozone interactions with solar forcing in the upper stratosphere.  相似文献   

3.
植被变化对西北地区陆气耦合强度的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
西北地区地处欧亚大陆腹地,生态系统对于气候变化和人为影响十分敏感,同时该区也是湿润的东亚季风区与干燥的中亚干旱区的过渡区域,陆气相互作用比较强烈.本文对西北地区植被变化对当地的陆气耦合强度及其与之相关的地表水文过程的影响进行了分析研究,并且找出适于增加植被以缓解西北地区荒漠化趋势的最具成效的地区.本文利用美国国家大气科学研究中心(NCAR,National Center for Atmospheric Research)研制的通用大气模式CAM3(Community Atmosphere Model Version 3)对西北地区植被变化的影响进了数值模拟.本文共设计了三个试验,使用正常地表植被覆盖的参考试验,地表下垫面变为裸土的去植被试验和植被增加的生态环境好转试验.首先,本文对西北地区植被变化对于当地降水量、地表水分盈余量、径流量、地表土壤含水量等地表水文变量的影响进行了分析研究.然后对西北地区植被变化对当地的陆气耦合强度的影响进了分析研究,陆气耦合强度是衡量局地陆气相互作用强弱程度的一个新标准,基于计算年降水量与蒸散量的协方差与降水量方差之比而得到.它利用观测数据或模式输出数据,计算起来简便容易,物理意义明确清晰,陆气相互作用越强烈的地区,其陆气耦合强度也越高.最后,本文计算了一个蒸散-水汽通量散度指数来衡量植被变化对局地蒸散与大气水汽通量散度的影响,其在一定程度上反应了植被变化对局地陆气相互作用和大尺度大气环流输送作用的影响,也可以视为一个评估人为生态环境工程效果的指标.西北地区陆气耦合强度由东南向西北递增.去植被之后,西北地区降水与蒸发普遍减少,其中在东南部区域,地表径流增加约10~40mm,渗流量与地表土壤含水量分别减少约40~80mm和5~20mm3·mm-3,陆气耦合强度上升,这有可能导致水土流失,不利于当地植被的恢复.生态环境好转之后,内陆地区降水与蒸发明显增加,但地表盈余水分有所减少,主要原因是蒸散量相较于降水量增加的更多.其中在沙漠戈壁区边缘的新疆南部与内蒙西部,渗流量与地表土壤含水量分别上升约5~20mm和5~20mm3·mm-3,陆气耦合强度降低,蒸散-水汽通量散度指数较高,这可能主要是由于植被变化对局地陆气相互作用的改变而造成的.植被对于西北地区地表水文过程有着明显的影响,植被的存在能加速西北地区地表水文循环过程,减小陆面蒸散的变化,降低陆气耦合强度.在有限的人力与财力条件下,集中力量在在沙漠戈壁区边缘的新疆南部与内蒙西部适当种植灌木与青草并防止过度放牧,能有效降低当地陆气耦合强度,缓解西北地区荒漠化加剧的趋势.本文下一步还需考虑如模式地表植被数据与真实情况的差异性,海洋因素变化对于植被变化的反馈,以及进行集合实验来增加研究结果的可靠性.  相似文献   

4.
To improve simulations of regional‐scale snow processes and related cold‐season hydroclimate, the Community Land Model version 3 (CLM3), developed by the National Center for Atmospheric Research (NCAR), was coupled with the Pennsylvania State University/NCAR fifth‐generation Mesoscale Model (MM5). CLM3 physically describes the mass and heat transfer within the snowpack using five snow layers that include liquid water and solid ice. The coupled MM5–CLM3 model performance was evaluated for the snowmelt season in the Columbia River Basin in the Pacific Northwestern United States using gridded temperature and precipitation observations, along with station observations. The results from MM5–CLM3 show a significant improvement in the SWE simulation, which has been underestimated in the original version of MM5 coupled with the Noah land‐surface model. One important cause for the underestimated SWE in Noah is its unrealistic land‐surface structure configuration where vegetation, snow and the topsoil layer are blended when snow is present. This study demonstrates the importance of the sheltering effects of the forest canopy on snow surface energy budgets, which is included in CLM3. Such effects are further seen in the simulations of surface air temperature and precipitation in regional weather and climate models such as MM5. In addition, the snow‐season surface albedo overestimated by MM5–Noah is now more accurately predicted by MM5–CLM3 using a more realistic albedo algorithm that intensifies the solar radiation absorption on the land surface, reducing the strong near‐surface cold bias in MM5–Noah. The cold bias is further alleviated due to a slower snowmelt rate in MM5–CLM3 during the early snowmelt stage, which is closer to observations than the comparable components of MM5–Noah. In addition, the over‐predicted precipitation in the Pacific Northwest as shown in MM5–Noah is significantly decreased in MM5–CLM3 due to the lower evaporation resulting from the longer snow duration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Groundwater supplies a significant proportion of water use in the United States and is critical to the maintenance of healthy ecosystems and environmental processes, thus characterizing aquifer hydrology is important to managing and preserving these resources. While groundwater isotopes provide insight into hydrologic and ecologic processes, their application is limited to where measurements exist. To help overcome this limitation, we used the random forest algorithm to develop a predictive model for shallow groundwater isotopes in the conterminous United States. Our model uses environmental variables (e.g. temperature, elevation, precipitation isotopes) as predictors. We used our model to develop the first shallow groundwater isoscape of δ2H and δ18O for the conterminous United States. We describe the patterns in groundwater isotopes using both observations and our modelled isoscape. We find that throughout much of the Eastern United States, groundwater isotopes are close to annual amount weighted precipitation, while groundwater isotopes are significantly depleted relative precipitation across much of the High Plains and Western United States. Furthermore, we compare the observations compiled for this study to isotopes of precipitation, which allows us to determine the relative recharge efficiency (i.e. ratio of groundwater recharge to precipitation) between seasons and the proportion of annual recharge that occurs in a given season. Our findings suggest that winter recharge is generally more efficient than summer recharge; however, the dominant recharge season is more varied as it is the product of both seasonal recharge efficiency and the seasonal timing of precipitation. Parts of the central United States have summer dominant recharge, which is likely the result of heavy summer precipitation/nocturnal summer precipitation. Interestingly, parts of coastal California appear to have summer dominant recharge, which we suggest could be due to recharge from fog-drip. Our results summarize spatial patterns in groundwater isotopes across the conterminous United States, provide insight into the hydrologic processes affecting shallow groundwater, and are valuable information for future ecologic and hydrologic studies.  相似文献   

6.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   

7.
During the Asian monsoon period, intense precipitation commonly occurs for an extended period in accompaniment with a reduction in solar radiation. This suggests that wet surface evapotranspiration is an important contributor to the total evapotranspiration. Therefore, investigating evapotranspiration over a wet canopy surface is critical to achieve a better understanding of water and energy cycles in Asia. In this study, we estimated surface resistances under wet conditions in a mixed forest influenced by the East Asian monsoon system. We showed that the surface resistance had a non‐negligible magnitude of about 30 sm?1 even under wet conditions. We also found that the ratio between the actual and potential evapotranspiration depended on the friction velocity regardless of the time of day. Our analyses suggest that this dependency is tightly related to the underestimation of turbulent fluxes by the eddy‐covariance system under wet surface conditions. Together, our findings suggest that the wet surface resistance, although small, should be considered in simulating evapotranspiration because the forest ecosystem is strongly coupled to the overlying atmosphere. This could significantly improve the shortcomings of evapotranspiration measurement and modeling in Asian forest canopies influenced by the monsoon system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
沙漠陆面过程参数化与模拟   总被引:4,自引:2,他引:2       下载免费PDF全文
郑辉  刘树华 《地球物理学报》2013,56(7):2207-2217
沙漠地区植被稀疏、干旱少雨,其陆面物理过程具有与全球其它地区显著不同的特点.本文利用巴丹吉林沙漠观测资料,分析和计算了地表反照率、比辐射率、粗糙度和土壤热容量、热传导系数等关键陆面过程参数,建立了适合于沙漠地区的陆面过程模式DLSM (Desert Land Surface Model),并与NOAH陆面过程模式的模拟结果和观测资料进行了比较.结果表明:巴丹吉林沙漠地表反照率为0.273,比辐射率为0.950,地表粗糙度为1.55×10-3 m,土壤热容量和热扩散系数分别为1.08×106 J·m-3·K-1和3.34×10-7 m2·s.辐射传输、感热输送和土壤热传导过程是影响沙漠地区地表能量平衡的主要物理过程.通过对这三种过程的准确模拟检验,DLSM能够较准确地模拟巴丹吉林沙漠地气能量交换特征;短波辐射、长波辐射和感热通量的模拟结果与观测值间的标准差分别为7.98,6.14,33.9 W·m-2,与NOAH陆面过程模式的7.98,7.72,46.6 W·m-2的结果接近.地表反照率是沙漠地区最重要的陆面过程参数,地表反照率增大5%,向上短波辐射通量随之增加5%,感热通量则减小2.8%.本文研究结果对丰富陆面过程参数化方案,改进全球陆面过程模式、气候模式具有参考意义.  相似文献   

9.
Influence of land evapotranspiration on climate variations   总被引:1,自引:0,他引:1  
A coupled numerical model of the global atmosphere with a qualified biosphere (GOALS/LASG) has been used to assess the nature of the physical mechanisms for land-atmosphere interactions, and the impacts of the Asian/North American land-surface evapotranspiration on the regional and global climate. This sensitivity study suggests that the simulated climate would be relatively sensitive to land surface evapotranspiration, especially over the Asian regions. The removal of evapotranspiration in Asia would create a warmer and drier climate to a certain degree. Furthermore, the surface evapotranspiration anomalies would make a substantial contribution to the formation and variation of subtropical anticyclones through the changes in monsoon precipitation and the β -effect, but also make a large contribution to the variations of the atmospheric circulation in the Northern Hemisphere and even the globe. Therefore, besides the traditional perception that we have generally emphasized on the influence of subtropical anticyclones activities on the boreal summer precipitation over the regions of eastern China, the surface evapotranspiration anomalies, however, also have substantial impacts on the subtropical anticyclones through the changes in monsoon precipitation. For this reason, the variation in the internal heating sources of the atmosphere caused by the land surface evapotranspiration and the vapor phase change during the boreal summer is an important external factor forcing the weather and climate.  相似文献   

10.
Ecohydrologic Process Modeling of Mountain Block Groundwater Recharge   总被引:1,自引:0,他引:1  
Regional mountain block recharge (MBR) is a key component of alluvial basin aquifer systems typical of the western United States. Yet neither water scientists nor resource managers have a commonly available and reasonably invoked quantitative method to constrain MBR rates. Recent advances in landscape-scale ecohydrologic process modeling offer the possibility that meteorological data and land surface physical and vegetative conditions can be used to generate estimates of MBR. A water balance was generated for a temperate 24,600-ha mountain watershed, elevation 1565 to 3207 m, using the ecosystem process model Biome-BGC (BioGeochemical Cycles) ( Running and Hunt 1993 ). Input data included remotely sensed landscape information and climate data generated with the Mountain Climate Simulator (MT-CLIM) ( Running et al. 1987 ). Estimated mean annual MBR flux into the crystalline bedrock terrain is 99,000 m3/d, or approximately 19% of annual precipitation for the 2003 water year. Controls on MBR predictions include evapotranspiration (radiation limited in wet years and moisture limited in dry years), soil properties, vegetative ecotones (significant at lower elevations), and snowmelt (dominant recharge process). The ecohydrologic model is also used to investigate how climatic and vegetative controls influence recharge dynamics within three elevation zones. The ecohydrologic model proves useful for investigating controls on recharge to mountain blocks as a function of climate and vegetation. Future efforts will need to investigate the uncertainty in the modeled water balance by incorporating an advanced understanding of mountain recharge processes, an ability to simulate those processes at varying scales, and independent approaches to calibrating MBR estimates.  相似文献   

11.
The partitioning of rainfall into surface runoff and infiltration influences many other aspects of the hydrologic cycle including evapotranspiration, deep drainage and soil moisture. This partitioning is an instantaneous non-linear process that is strongly dependent on rainfall rate, soil moisture and soil hydraulic properties. Though all rainfall datasets involve some degree of spatial or temporal averaging, it is not understood how this averaging affects simulated partitioning and the land surface water balance across a wide range of soil and climate types. We used a one-dimensional physics-based model of the near-surface unsaturated zone to compare the effects of different rainfall discretization (5-min point-scale; hourly point-scale; hourly 0.125° gridded) on the simulated partitioning of rainfall for many locations across the United States. Coarser temporal resolution rainfall data underpredicted seasonal surface runoff for all soil types except those with very high infiltration capacities (i.e., sand, loamy sand). Soils with intermediate infiltration capacities (i.e., loam, sandy loam) were the most affected, with less than half of the expected surface runoff produced in most soil types when the gridded rainfall dataset was used as input. The impact of averaging on the water balance was less extreme but non-negligible, with the hourly point-scale predictions exhibiting median evapotranspiration, drainage and soil moisture values within 10% of those predicted using the higher resolution 5-min rainfall. Water balance impacts were greater using the gridded hourly dataset, with average underpredictions of ET up to 27% in fine-grained soils. The results suggest that “hyperresolution” modelling at continental to global scales may produce inaccurate predictions if there is not parallel effort to produce higher resolution precipitation inputs or sub-grid precipitation parameterizations.  相似文献   

12.
Land surface evapotranspiration (ET) plays an important role in energy and water balances. ET can significantly affect the runoff yield of a basin and the available water resources in mountainous areas. The existing models to estimate ET are typically applicable to plains, and excessive data are required to calculate the surface fluxes accurately. This study established a simple and practical model capable of depicting the surface fluxes, while using relatively less parameters. Considering the complex terrain, solar radiation was corrected by importing a series of topographic factors. The water deficit index, a measure of land surface wetness, was calculated by applying the fc (vegetation fractional cover)‐Trad (land surface temperature) framework in the two‐source trapezoid model for evapotranspiration model to mountainous areas after corrections of temperature based on altitude variations. The model was successfully applied to the Kaidu River Basin, a basin with few gauges located in the east Tien Shan Mountains of China. Based on the time scale extensions, ET was analyzed at different time scales from 2000 to 2013. The results demonstrated that the corrected solar radiation and water deficit index were reasonably distributed in space and that this model is applicable to ungauged catchments, such as the Kaidu River Basin.  相似文献   

13.
Water and energy fluxes are inextricably interlinked within the interface of the land surface and the atmosphere. In the regional earth system models, the lower boundary parameterization of land surface neglects lateral hydrological processes, which may inadequately depict the surface water and energy fluxes variations, thus affecting the simulated atmospheric system through land-atmosphere feedbacks. Therefore, the main objective of this study is to evaluate the hydrologically enhanced regional climate modelling in order to represent the diurnal cycle of surface energy fluxes in high spatial and temporal resolution. In this study, the Weather Research and Forecasting model (WRF) and coupled WRF Hydrological modelling system (WRF-Hydro) are applied in a high alpine catchment in Northeastern Tibetan Plateau, the headwater area of the Heihe River. By evaluating and intercomparing model results by both models, the role of lateral flow processes on the surface energy fluxes dynamics is investigated. The model evaluations suggest that both WRF and coupled WRF-Hydro reasonably represent the diurnal variations of the near-surface meteorological fields, surface energy fluxes and hourly partitioning of available energy. By incorporating additional lateral flow processes, the coupled WRF-Hydro simulates higher surface soil moisture over the mountainous area, resulting in increased latent heat flux and decreased sensible heat flux of around 20–50 W/m2 in their diurnal peak values during summertime, although the net radiation and ground heat fluxes remain almost unchanged. The simulation results show that the diurnal cycle of surface energy fluxes follows the local terrain and vegetation features. This highlights the importance of consideration of lateral flow processes over areas with heterogeneous terrain and land surfaces.  相似文献   

14.
Morton's complementary relationship areal evapotranspiration (CRAE) model was originally designed to provide regional estimates of monthly evapotranspiration. Often, however, hydrologists and others require estimates of evapotranspiration for field-sized land units under a specific land use, for shorter intervals of time. This paper examines CRAE with respect to the algorithms used to describe different terms and its applicability to reduced spatial and temporal scales.

Daily estimates by CRAE of atmospheric radiation fluxes during the summer months are compared with monitored values. It is shown that errors in estimation of the extra-terrestrial flux, the transmittancy of clouds to short-wave radiation, the surface albedo and the net long-wave flux result in standard deviations of the difference between ‘modelled’ and ‘measured’ net all-wave radiation for 1-, 5- and 10-day periods of 2.58, 1.8 and 1.50 MJm−2 day−1 respectively.

The assumption in CRAE that the vapour transfer coefficient is independent of wind speed may lead to appreciable error in computing evapotranspiration. A procedure for incorporating a wind correction factor is described and the improvement in estimating regional evaporation is illustrated.

Comparisons of evapotranspiration estimates by CRAE and measurements obtained from soil moisture and precipitation observations in the semi-arid, cold-climate Prairie region of western Canada demonstrate that the assumptions that the soil heat flux and storage terms are negligible, lead to large overestimation by the model during periods of soil thaw.  相似文献   


15.
An automated mobile field agrometeorological complex was designed and constructed to study the evapotranspiration in agricultural fields and to determine the rates and dates of irrigation. The complex collects, stores, and processes data on meteorological parameters: air temperature and humidity, atmospheric pressure, wind speed, and the temperature and net radiation of land surface. The meteorological characteristics and data on agricultural plants are used to evaluate the evapotranspiration, the rates and dates of irrigation in real-time regime. All measured and calculated parameters are accumulated in an inner database in the complex during the measurement period. The mobility of the complex enables its operation on fields with different crops. Field studies were carried out in 2013–2014 in different climatic zones.  相似文献   

16.
Groundwater is an important component of the hydrological cycle with significant interactions with soil hydrological processes. Recent studies have demonstrated that incorporating groundwater hydrology in land surface models (LSMs) considerably improves the prediction of the partitioning of water components (e.g., runoff and evapotranspiration) at the land surface. However, the Joint UK Land Environment Simulator (JULES), an LSM developed in the United Kingdom, does not yet have an explicit representation of groundwater. We propose an implementation of a simplified groundwater flow boundary parameterization (JULES-GFB), which replaces the original free drainage assumption in the default model (JULES-FD). We tested the two approaches under a controlled environment for various soil types using two synthetic experiments: (1) single-column and (2) tilted-V catchment, using a three-dimensional (3-D) hydrological model (ParFlow) as a benchmark for JULES’ performance. In addition, we applied our new JULES-GFB model to a regional domain in the UK, where groundwater is the key element for runoff generation. In the single-column infiltration experiment, JULES-GFB showed improved soil moisture dynamics in comparison with JULES-FD, for almost all soil types (except coarse soils) under a variety of initial water table depths. In the tilted-V catchment experiment, JULES-GFB successfully represented the dynamics and the magnitude of saturated and unsaturated storage against the benchmark. The lateral water flow produced by JULES-GFB was about 50% of what was produced by the benchmark, while JULES-FD completely ignores this process. In the regional domain application, the Kling-Gupta efficiency (KGE) for the total runoff simulation showed an average improvement from 0.25 for JULES-FD to 0.75 for JULES-GFB. The mean bias of actual evapotranspiration relative to the Global Land Evaporation Amsterdam Model (GLEAM) product was improved from −0.22 to −0.01 mm day−1. Our new JULES-GFB implementation provides an opportunity to better understand the interactions between the subsurface and land surface processes that are dominated by groundwater hydrology.  相似文献   

17.
In temperate humid catchments, evapotranspiration returns more than half of the annual precipitation to the atmosphere, thereby determining the balance available to recharge groundwaters and support stream flow and lake levels. Changes in evapotranspiration rates and, therefore, catchment hydrology could be driven by changes in land use or climate. Here, we examine the catchment water balance over the past 50 years for a catchment in southwest Michigan covered by cropland, grassland, forest, and wetlands. Over the study period, about 27% of the catchment has been abandoned from row‐crop agriculture to perennial vegetation and about 20% of the catchment has reverted to deciduous forest, and the climate has warmed by 1.14 °C. Despite these changes in land use, the precipitation and stream discharge, and by inference catchment‐scale evapotranspiration, have been stable over the study period. The remarkably stable rates of evapotranspirative water loss from the catchment across a period of significant land cover change suggest that rainfed annual crops and perennial vegetation do not differ greatly in evapotranspiration rates, and this is supported by measurements of evapotranspiration from various vegetation types based on soil water monitoring in the same catchment. Compensating changes in the other meteorological drivers of evaporative water demand besides air temperature—wind speed, atmospheric humidity, and net radiation—are also possible but cannot be evaluated due to insufficient local data across the 50‐year period. Regardless of the explanation, this study shows that the water balance of this landscape has been resilient in the face of both land cover and climate change over the past 50 years.  相似文献   

18.
Turgay Partal 《水文研究》2009,23(25):3545-3555
This study combines wavelet transforms and feed‐forward neural network methods for reference evapotranspiration estimation. The climatic data (air temperature, solar radiation, wind speed, relative humidity) from two stations in the United States was evaluated for estimating models. For wavelet and neural network (WNN) model, the input data was decomposed into wavelet sub‐time series by wavelet transformation. Later, the new series (reconstructed series) are produced by adding the available wavelet components and these reconstructed series are used as the input of the WNN model. This phase is pre‐processing of raw data and the main different of the WNN model. The performance of the WNN model was compared with classical neural networks approach [artificial neural network (ANN)], multi‐linear regression and Hargreaves empirical method. This study shows that the wavelet transforms and neural network methods could be applied successfully for evapotranspiration modelling from climatic data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
—The influence of soil moisture and vegetation variation on simulation of monsoon circulation and rainfall is investigated. For this purpose a simple land surface parameterization scheme is incorporated in a three-dimensional regional high resolution nested grid atmospheric model. Based on the land surface parameterization scheme, latent heat and sensible heat fluxes are explicitly estimated over the entire domain of the model. Two sensitivity studies are conducted; one with bare dry soil conditions (no latent heat flux from land surface) and the other with realistic representation of the land surface parameters such as soil moisture, vegetation cover and landuse patterns in the numerical simulation. The sensitivity of main monsoon features such as Somali jet, monsoon trough and tropical easterly jet to land surface processes are discussed.¶Results suggest the necessity of including a detailed land surface parameterization in the realistic short-range weather numerical predictions. An enhanced short-range prediction of hydrological cycle including precipitation was produced by the model, with land surface processes parameterized. This parameterization appears to simulate all the main circulation features associated with the summer monsoon in a realistic manner.  相似文献   

20.
Sloped areas calculated from a GIS raster file, such as a digital elevation model, are smaller than the true surface area, because they are projected to a planimetric plane. In mountainous regions this sloped area under‐estimation (SAUE) can have significant consequences on hydrological calculations. A sensitivity analysis is conducted, using the ACRU agro‐hydrological modelling system in a small watershed in Glacier National Park, Montana, USA, to investigate the sensitivity of the SAUE on key elements of the hydrological cycle, including precipitation depth, April snow depth, August soil moisture deficit, actual evapotranspiration depth, and runoff depth. The sensitivity analysis is based on 224 unique combinations of slope, soil and land cover types, elevation with associated precipitation depths, and north and south facing radiation regimes. Results revealed an increasing influence of the SAUE on all hydrological processes with increasing slope steepness. Distinct differences and magnitudes between different land cover types, different elevations, and, in particular, different exposition were quantified. Actual evapotranspiration increases with SAUE, while runoff decreases. April soil water is simulated to decrease with an increase in SAUE. Finally, a comparison of a streamflow simulation of a small and steep alpine watershed with and without consideration of the SAUE is carried out. The sloped area of the small watershed is under‐estimated by 20·9%, and the difference in simulated runoff is 12·3%. When the SAUE was not considered, runoff was simulated to be higher, the associated coefficient of determination was slightly lower, and the slope of the regression line was flatter. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号